Search Images Maps Play Gmail Drive Calendar Translate More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN101838496 A
Publication typeApplication
Application numberCN 201010145642
Publication date22 Sep 2010
Filing date9 Apr 2010
Priority date9 Apr 2010
Also published asCN101838496B
Publication number201010145642.2, CN 101838496 A, CN 101838496A, CN 201010145642, CN-A-101838496, CN101838496 A, CN101838496A, CN201010145642, CN201010145642.2
Inventors杨胜洋, 王丽芳, 陈苏, 陈莉
Applicant南京工业大学
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Super-hydrophobic polyurethane/ oxide nano particle hybrid coating material and preparation method thereof
CN 101838496 A
Abstract
The invention relates to a super-hydrophobic polyurethane/ oxide nano particle hybrid coating and a preparation method thereof. The super-hydrophobic coating is prepared by oxide nano particles, silane coupling agent and polyurethane which have wide material source and are easily obtained through a self-assembly method, and has the contact angle of 140-168 degrees and the rolling angle of 1-20 degrees as well as good visible light permeability. The invention solves the problems that the currently prepared transparent super-hydrophobic coating needs extremely low surface energy perfluorinated silane modification, has high production cost and complicated technique, and can not realize large-scale production. The method has simple technique, easily obtained raw material and low cost; and theprepared super-hydrophobic coating can be taken as a dustproof and antifogging protective coating of the surface of solids such as glass and the like, and a waterproof insulating layer used in a micro-electronic device, a sensor and the like.
Claims(10)  translated from Chinese
  1. 一种超疏水聚氨酯/氧化物纳米粒子杂化涂层材料,其特征在于超疏水表面杂化材料的表面水接触角为140-168,滚动角为1-20;其原料组分为改性超疏水氧化物纳米粒子溶液和聚氨酯溶液;其中聚氨酯和改性超疏水氧化物纳米粒子的质量比为1-8∶1;所述的改性超疏水氧化物纳米粒子溶液由以下步骤制得:A.氧化物纳米粒子预处理:称取氧化物纳米粒子于烘箱中干燥后与溶剂混合,超声分散均匀后加入反应器,升温,随后加入硅烷偶联剂,搅拌均匀升温回流反应;最后将产物经无水乙醇洗涤并离心分离,经真空干燥得改性氧化物纳米粒子,置于干燥器中备用;B.超疏水氧化物纳米粒子溶液的制备:取上述改性氧化物纳米粒子超声分散于溶剂中配成氧化物纳米粒子溶液;随后将为改性氧化物纳米粒子重量的0.75-2倍的含疏水链化学物质分散在溶剂中,在磁力搅拌下加至氧化物纳米粒子溶液中,制得超疏水氧化物纳米粒子混合溶液,控制混合溶液的质量固含量为1-5%。 A super-hydrophobic polyurethane / oxide nanoparticles hybrid coating material, characterized in that the superhydrophobic surface water hybrid material surface contact angle of 140 -168 , roll angle of 1-20 ; its raw material component Modified superhydrophobic oxide nanoparticle solution and the polyurethane solution; wherein the mass ratio of the modified polyurethane and superhydrophobic oxide nanoparticles is 1-8:1; superhydrophobic oxide modified nanoparticle solution prepared according to the following steps . have: A pretreatment oxide nanoparticles: Weigh oxide nanoparticles in an oven dried and the solvent were mixed and ultrasonic dispersion evenly added to the reactor, heating, followed by addition of a silane coupling agent, the reaction mixture was stirred at reflux for uniform heating; final The product was centrifuged and washed with absolute ethanol, and dried in vacuo to give the modified oxide nanoparticles, into a desiccator; B superhydrophobic oxide nanoparticles prepared solution: Take the modified oxide nanoparticles ultrasound dispersed in a solvent oxide nanoparticles formulated solution; followed by 0.75-fold for the modified oxide nano particle weight of a hydrophobic chain containing substances dispersed in a solvent, in the magnetic oxide was added to a stirring solution of nanoparticles to prepare a mixed solution of hydrophobic oxide nanoparticles over the control of the quality of the mixed solution solids content of 1-5%.
  2. 2.根据权利要求1所述的涂层材料,其特征在于步骤A中所述的氧化物纳米粒子为纳米二氧化硅、纳米三氧化二铝、纳米二氧化钛或纳米二氧化锆;粒径I-IOOOnm ;步骤A所述的溶剂为甲苯、二甲苯、N,N-二甲基甲酰胺、环己烷、二氯甲烷中的一种或几种;溶剂用量为氧化物纳米粒子重量的10-50倍;所述的硅烷偶联剂为Y-缩水甘油醚氧丙基三甲氧基硅烷、甲基三甲氧基硅烷、三甲基乙氧基硅烷、聚二甲硅基氧烷中的一种或几种,偶联剂用量为氧化物纳米粒子重量的0. 5-5倍。 The coating material according to claim 1, characterized in that the oxide nanoparticles described in step A nano silica, nano-aluminum oxide, titanium dioxide or nano-zirconia; particle I- IOOOnm; step A the solvent is toluene, xylene, N, N- dimethylformamide, cyclohexane, methylene chloride is one or more; Solvent oxide nanoparticles by weight in an amount of 10- 50 times; the silane coupling agent is Y- glycidoxypropyl trimethoxysilane, methyl trimethoxysilane, trimethyl ethoxy silane, silicon polydimethyl siloxane one or more, a coupling agent in an amount of 0. 5-5 times the weight of oxide nanoparticles.
  3. 3.根据权利要求1所述的涂层材料,其特征在于步骤A中超声分散后升温至60-100C ; 加入硅烷偶联剂,升温至100-140C回流反应6-12小时。 3. The coating material according to claim 1, wherein step A after ultrasonic dispersion was heated to 60-100 C; silane coupling agent was added, was heated to 100-140 C the reaction was refluxed for 6-12 hours.
  4. 4.根据权利要求1所述的涂层材料,其特征在于步骤B中配成超疏水氧化物纳米粒子溶液中的溶剂为甲苯、二甲苯、N,N-二甲基甲酰胺、环己烷、二氯甲烷中的一种或几种;含疏水链化学物质为C8-C22的酰胺、C8-C22的烷基三氯硅烷、C8-C22的烷基三烷氧基硅烷、 C6-C12的含氟脂肪酸、四氢全氟C6-C12的烷基三氯硅烷、四氢全氟或C6-C12烷基三烷氧基硅烷中的一种或几种;溶解含疏水链化学物质的溶剂为四氢呋喃、N, N-二甲基甲酰胺、二乙基甲酰胺、三氯甲烷、二氯甲烷、正己烷、环己烷、烷基环己烷或四氯化碳。 4. The coating material according to claim 1, characterized in that in step B superhydrophobic oxide nanoparticles formulated solution solvent is toluene, xylene, N, N- dimethylformamide, cyclohexane , one or more methylene chloride; chemical substance containing a hydrophobic chain C8-C22 amides, C8-C22 alkyl trichlorosilane, C8-C22 alkyl trialkoxy silane, C6-C12 of The fluorine-containing fatty acid, tetrahydro-perfluoro C6-C12 alkyl trichlorosilane, tetrahydro-perfluoro C6-C12 alkyl or trialkoxysilanes in one or more of; dissolving solvent containing the chemical substance is a hydrophobic chain tetrahydrofuran, N, N- dimethylformamide, diethylformamide, chloroform, methylene chloride, hexane, cyclohexane, alkyl cyclohexane or carbon tetrachloride.
  5. 5.根据权利要求1所述的涂层材料,其特征在于所述的聚氨酯溶液的质量固含量为1-15% ;溶剂为丙酮、甲乙酮、环己酮、醋酸乙酯、二氯甲烷、四氢呋喃、N,N-二甲基甲酰胺、 二氧六环中的一种或几种。 5. The coating material according to claim 1, characterized in that the mass of the solid content of the polyurethane solution is 1-15%; solvent is acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, methylene chloride, tetrahydrofuran , N, N- dimethylformamide, dioxane, one or several.
  6. 6. 一种制备如权利要求1所述超疏水聚氨酯/氧化物纳米粒子杂化涂层材料的方法, 其具体步骤如下:(1)配制聚氨酯溶液,将改性的超疏水氧化物纳米粒子混合溶液与聚氨酯溶液,按改性的超疏水氧化物纳米粒子与聚氨酯质量比为1 : 1-8的比例混合,搅拌均勻后反应,通过浓缩以除去多余溶剂,即制得透明超疏水表面涂层剂;(2)涂层热处理:将透明超疏水表面涂层剂涂覆在基底材料表面,在30-80C中烘干至溶剂完全挥发,即制得具有透明超疏水性能的改性聚氨酯/氧化物纳米粒子涂层。 6. A process for preparing a polyurethane as claimed in claim 1 The method of superhydrophobic coating material / oxide nanoparticles hybrid, the specific steps are as follows: (1) preparation of the polyurethane solution, the mixed oxide-modified nanoparticles superhydrophobic solution and the polyurethane solution, according superhydrophobic oxide nanoparticles modified with polyurethane mass ratio of 1: 1-8 mixing ratio, stir the reaction, concentrated to remove excess solvent, i.e., to obtain a transparent superhydrophobic surface coating agent; (2) coating heat treatment: the transparent superhydrophobic surface coating agent is coated on the surface of the base material, drying the solvent has evaporated, which obtained a transparent superhydrophobic properties of modified polyurethane in at 30-80 C / oxide nanoparticles coating.
  7. 7.根据权利要求6所述方法,其特征在于所述的基底材料为金属、无机或有机的致密或多孔材料。 7. The method according to claim 6, wherein said base material is a metal, an inorganic or organic dense or porous material.
  8. 8.根据权利要求7所述方法,其特征在于所述的基底材料为为铝箔、玻璃、硅、陶瓷、半导体或高分子材料。 8. The method according to claim 7, wherein said base material is aluminum foil, glass, silicon, ceramic, semiconductor or polymer material.
  9. 9.根据权利要求6所述的方法,其特征涂覆方式为喷涂法、旋转涂覆法、提拉法或者滴液注膜法。 9. The method according to claim 6, characterized in the coating method is a spray coating method, spin coating method, dip method, or dropping NOTE membrane.
  10. 10.根据权利要求6所述的方法,其特征在于反应条件为超声或60-120Ό加热回流;浓缩方式为减压蒸馏或者加热抽真空;涂层的烘干温度为40-65C。 10. The method according to claim 6, characterized in that the reaction conditions 60-120Ό ultrasound or heated to reflux; was concentrated by distillation under reduced pressure or heating mode is evacuated; coating drying temperature of 40-65 C.
Description  translated from Chinese

一种超疏水聚氨酯/氧化物纳米粒子杂化涂层材料及其制 A super-hydrophobic polyurethane / oxide nanoparticles hybrid coating materials and system

备方法 Preparation method

技术领域 Technical Field

[0001] 本发明属于超疏水涂层制备技术领域,更具体的说,涉及一种超疏水聚氨酯/氧化物纳米粒子杂化涂层及其制备方法。 [0001] The present invention belongs to the technical field of preparing a superhydrophobic coating, and more particularly, to a super-hydrophobic polyurethane / oxide nanoparticles hybrid coating and preparation method.

背景技术 Background

[0002] 超疏水(表面静态接触角大于150 )涂层具有防水、防污染、防氧化、自清洁等性能,因而备受人们关注。 [0002] super hydrophobic (surface static contact angle greater than 150 ) coating is waterproof, anti-pollution, anti-oxidation, self-cleaning properties, so much attention. 而透明超疏水涂层,不仅具备超疏水表面的性质而且具有很好的可见光透过性,用于室外光电及显示设备,高层建筑的自清洁玻璃,作为汽车、飞机等的挡风玻璃等,具有着巨大的应用价值。 And transparent superhydrophobic coatings, not only with nature but also superhydrophobic surface has good visible light transmission for outdoor optoelectronic and display equipment, self-cleaning glass high-rise buildings, as cars, planes and other windshields, It has a great value.

[0003] 目前透明超疏水涂层的研究并不多,制备方法主要包括溶胶-凝胶法、相分离法、 自组装法以及等离子体法等。 [0003] The present study transparent superhydrophobic coating is not much preparation methods including sol - gel method, phase separation, self-assembly method and plasma method.

[0004] 溶胶-凝胶法如专利CN200710070728. 1将透明基体材料提拉法浸入溶胶凝胶法有机铝盐螯合制得的溶胶中制备透明薄膜;Naka jimaA等(Adv Mater. 1999, (11): 1365-1368)将可升华的粉状化合物Al (C2H7O2) 3加入到硅溶胶或铝溶胶制备透明涂层,这些均需经热处理得到一定粗糙度后用极低自由能全氟烷基氯硅烷或全氟烷基烷氧基硅烷修饰,从而制得透明的高疏水性涂层。 . [0004] The sol - gel method patent CN200710070728 1 as the transparent base material is immersed in a sol-gel method Czochralski organic aluminum chelate sol preparation prepared transparent film; Naka jimaA et (Adv Mater 1999, (11. ): After 1365-1368) will be sublimation of the powdered compound Al (C2H7O2) 3 was added to the silica sol aluminum or clear coat, these need to be heat treated to a certain roughness can perfluoroalkyl low chlorine free perfluoroalkyl silane or alkoxysilane modified, to thereby obtain a transparent high hydrophobic coating. 而HM Shang等(ThinSolid Films. 2005,(472): 37-43)则用TEOS、MPS、MTES为原料,经水解得到的硅溶胶浸涂于玻片表面后在CTMS和TFCS的作用下进行自组装,形成的硅基透明薄膜透明度均高于90%,其中最大的接触角达到近165。 The HM Shang et (ThinSolid Films 2005, (472):. 37-43) is using TEOS, MPS, MTES as raw material, obtained by hydrolysis silica surface after dipping to slide from under the CTMS and TFCS role assembly, formed silicon transparent film transparency are higher than 90%, the largest contact angle of nearly 165 .

[0005]等离子体法如Hozumi 等(Thin Solid Films. 1997,303 :222 〜225)采用化学气相沉积(CVD)法使沉积膜的表面获得一定粗糙度后,以含有全氟烷基的硅烷作为气源,经等离子体处理制得透明的超疏水性薄膜。 [0005] As Hozumi et plasma method (Thin Solid Films 1997,303:. 222 ~225) after chemical vapor deposition (CVD) method so that the surface of the deposited film to obtain a certain roughness, a silane containing a perfluoroalkyl group as gas supply, the plasma treatment was transparent superhydrophobic film. 李国兴等(Applied Surface Science. 2008,(254): 5299-5303)则利用磁控溅射技术将氮化硼薄膜沉积到硅基表面,然后通过CF4等离子处理在表面获得了双尺度的粗糙度,获得了接触角为159的透明超疏水薄膜。 Li Guoxing, etc. (Applied Surface Science 2008, (254):. 5299-5303) the use of magnetron sputtering boron nitride films deposited onto the silicon surface, and then double-scale surface roughness obtained by CF4 plasma processing, get the contact angle of 159 transparent superhydrophobic film.

[0006] 自组装法如Javier Bravo 等(Langmuir. 2007, (23) :7293_7298)利用LBL 自组装法在玻片表面浸涂三层,首先吸附层为PAH/SPS,增强了聚合物和纳米粒子的结合力;中间层为PAH/二氧化硅(50+20nm),提供超疏水所需的双尺度的粗糙度结构;顶层为PAH/ 二氧化硅(20nm),通过硅烷降低薄膜的表面自由能。 [0006] The self-assembly processes such as Javier Bravo, etc. (Langmuir 2007, (23):. 7293_7298) LBL self-assembly method utilizing surface dip in slide three, the first adsorption layer of PAH / SPS, enhanced polymers and nanoparticles an intermediate layer of PAH / silica (50 + 20nm), to provide the desired roughness structure superhydrophobic double scale;; top binding force of PAH / silica (20nm), by reducing the silane surface free energy of the film . 该薄膜的接触角为160,后退角小于10,并且光学透过率在可见光区域高于90%。 The contact angle of the film was 160 , back angle is less than 10 , and the optical transmittance of more than 90% in the visible region. 专利CN200910066706. 7则将带负电氧化物纳米粒子和阳离子聚合物LBL层层组装,尽管透光率很高,但工艺繁琐,且需在400C 高温烧结后用低表面能的长链全氟硅烷以化学沉积法修饰,原料昂贵且条件苛刻;而专利CN200810218808. 1将二氧化硅胶体电泳沉积到导电玻璃上,透光率高,但不能进行大范围的制备。 Patent CN200910066706. 7 will be negatively charged oxide nanoparticles and a cationic polymer layers LBL assembly, despite the high transmittance, but the process is complicated, and require a long-chain perfluorinated 400 C after high-temperature sintering with a low surface energy silane modified chemical deposition method, the raw material is expensive and under harsh conditions; whereas patent CN200810218808 1 colloidal silica electrophoretic deposition onto a conductive glass, high transmittance, but can not be prepared in a wide range.

[0007] 上述涂层方法制备工艺复杂,成本昂贵,而且需要苛刻的化学条件及工艺,或者用较为昂贵的氟硅烷进行表面修饰,这些都限制了超疏水涂层在工业上的广泛应用。 [0007] The method for preparing the above coating process is complex, expensive, and require harsh chemical conditions and processes, or use more expensive fluorosilane surface modification, which limits the superhydrophobic coatings are widely used in industry. 因此,需要一种操作简单,原料易得,成本较低并可以规模化制备和应用的透明超疏水表面的方法。 Thus, a simple, readily available raw materials, low cost and can scale transparent superhydrophobic surface preparation and application of the method requires a operating. 发明内容 DISCLOSURE

[0008] 本发明的目的提出了一种超疏水聚氨酯/氧化物纳米粒子杂化涂层材料,本发明的另一目的还提供了上述材料的制备方法,解决了当前制备透明超疏水涂层中多需极低表面能的全氟硅烷修饰、生产成本高、工艺复杂、不能规模化生产的问题。 [0008] The present invention proposes a super-hydrophobic polyurethane / oxide nanoparticles hybrid coating materials, another object of the present invention also provides a method for preparing the material solution to the current method of making transparent superhydrophobic coatings more need low surface energy perfluorinated silane modified, high production costs, complex process, not the problem of large-scale production.

[0009] 实现本发明目的的技术方案是:一种超疏水聚氨酯/氧化物纳米粒子杂化涂层材料,其特征在于超疏水杂化涂层材料的表面水接触角为140 -168,滚动角为1-20 ; 其原料组分为改性超疏水氧化物纳米粒子溶液和聚氨酯溶液;其中聚氨酯和改性超疏水氧化物纳米粒子的质量比为1-8 : 1 ;所述的改性超疏水氧化物纳米粒子溶液由以下步骤制得: [0009] The purpose of the present invention is a technical solution: a super-hydrophobic polyurethane / oxide nanoparticles hybrid coating material, wherein the hybrid superhydrophobic coating material surface water contact angle of 140 -168 , roll angle of 1-20 ; the raw material component superhydrophobic oxide-modified nanoparticle solution and the polyurethane solution; and wherein the mass-modified polyurethane superhydrophobic oxide nanoparticles ratio of 1-8: 1; wherein superhydrophobic-modified oxide nanoparticle solution prepared by the following steps:

[0010] A.氧化物纳米粒子预处理:称取氧化物纳米粒子于烘箱中干燥后与溶剂混合,超声分散均勻后加入反应器,升温,随后加入硅烷偶联剂,搅拌均勻升温回流反应;最后将产物经无水乙醇洗涤并离心分离,经真空干燥得改性氧化物纳米粒子,置于干燥器中备用; [0010] A. Pretreatment oxide nanoparticles: Weigh the mixed oxide nanoparticles and dried in an oven with a solvent, into the reactor after ultrasonic dispersing, heating, followed by addition of a silane coupling agent, the reaction mixture was stirred at reflux for uniform heating; Finally, the product was ethanol washing and centrifugation, vacuum dried to obtain a modified oxide nanoparticles, placed in a desiccator;

[0011] B.超疏水氧化物纳米粒子溶液的制备:取上述改性氧化物纳米粒子超声分散于溶剂中配成氧化物纳米粒子溶液;随后将为改性氧化物纳米粒子重量的0. 75-2倍的含疏水链化学物质分散在溶剂中,在磁力搅拌下加至氧化物纳米粒子溶液中,制得超疏水氧化物纳米粒子混合溶液,控制混合溶液的质量固含量为1_5%。 [0011] B. Preparation of superhydrophobic oxide nanoparticles solution: Take the modified ultrasonic oxide nanoparticles dispersed in a solvent solution formulated oxide nanoparticles; will subsequently modified oxide nanoparticles by weight 0.75 -2 times the hydrophobic chains containing chemical substances dispersed in a solvent, under magnetic stirring was added to a solution of oxide nanoparticles prepared superhydrophobic oxide nanoparticles mixed solution, the mixed solution to control solids 1_5% by mass.

[0012] 其中步骤A中所述的氧化物纳米粒子为纳米二氧化硅、纳米三氧化二铝、纳米二氧化钛或纳米二氧化锆;粒径I-IOOOnm ;优选纳米二氧化硅;步骤A所述的溶剂为甲苯、二甲苯、N,N-二甲基甲酰胺、环己烷、二氯甲烷中的一种或几种;溶剂用量为氧化物纳米粒子重量的10-50倍;所述的硅烷偶联剂为Y-缩水甘油醚氧丙基三甲氧基硅烷、甲基三甲氧基硅烷、三甲基乙氧基硅烷、聚二甲硅基氧烷中的一种或几种,偶联剂用量为氧化物纳米粒子重量的0. 5-5倍。 [0012] oxide nanoparticles wherein said step A nano silica, nano-aluminum oxide, titanium dioxide or nano-zirconia; particle size of I-IOOOnm; preferably nano-silica; Step A the solvent is toluene, xylene, N, N- dimethylformamide, cyclohexane, methylene chloride is one or more; solvent in an amount of 10-50 times the weight of the oxide nanoparticles; wherein Y- glycidoxypropyl silane coupling agent is trimethoxysilane, methyl trimethoxysilane, trimethyl ethoxy silane, silicon polydimethyl siloxane in one or more coupling 0. 5-5 times the dosage oxide nanoparticles by weight.

[0013] 优选步骤A中超声分散后升温至60-100C;加入硅烷偶联剂,升温至100-140C回流反应6-12小时。 [0013] A preferred step after ultrasonic dispersion was heated to 60-100 C; adding the silane coupling agent, heated to 100-140 C reflux for 6-12 hours.

[0014] 优选步骤B中配成超疏水氧化物纳米粒子溶液中的溶剂为甲苯、二甲苯、N, N-二甲基甲酰胺、环己烷、二氯甲烷中的一种或几种;含疏水链化学物质为C8-C22的酰胺、 C8-C22的烷基三氯硅烷、C8-C22的烷基三烷氧基硅烷、C6-C12的含氟脂肪酸、四氢全氟C6-C12的烷基三氯硅烷、四氢全氟或C6-C12烷基三烷氧基硅烷中的一种或几种;溶解含疏水链化学物质的溶剂为四氢呋喃、N,N-二甲基甲酰胺、二乙基甲酰胺、三氯甲烷、二氯甲烷、 正己烷、环己烷、烷基环己烷或四氯化碳;优选溶解含疏水链化学物质的溶剂为四氢呋喃、 N,N-二甲基甲酰胺、三氯甲烷或二氯甲烷。 [0014] Step B preferably formulated superhydrophobic oxide nanoparticles solution solvent is toluene, xylene, N, N- dimethylformamide, cyclohexane, methylene chloride is one or more; hydrophobic chains containing chemical substances is C8-C22 amides, C8-C22 alkyl trichlorosilane, C8-C22 alkyl trialkoxy silane, C6-C12 fluorinated fatty acids, C6-C12 perfluoro-tetrahydro of alkyl trichlorosilane, tetrahydro-perfluoro C6-C12 alkyl or trialkoxysilanes in one or more of; dissolving solvent containing hydrophobic chemicals as tetrahydrofuran, N, N- dimethylformamide, diethyl formamide, chloroform, methylene chloride, hexane, cyclohexane, carbon tetrachloride, cyclohexane or alkyl; preferably dissolves hydrophobic chains containing chemical substances as tetrahydrofuran, N, N- dimethyl formamide, chloroform or methylene chloride.

[0015] 本发明所述的聚氨酯为溶剂型聚氨酯;优选聚氨酯溶液的质量固含量为1-15% ; 溶剂为丙酮、甲乙酮、环己酮、醋酸乙酯、二氯甲烷、四氢呋喃、N,N-二甲基甲酰胺、二氧六环中一种或几种;优选为四氢呋喃或N,N-二甲基甲酰胺。 [0015] Polyurethane is solvent-based polyurethane according to the present invention; solid content mass of the polyurethane solution is preferably 1 to 15%; solvent is acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, methylene chloride, tetrahydrofuran, N, N - dimethylformamide, dioxane one or more; preferably tetrahydrofuran or N, N- dimethylformamide.

[0016] 本发明还提供了上述超疏水聚氨酯/氧化物纳米粒子杂化涂层材料的方法,其具体步骤如下:(1)配制聚氨酯溶液,将改性的超疏水氧化物纳米粒子混合溶液与聚氨酯溶液,按改性的超疏水氧化物纳米粒子与聚氨酯质量比为1 : 1-8的比例混合,搅拌均勻后反应,通过浓缩以除去多余溶剂,即制得透明超疏水表面涂层剂; [0016] The present invention also provides a method of the above polyurethane hybrid superhydrophobic coating material / oxide nanoparticles, the specific steps are as follows: (1) preparation of the polyurethane solution, the mixed solution superhydrophobic oxide nanoparticles modified with polyurethane solution, modified according superhydrophobic oxide nanoparticles to the polyurethane mass ratio of 1: 1-8 mixing ratio, stir the reaction, concentrated to remove excess solvent, i.e., to obtain a transparent superhydrophobic surface coating agent;

[0017] (2)涂层热处理:将透明超疏水表面涂层剂涂覆在基底材料表面,在30-80C中烘干至溶剂完全挥发,即制得具有透明超疏水性能的改性聚氨酯/氧化物纳米粒子涂层。 [0017] (2) coating heat treatment: the super-hydrophobic surface coating agent is coated transparent substrate surface, drying at 30-80 C in complete evaporation of the solvent, which obtained a transparent superhydrophobic properties of modified Polyurethane / oxide nanoparticles coating.

[0018] 所述的基底材料为金属、无机或有机的致密或多孔材料。 [0018] The base material is a metal, an inorganic or organic dense or porous material. 优选基底材料为为铝箔、 玻璃、硅、陶瓷、半导体或高分子材料。 Preferably the substrate material is aluminum foil, glass, silicon, ceramic, semiconductor or polymer material.

[0019] 优选反应条件为超声或60-120C加热回流;浓缩方式为减压蒸馏或者加热抽真空。 [0019] Preferably, the reaction conditions for ultrasound or 60-120 C was heated to reflux; and concentrated under reduced pressure distillation or heating mode is evacuated.

[0020] 涂层过程的选择可根据被处理的基体材料大小及几何形状进行选择。 Select [0020] The coating process can be selected according to the size of the base material and geometry to be processed. 其中涂覆方式可为喷涂法、旋转涂覆法、提拉法或者滴液注膜法。 Wherein the coating method for spray coating, spin coating, dip method, or dropping an injection molding method. 如喷涂法适用于处理面积大且不受被处理面的几何形状限制;旋转涂膜及滴液法适用于相对面积较小的平面;提拉法对基体材料几何形状限制也不大,可直接浸入涂层剂中进行10-16h的自组装化学反应。 Such as spraying method is suitable for processing large area and not restrict the geometry of the surface to be treated; and dropping spin coating method is suitable for relatively smaller plane; Czochralski method for substrate geometry limit is not large, it can be directly immersion coating agent self-assembly of chemical reaction 10-16h.

[0021] 无论选用何种涂覆方式将透明超疏水表面涂层剂涂覆在基底材料表面,经简单热处理,烘干至溶剂完全挥发,即制得具有透明超疏水性能的聚氨酯/改性氧化物纳米粒子涂层,优选涂层的烘干温度为40-65C,所得材料表面的水接触角为140-168,一般为155左右,滚动角为1-20。 [0021] Whether the transparent superhydrophobic surface coating agent is coated on the surface of the base material, the simple heat treatment, drying and complete evaporation of the solvent, which obtained a transparent superhydrophobic properties of polyurethane / modified the way the selection of the oxide coating nanoparticle coating composition, the coating drying temperature is preferably 40-65 C, the resultant surface water contact angle of 140-168 , generally about 155 , roll angle of 1-20 .

[0022] 有益效果: [0022] The beneficial effects:

[0023] 1.涂层剂制备的原料易得,成本低,所需设备及制备工艺简单,成膜温度较低,并且通过简单的涂层法就可以获得透明超疏水表面,使用方便,效果稳定。 [0023] Raw material 1. The coating agents prepared readily available, low cost, the required equipment and the preparation process is simple, low film formation temperature, and by simple coating method can be obtained transparent superhydrophobic surfaces, easy to use, the effect stable.

[0024] 2.本发明方法制备的透明超疏水涂层,具有较大的表面接触角(大于150 )和较小的滚动角,水珠在上面能自由滚动并带走表面灰尘从而实现自洁功能; Transparent superhydrophobic coating preparation process of the invention [0024] 2., with a large surface contact angle (greater than 150 ) and a smaller roll angle, roll freely drops above and away from the surface of the dust in order to achieve cleaning function;

[0025] 3.本发明制备的透明超疏水涂层,具有良好的可见光透过性,平均可见光透过率大于60%。 Transparent superhydrophobic coatings of the present invention for preparing [0025] 3. This has a good visible-light transmittance, visible light transmittance greater than 60% on average.

[0026] 4.疏水性氧化物纳米粒子如二氧化硅除具备疏水性质之外,还具有硬度高、耐磨、 绝热性好、介电常数低、化学稳定性好等特点,在微电子器件、光学薄膜器件、传感器等领域有很好的发展前景。 [0026] The hydrophobic oxide nanoparticles such as silica addition to having hydrophobic properties, but also has high hardness, wear resistance, good insulation, low dielectric constant, good chemical stability, in microelectronic devices field, the optical thin film devices, sensors, etc. have good prospects for development.

[0027] 5.本发明方法制备的透明超疏水涂层,可用于汽车、飞机、航天器等挡风玻璃、建筑幕墙等场合,同时可作为玻璃等固体表面的防尘、防雾保护涂层,也可以作为微电子器件、传感器等中的防水绝缘层使用。 Transparent superhydrophobic coating process of the invention prepared [0027] 5. This, dust can be used in automobiles, aircraft, spacecraft and other windshields, building walls and other occasions, at the same time as a solid surface such as glass, anti-fog protective coating It can also be used as microelectronics, sensors, etc. in waterproof insulation.

附图说明 Brief Description

[0028] 图1是采用本发明方法制备得到的透明超疏水涂层不同放大倍数下的扫描电镜图。 [0028] FIG. 1 is a transparent superhydrophobic coating scanning electron micrographs at different magnifications of the process of the present invention is obtained. 图a为放大600倍的电镜图,图b为放大10000倍的电镜图。 Figure A is a 600x magnification SEM, Fig. B is an enlarged 10,000 times in electron micrographs.

[0029] 图2是接触角测定仪得到的放大图片。 [0029] FIG. 2 is a contact angle measurement to get an enlarged image. 图c为水滴在表面的接触角(水滴体积: 5 μ L),图d为相应滚动角(水滴体积:9 μ L)。 Figure c the water contact angle on the surface of the (drop volume: 5 μ L), Figure d corresponding roll angle (droplet volume: 9 μ L).

[0030] 图3是透明超疏水涂层的数码照片。 [0030] FIG. 3 is a transparent superhydrophobic coating of digital photos.

[0031] 图4是实施例2所制得的透明超疏水涂层的扫描电镜图。 [0031] FIG. 4 is prepared transparent superhydrophobic coatings SEM embodiment of Figure 2. 图e为放大600倍的电镜图,图f为放大2500倍的电镜图。 Figure e is an enlarged 600 times the electron microscope, and FIG f is an enlarged 2,500 times the electron micrographs.

具体实施方式 DETAILED DESCRIPTION

[0032] 以下结合实施例对本发明作进一步详细描述。 [0032] The following examples of the present invention is described in further detail. [0033] 扫描电镜照片由荷兰Philips-FEI公司产QUANTA200扫描电镜测得。 [0033] Scanning electron micrograph by the Dutch company Philips-FEI SEM production QUANTA200 measured.

[0034]接触角数据由 Drop Shape Analysis System G10/DSA100 ( KRLTSS, Germany)液滴形貌分析仪测得。 [0034] The contact angle data from the Drop Shape Analysis System G10 / DSA100 (KRLTSS, Germany) droplet morphology analyzer measured.

[0035] 可见光透过率由Perkin Elmer Lambda20型紫外可见光仪测得。 [0035] The visible light transmittance by a Perkin Elmer Lambda20 UV-visible instrument measured.

[0036] 下面给出本发明的具体实施例,但本发明并不仅仅限定于这些实施例,这些实施例不构成对本发明权利要求饱和范围的限制。 [0036] The following give a specific embodiment of the present invention, the present invention is not limited to these examples, these examples are not intended to limit the scope of the saturation of the invention as claimed.

[0037] 实施例1 [0037] Example 1

[0038] 1.纳米二氧化硅预处理 [0038] 1. Pretreatment of nano-silica

[0039] 称取3g沉淀法纳米二氧化硅(平均粒径50nm,比表面积150m2/g),于100C烘箱中干燥2小时后与30g甲苯置于250ml的三口烧瓶中超声分散均勻;升温至80C,滴加由20g甲苯水解的6. 4g γ -缩水甘油醚氧丙基三甲氧基硅烷,滴加时间30分钟,继续搅拌30 分钟后,升温至110C回流10小时,使其充分反应;最后将产物用无水乙醇洗涤4次并离心分离,经110C的真空烘箱中干燥17小时得改性二氧化硅,置于干燥器中备用。 [0039] The precipitate weighed 3g of nanometer silica (average particle diameter 50nm, specific surface area of 150m2 / g), in 100 C oven for 2 hours and 30g of toluene 250ml three-necked flask is placed in an ultrasonic dispersing uniformly; heating to 80 C, 20g of toluene was added dropwise by the hydrolysis 6. 4g γ - glycidoxypropyl trimethoxysilane, dropwise addition time of 30 minutes, stirring was continued for 30 minutes, warmed to 110 C under reflux for 10 hours, so that its full reaction; the product was finally washed with anhydrous ethanol and centrifuged four times, by 110 C for 17 hours in a vacuum oven and dried to give modified silica, placed in a desiccator.

[0040] 2.超疏水二氧化硅的制备: [0040] 2. The super-hydrophobic silica prepared:

[0041] 取上述经过处理的改性二氧化硅1. 5g超声分散于75g甲苯中配成二氧化硅溶液; 随后将2. 25g十八酰胺超声分散于50g N, N- 二甲基甲酰胺中,在磁力搅拌器80r/min转速下缓慢加至二氧化硅溶液中并搅拌15min,制得超疏水二氧化硅混合溶液。 [0041] After taking the above-mentioned modified silica treated 1. 5g 75g of toluene was dispersed in a ultrasonic formulated silica solution; followed by ultrasonic dispersion 2. 25g eighth amide in 50g N, N- dimethylformamide , under magnetic stirrer 80r / min speed was slowly added to the silica solution and stirred 15min, to prepare a mixed solution over the hydrophobic silica. 将超疏水二氧化硅混合溶液滴涂于玻璃片上在25C下自然干燥,得具有超疏水性能的改性纳米二氧化硅薄膜,其表面水接触角为150,滚动角为10。 Super hydrophobic silica mixed solution was coated on a glass drop in natural drying at 25 C to obtain a film having a modified nano-silica superhydrophobic properties of the surface water contact angle of 150 , roll angle of 10 .

[0042] 3.涂层溶液的配制 Preparation [0042] 3. The coating solution

[0043] 将超疏水二氧化硅混合溶液加至聚氨酯溶液中,置于高功率数控超声波清洗器KQ-200KDE在100W功率下超声45分钟即制得透明超疏水表面涂层剂,其中聚氨酯溶液为6g聚氨酯磁力搅拌溶解于50gN,N- 二甲基甲酰胺中配得。 [0043] super hydrophobic silica mixed solution was added to the polyurethane solution, and placed in a high-power CNC ultrasonic cleaner KQ-200KDE 100W power ultrasound at 45 minutes that prepared transparent superhydrophobic surface coating agents, polyurethane solution which is 6g polyurethane magnetic stirring dissolved in 50gN, N- dimethyl formamide deserve.

[0044] 4.在基体材料上制备透明超疏水涂层 [0044] 4. Preparation of transparent superhydrophobic coating on a substrate material

[0045] 聚氨酯/ 二氧化硅涂层剂滴涂于玻璃片上,在55C烘箱中静置烘干既得透明超疏水涂层。 [0045] Polyurethane / silica coating agent drops applied to the glass, standing vested drying oven at 55 C in a transparent superhydrophobic coatings.

[0046] 附图1为涂层表面的扫描电镜照片。 [0046] FIG. 1 is a scanning electron micrograph of the coated surface. 如附图2所示,该涂层的表面水接触角达160,滚动角2.1,同时涂层具有良好的可见光透过性,平均可见光透过率达67%。 As shown in Figure 2, the coating surface water contact angle of 160 , the roll angle 2.1 , while the coating has good visible-light transmittance, the visible light transmission rate of 67 percent on average. 透明超疏水玻璃实物图如附图3所示,将所得到的透明超疏水玻璃放在图片上,下面图片清晰可见,并且水滴在表面上易于滚落。 Transparent superhydrophobic glass physical map as shown in Figure 3, the resulting transparent superhydrophobic glass on the image, the following image is clearly visible, and water droplets on the surface is easy to tumble.

[0047] 实施例2 [0047] Example 2

[0048] 1.纳米二氧化硅预处理 [0048] 1. Pretreatment of nano-silica

[0049] 称取3g沉淀法纳米二氧化硅(平均粒径50nm,比表面积150m2/g),于100C烘箱中干燥2小时后与150g甲苯置于500ml的三口烧瓶中超声至分散均勻;升温至70C,滴加由20g甲苯水解的15g Y-缩水甘油醚氧丙基三甲氧基硅烷,滴加时间30分钟,继续搅拌30分钟后,升温至110C回流5小时,使其充分反应;最后将产物用无水乙醇洗涤4次并离心分离,经110C的真空烘箱中干燥17小时得改性二氧化硅,置于干燥器中备用。 [0049] The precipitate weighed 3g of nanometer silica (average particle diameter 50nm, specific surface area of 150m2 / g), in 100 C oven for 2 hours and 150g of toluene into 500ml three-necked flask to disperse uniformly in the ultrasound; was heated to 70 C, the dropwise 20g 15g Y- glycidoxypropyl trimethoxysilane hydrolyzed toluene dropwise over 30 minutes, stirring was continued for 30 minutes, warmed to 110 C under reflux for 5 hours, so that sufficient reaction; the product was finally washed with anhydrous ethanol and centrifuged four times, by 110 C for 17 hours in a vacuum oven and dried to give modified silica, placed in a desiccator.

[0050] 2.超疏水二氧化硅的制备: [0050] 2. The super-hydrophobic silica prepared:

[0051] 取上述经过处理的改性二氧化硅0. 2g超声分散于15g甲苯中配成二氧化硅溶液;随后将O. 3g十八酰胺超声分散于15gN,N- 二甲基甲酰胺中,在磁力搅拌器80r/min转速下加至二氧化硅溶液中并搅拌30min,制得超疏水二氧化硅混合溶液。 [0051] After taking the above-mentioned modified silica treated 0. 2g ultrasonic dispersing silica in 15g of toluene formulated solution; followed by ultrasonic dispersion O. 3g eighth amide in 15gN, N- dimethyl formamide , under magnetic stirrer 80r / min speed added to the silica solution and stirred 30min, to prepare a mixed solution over the hydrophobic silica. 将玻璃片浸没于超疏水二氧化硅混合溶液自组装反应5h后于20C下自然干燥,得具有超疏水性能的改性纳米二氧化硅薄膜,其表面水接触角为151,滚动角为13。 The hybrid super hydrophobic silica glass immersed in self-assembly reaction solution at 20 C after 5h naturally dried to obtain a film having a modified nano-silica superhydrophobic properties of the surface water contact angle of 151 , the roll angle of 13 .

[0052] 3.涂层溶液的配制 Preparation [0052] 3. The coating solution

[0053] 将超疏水二氧化硅混合溶液加至聚氨酯溶液中,置于高功率数控超声波清洗器KQ-200KDE在100W功率下超声50min即制得透明超疏水表面涂层剂,其中聚氨酯溶液为1. 6g聚氨酯磁力搅拌溶解于20g N, N- 二甲基甲酰胺中配得。 [0053] The super hydrophobic silica mixed solution was added to the polyurethane solution, and placed in a high-power ultrasonic cleaner CNC KQ-200KDE power at 100W ultrasound to obtain 50min i.e. transparent superhydrophobic surface coating agent, wherein the polyurethane solution is 1 . 6g polyurethane magnetic stirring dissolved in 20g N, N- dimethyl formamide deserve.

[0054] 4.在基体材料上制备透明超疏水涂层 [0054] 4. Preparation of a transparent superhydrophobic coating on a base material

[0055] 将玻璃片提拉法浸没于聚氨酯/ 二氧化硅涂层剂中自组装反应5h,在45C烘箱中静置烘干既得透明超疏水涂层。 [0055] The glass coating method immersed in the polyurethane / silica coating agent self-assembly reaction 5h, stand vested transparent drying oven at 45 C superhydrophobic coatings.

[0056] 该涂层的表面水接触角达154,滚动角2,同时涂层具有良好的可见光透过性,平均可见光透过率达73 %。 [0056] The coating of surface water contact angle of 154 , roll angle of 2 , while the coating has good visible light transmittance, visible light transmittance average rate of 73%.

[0057] 实施例3 [0057] Example 3

[0058] 1.纳米二氧化硅预处理 [0058] 1. Pretreatment of nano-silica

[0059] 称取3g气相法纳米二氧化硅(平均粒径30nm,比表面积380m2/g),于100C烘箱中干燥2小时后与90g N,N-二甲基甲酰胺置于250ml的三口烧瓶中超声至分散均勻;升温至90C,滴加由20g甲苯水解的6. 4g γ-缩水甘油醚氧丙基三甲氧基硅烷,滴加时间30分钟,继续搅拌30分钟后,升温至120C回流10小时,使其充分反应;最后将产物用无水乙醇洗涤5次并离心分离,经110C的真空烘箱中干燥17小时得改性二氧化硅,置于干燥器中备用。 [0059] Gas weighed 3g of nanometer silica (average particle diameter 30nm, specific surface area of 380m2 / g), in 100 C oven for 2 hours and 90g N, N- dimethylformamide was placed in 250ml of The ultrasonic three-necked flask to disperse uniformly; warmed to 90 C, the dropwise 6. 4g γ- glycidoxypropyl trimethoxysilane hydrolysis 20g toluene was added dropwise for 30 minutes, stirring was continued for 30 minutes, warmed to 120 C under reflux for 10 hours, the reaction sufficiently; Finally the product was washed with anhydrous ethanol and centrifuged 5 times, dried in a vacuum oven at 110 C in 17 hours to obtain modified silica was dried, placed in a desiccator set aside.

[0060] 2.超疏水二氧化硅的制备: [0060] 2. The super-hydrophobic silica prepared:

[0061] 取上述经过处理的改性二氧化硅0. 2g超声分散于IOg甲苯中配成二氧化硅溶液; 随后将0. 3g十八酰胺超声分散于8g N, N- 二甲基甲酰胺及2g甲苯的混合溶剂中,在磁力搅拌器90r/min转速下逐滴加至二氧化硅溶液中并搅拌30min,制得超疏水二氧化硅混合溶液。 [0061] After taking the above-mentioned modified silica treated IOg 0. 2g ultrasonic dispersion in toluene dubbed silica solution; followed by ultrasonic dispersion 0. 3g eighth amide in 8g N, N- dimethylformamide a mixed solvent of toluene and 2g, under magnetic stirrer 90r / min rpm was added dropwise to the solution and stirred silica 30min, to prepare a mixed solution over the hydrophobic silica. 将超疏水二氧化硅混合溶液滴涂在铝箔上于36C下干燥,得具有超疏水性能的改性纳米二氧化硅薄膜,其表面水接触角为151,滚动角为15。 Super hydrophobic silica mixed solution was dispensed onto aluminum foil at 36 C and dried to obtain a film having a modified nano-silica superhydrophobic properties of the surface water contact angle of 151 , roll angle of 15 .

[0062] 3.涂层溶液的配制 Preparation [0062] 3. The coating solution

[0063] 将超疏水二氧化硅混合溶液滴加至聚氨酯溶液中于90C搅拌回流即制得透明超疏水表面涂层剂,其中聚氨酯溶液为1.2g聚氨酯磁力搅拌溶解于50g N, N-二甲基甲酰胺中配得。 [0063] super hydrophobic silica mixed solution was added dropwise to the polyurethane solution was stirred at 90 C i.e. under reflux to obtain a transparent superhydrophobic surface coating agent, wherein the polyurethane solution is magnetically stirred to dissolve the polyurethane in 1.2g 50g N, N- in with dimethylformamide, too.

[0064] 4.在基体材料上制备透明超疏水涂层 [0064] 4. Preparation of transparent superhydrophobic coating on a substrate material

[0065] 聚氨酯/ 二氧化硅涂层剂滴涂于铝箔上,在45C烘箱中静置烘干既得透明超疏水涂层。 [0065] Polyurethane / silica coating agent drops applied to the aluminum foil and let stand vested drying oven at 45 C in a transparent superhydrophobic coatings.

[0066] 该涂层的表面水接触角达152,滚动角2,同时涂层具有良好的可见光透过性,平均可见光透过率达62%。 [0066] The coating of the surface of water contact angle 152 , the rolling angle of 2 , while the coating has good visible-light transmittance, the visible light transmission rate of 62 percent on average. 附图4为涂层表面的扫描电镜照片。 Figure 4 is a scanning electron micrograph of the coated surface.

[0067] 实施例4 [0067] Example 4

[0068] 1.纳米二氧化硅预处理 [0068] 1. Pretreatment of nano-silica

[0069] 称取3g气相法纳米二氧化硅(平均粒径30nm,比表面积380m2/g),于100C烘箱中干燥2小时后与90g N, N- 二甲基甲酰胺置于250ml的三口烧瓶中超声至分散均勻;升温至90C,滴加由20g甲苯水解的6. 4g Y-缩水甘油醚氧丙基三甲氧基硅烷,滴加时间30 分钟,继续搅拌30分钟后,升温至120C回流10小时,使其充分反应;最后将产物用无水乙醇洗涤4次并离心分离,经110C的真空烘箱中干燥17小时得改性二氧化硅,置于干燥器中备用。 [0069] Gas weighed 3g of nanometer silica (average particle diameter 30nm, specific surface area of 380m2 / g), in 100 C oven for 2 hours and 90g N, N- dimethylformamide was placed in 250ml of The ultrasonic three-necked flask to disperse uniformly; warmed to 90 C, the dropwise 6. 4g Y- glycidoxypropyl trimethoxysilane hydrolysis 20g toluene was added dropwise for 30 minutes, stirring was continued for 30 minutes, warmed to 120 C under reflux for 10 hours, the reaction sufficiently; Finally the product was washed with anhydrous ethanol and centrifuged four times, by 110 C for 17 hours in a vacuum oven and dried to give modified silica, placed in a desiccator set aside.

[0070] 2.超疏水二氧化硅的制备: [0070] 2. The super-hydrophobic silica prepared:

[0071] 取上述经过处理的改性二氧化硅0. 2g超声分散于IOg甲苯中配成二氧化硅溶液; 随后将0. 15g C12的含氟脂肪酸超声分散于8g N, N- 二甲基甲酰胺及2g甲苯的混合溶剂中,在磁力搅拌器80r/min转速下缓慢加至二氧化硅溶液中并搅拌30min,制得超疏水二氧化硅混合溶液。 [0071] After taking the above-mentioned modified silica treated IOg 0. 2g ultrasonic dispersion in toluene dubbed silica solution; then the fluorine-containing ultrasound 0. 15g C12 fatty acid was dispersed in 8g N, N- dimethyl formamide mixed solvent of toluene and 2g, magnetic stirrer at 80r / min speed was slowly added to the silica solution and stirred 30min, to prepare a mixed solution over the hydrophobic silica. 将超疏水二氧化硅混合溶液喷涂在铝箔上于36C下干燥,得具有超疏水性能的改性纳米二氧化硅薄膜,其表面水接触角为153,滚动角为15。 Super hydrophobic silica mixed solution is sprayed onto aluminum foil at 36 C and dried to obtain a film having a modified nano-silica superhydrophobic properties of the surface water contact angle of 153 , roll angle of 15 .

[0072] 3.涂层溶液的配制 Preparation [0072] 3. The coating solution

[0073] 将超疏水二氧化硅混合溶液滴加至聚氨酯溶液中于90C搅拌回流即制得透明超疏水表面涂层剂,其中聚氨酯溶液为1.8g聚氨酯磁力搅拌溶解于50g N, N-二甲基甲酰胺中配得。 [0073] super hydrophobic silica mixed solution was added dropwise to the polyurethane solution was stirred at 90 C i.e. under reflux to obtain a transparent superhydrophobic surface coating agent, wherein the polyurethane solution is magnetically stirred to dissolve the polyurethane in 1.8g 50g N, N- in with dimethylformamide, too.

[0074] 4.在基体材料上制备透明超疏水涂层 [0074] 4. Preparation of transparent superhydrophobic coating on a substrate material

[0075] 聚氨酯/ 二氧化硅涂层剂喷涂于铝箔上,在45C烘箱中静置烘干既得透明超疏水涂层。 [0075] Polyurethane / silica coating agent sprayed on aluminum foil and let stand vested drying oven at 45 C in a transparent superhydrophobic coatings.

[0076] 该涂层的表面水接触角达155,滚动角7,同时涂层具有良好的可见光透过性,平均可见光透过率达65 %。 [0076] surface water contact angle of the coating up to 155 , the roll angle 7 , while the coating has good visible light transmittance, visible light transmittance average rate of 65%.

[0077] 实施例5 [0077] Example 5

[0078] 1.纳米三氧化二铝预处理 [0078] 1 nanometer of aluminum oxide pretreatment

[0079] 称取3g纳米三氧化二铝(平均粒径50nm),于100C烘箱中干燥2小时后与30g 甲苯置于250ml的三口烧瓶中超声分散均勻;升温至80C,滴加由20g甲苯水解的6. 4g Y-氨丙基三乙氧基硅烷,滴加时间30分钟,继续搅拌30分钟后,升温至110C回流10小时,使其充分反应;最后将产物用无水乙醇洗涤4次并离心分离,经110C的真空烘箱中干燥17小时得改性三氧化二铝,置于干燥器中备用。 [0079] Weigh 3g nano aluminum oxide (average particle diameter 50nm), at 100 C oven for 2 hours and 30g of toluene 250ml three-necked flask is placed in an ultrasonic dispersing uniformly; was heated to 80 C, was added dropwise 20g of toluene by the hydrolysis 6. 4g Y- aminopropyl triethoxysilane, dropping time of 30 minutes, stirring was continued for 30 minutes, warmed to 110 C under reflux for 10 hours, the reaction sufficiently; no product was finally washed with water and ethanol and centrifuged four times by 110 C in a vacuum oven 17 hours to obtain a modified aluminum oxide, placed in a desiccator.

[0080] 2.超疏水三氧化二铝的制备: [0080] 2. superhydrophobic aluminum oxide prepared:

[0081] 取上述经过处理的改性三氧化二铝Ig超声分散于IOOg甲苯中配成三氧化二铝溶液;随后将1. 5g硬脂酸超声分散于IOOg N, N- 二甲基甲酰胺中,在磁力搅拌器80r/min转速下缓慢加至三氧化二铝溶液中并搅拌15min,制得超疏水三氧化二铝混合溶液。 [0081] After taking the above-mentioned alumina-modified Ig sonicated IOOg dispersed in toluene solution was formulated as aluminum oxide; 1. 5g of stearic acid is then dispersed in the ultrasonic IOOg N, N- dimethylformamide , under magnetic stirrer 80r / min speed slowly add three aluminum oxide solution and stirred 15min, to prepare a hydrophobic aluminum oxide mixed solution of ultra. 抽真空以除去多余溶剂后将超疏水三氧化二铝混合溶液滴涂在陶瓷上于25C下自然干燥,得具有超疏水性能的改性纳米三氧化二铝薄膜,其表面水接触角为150,滚动角为6。 After evacuation to remove excess super hydrophobic solvent mixed solution of aluminum oxide ceramic coated droplets at 25 C and naturally dried to obtain superhydrophobic properties of modified nano aluminum oxide film, the surface water contact angle 150 , roll angle of 6 .

[0082] 3.涂层溶液的配制 Preparation [0082] 3. The coating solution

[0083] 将超疏水三氧化二铝混合溶液加至聚氨酯溶液中,高功率数控超声波清洗器KQ-200KDE在100W功率下超声45分钟即制得透明超疏水表面涂层剂,其中聚氨酯溶液为16g聚氨酯磁力搅拌溶解于70g N, N-二甲基甲酰胺中配得,涂层剂抽真空以除去多余溶剂。 [0083] super hydrophobic aluminum oxide mixed solution was added to the polyurethane solution, high power CNC ultrasonic cleaner KQ-200KDE 100W power ultrasound at 45 minutes that prepared transparent superhydrophobic surface coating agents, polyurethane solution which is 16g Polyurethane magnetic stirring was dissolved in 70g N, N- dimethyl formamide worthy, coating agents evacuated to remove excess solvent.

[0084] 4.在基体材料上制备透明超疏水涂层[0085] 聚氨酯/三氧化二铝涂层剂滴涂于聚四氟乙烯板上,在50C烘箱中静置烘干既得透明超疏水涂层。 [0084] 4. Preparation of transparent superhydrophobic coating on the substrate [0085] Polyurethane / alumina coating agent drops applied on a Teflon plate and allowed to stand vested drying oven at 50 C and ultra-transparent hydrophobic coating.

[0086] 实施例6 [0086] Example 6

[0087] 1.纳米二氧化钛预处理 [0087] 1. The titanium dioxide pretreated

[0088] 称取3g纳米二氧化钛(平均粒径50nm),于100C烘箱中干燥2小时后与150g 甲苯置于500ml的三口烧瓶中超声至分散均勻;升温至70C,滴加由20g甲苯水解的15g(3-环氧丙基丙氧基)三甲氧基硅烷,滴加时间30分钟,继续搅拌30分钟后,升温至110C回流5小时,使其充分反应;最后将产物用无水乙醇洗涤4次并离心分离,经110C的真空烘箱中干燥17小时得改性二氧化钛,置于干燥器中备用。 [0088] weighed 3g titanium dioxide (average particle size 50nm), at 100 C oven for 2 hours and 150g of toluene were 500ml three-necked flask ultrasound to disperse evenly; heating to 70 C, dropping by a 20g toluene hydrolyzed 15g (3- propoxy-epoxypropyl) trimethoxysilane, dropping time of 30 minutes, stirring was continued for 30 minutes, warmed to 110 C under reflux for 5 hours, the reaction sufficiently; the product was finally ethanol washing four times and centrifuged, the 110 C in a vacuum oven 17 hours to obtain a modified titanium dioxide, placed in a desiccator.

[0089] 2.超疏水二氧化钛的制备: [0089] 2. Preparation of superhydrophobic titania:

[0090] 取上述经过处理的改性二氧化钛0. 2g超声分散于8g甲苯中配成二氧化钛溶液; 随后将0.2g C12的含氟脂肪酸超声分散于8g N, N-二甲基甲酰胺中,在磁力搅拌器80r/ min转速下加至二氧化钛溶液中并搅拌30min,制得超疏水二氧化钛混合溶液。 [0090] After taking the above-described modification of titania 0. 2g 8g of toluene in an ultrasonic dispersing titania formulated solution; then the fluorine-containing ultrasound 0.2g C12 fatty acid was dispersed in 8g N, N- dimethyl formamide, in magnetic stirrer at 80r / min speed plus twenty dioxide solution and stirred 30min, to prepare a mixed solution superhydrophobic titania. 将超疏水二氧化钛混合溶液提拉法以涂覆在聚四氟乙烯板上于20C下自然干燥,得具有超疏水性能的改性纳米二氧化钛薄膜,其表面水接触角为151,滚动角为13。 Super hydrophobic titanium dioxide mixed solution Czochralski method to coat Teflon plate to dry naturally at 20 C, with super hydrophobic properties was modified nano titanium dioxide film, the surface water contact angle of 151 , the roll angle of 13 .

[0091] 3.涂层溶液的配制 Preparation [0091] 3. The coating solution

[0092] 将超疏水二氧化钛混合溶液加至聚氨酯溶液中,高功率数控超声波清洗器KQ-200KDE在100W功率下超声50min即制得透明超疏水表面涂层剂,其中聚氨酯溶液为3g 聚氨酯磁力搅拌溶解于20g N,N-二甲基甲酰胺中配得。 [0092] super hydrophobic titania mixed solution was added to the polyurethane solution, high power CNC ultrasonic cleaner KQ-200KDE power at 100W ultrasound to obtain 50min i.e. transparent superhydrophobic surface coating agent, wherein the polyurethane solution is magnetically stirred to dissolve polyurethane 3g in 20g N, N- dimethyl formamide deserve.

[0093] 4.在基体材料上制备透明超疏水涂层 [0093] 4. Preparation of transparent superhydrophobic coating on a substrate material

[0094] 聚氨酯/ 二氧化钛涂层剂滴涂于铝箔上,在32C恒温干燥既得透明超疏水涂层。 [0094] polyurethane / titanium oxide coating agent drops applied to the aluminum foil, and dried at 32 C thermostat vested transparent superhydrophobic coatings.

[0095] 该涂层的表面水接触角达150,滚动角16,同时涂层具有良好的可见光透过性,平均可见光透过率达60 %。 [0095] The coating of surface water contact angle of 150 , roll angle of 16 , while the coating has good visible light transmittance, visible light transmittance average rate of 60%.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
CN101117713A *30 Jul 20076 Feb 2008北京航空航天大学Method for preparing super-hydrophobic modified SiO2-polyurethane composite coating by using immersion-self-assembly
CN101270260A *28 Jan 200824 Sep 2008南京工业大学Ultra-hydrophobic surface coating material and preparation method thereof
CN101575478A *5 May 200811 Nov 2009中国科学院宁波材料技术与工程研究所Method for preparing epoxy resin super-hydrophobic coat
US20100068457 *10 Apr 200818 Mar 2010Anke SoellnerBiocidal/hydrophobic inner coating of condenser pipes (of industrial turbines and subsidiary cooling cycles)
Non-Patent Citations
Reference
1 *《聚氨酯工业》 20080628 刘丹等 聚氨酯/二氧化硅复合材料研究进展 第5-9页 1-10 第23卷, 第3期
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN102358807A *30 Jul 201122 Feb 2012吉林大学Hydrophobic nano composite automobile finish and preparation method thereof
CN102653628A *24 Apr 20125 Sep 2012上海大学Preparation method and application of nano sol modified waterborne polyurethane emulsion
CN102653628B24 Apr 20125 Mar 2014东莞上海大学纳米技术研究院Preparation method and application of nano sol modified waterborne polyurethane emulsion
CN103342953A *19 Jun 20139 Oct 2013北京大学Aircraft coating and preparation method thereof, and method for forming aircraft coating
CN103342953B *19 Jun 20134 May 2016北京大学航空涂料、其制备方法及形成航空用涂层的方法
CN103449736A *28 May 201218 Dec 2013中国科学院兰州化学物理研究所Preparation method of self-repair super-hydrophobic polyurethane coating
CN103449736B *28 May 201218 Nov 2015中国科学院兰州化学物理研究所自修复超疏水聚氨酯涂层的制备方法
CN103555184A *23 Oct 20135 Feb 2014三棵树涂料股份有限公司Super-amphiphobic nano composite finish varnish, and preparation method thereof
CN103555184B *23 Oct 201320 Apr 2016三棵树涂料股份有限公司超双疏纳米复合罩面清漆及其制备方法
CN103614063A *2 Dec 20135 Mar 2014苏州市姑苏新型建材有限公司Transparent waterborne waterproof coating for building and preparation method thereof
CN103614063B *2 Dec 201320 Jan 2016苏州市姑苏新型建材有限公司一种建筑用透明水性防水涂料及其制备方法
CN103642378A *14 Nov 201319 Mar 2014重庆大学Antiseptic super-hydrophobic paint for electric power system fittings and preparation method
CN103642378B *14 Nov 201330 Mar 2016重庆大学电力系统金具防腐的超疏水涂料及其制备方法
CN104017489A *29 May 20143 Sep 2014中国石油大学(华东)Nano-TiO2 modified acrylic polyurethane finish paint and preparation method thereof
CN104046217A *12 Mar 201317 Sep 2014无锡市顺业科技有限公司Preparation method of high strength superhydrophobic coating
CN104117396A *26 Apr 201329 Oct 2014中国科学院化学研究所Super-hydrophobic pipette gun head and preparation method thereof
CN104117396B *26 Apr 201310 Aug 2016中国科学院化学研究所具有超疏水性的移液枪枪头及其制备方法
CN104210197A *25 Sep 201417 Dec 2014海安浩驰科技有限公司Super-hydrophobic film and preparation method and application thereof
CN104387889A *19 Nov 20144 Mar 2015广西大学Preparation method of silicon-dioxide particle acrylonitrile silicone copolymerized resin coating
CN104449357A *26 Nov 201425 Mar 2015浙江大学Transparent super-hydrophobic coating material and method for preparing transparent super-hydrophobic coating by transparent super-hydrophobic coating material
CN104449357B *26 Nov 20144 Jan 2017浙江大学一种透明超疏水涂层材料及其制备透明超疏水涂层的方法
CN104649711A *29 Jul 201427 May 2015纳米及先进材料研发院有限公司Hydrophobic coating composition and method of imparting hydrophobicity onto a surface
CN104649711B *29 Jul 201417 Aug 2016纳米及先进材料研发院有限公司疏水性涂料组合物和给予表面疏水性的方法
CN104987520A *9 Jul 201521 Oct 2015北京航空航天大学Super-hydrophobic nanometer transparent coating and preparation method thereof
CN105102558A *28 Jan 201425 Nov 2015伊利诺斯工具制品有限公司Super hydrophobic coating
WO2017092674A1 *30 Nov 20168 Jun 2017Dazzeon Technology Co., Ltd.Electrical device capable of water-resisting, vapor resistant and electrically conducting in moisture-containing environment and method for making the same
Classifications
International ClassificationC09D5/00, C09D7/12, C09D175/04
Legal Events
DateCodeEventDescription
22 Sep 2010C06Publication
10 Nov 2010C10Request of examination as to substance
6 Feb 2013C14Granted