Search Images Maps Play Gmail Drive Calendar Translate More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN102453465 B
Publication typeGrant
Application numberCN 201010521305
Publication date3 Sep 2014
Filing date27 Oct 2010
Priority date27 Oct 2010
Also published asCN102453465A
Publication number201010521305.9, CN 102453465 B, CN 102453465B, CN 201010521305, CN-B-102453465, CN102453465 B, CN102453465B, CN201010521305, CN201010521305.9
Inventors徐杰, 王敏, 陈晨, 马继平
Applicant中国科学院大连化学物理研究所
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Adhesive super-hydrophobic material and preparation method thereof
CN 102453465 B
Abstract  translated from Chinese
本发明涉及到一种粘附型超疏水材料及其制备方法。 The present invention relates to an adhesion-type super-hydrophobic material and its preparation method. 该材料是一种含有有机基团的二氧化硅纳米颗粒。 The material is an organic group comprising silica nanoparticles. 以该材料作为构建单元,在基体上进行沉积得到具有二重纳米粗糙度的表面。 In the material as a building block, deposited on the substrate to obtain a surface having a double nanometer roughness. 该表面不仅具有超疏水性能,接触角在140~170之间,而且具有很强的粘附力,水滴在倾斜或者倒置的情况下不会滑落下来。 The surface is not only a super hydrophobic properties, the contact angle between 140 ~ 170 , and has a strong adhesion, water droplets in a tilted or upside down situation does not fall down. 该方法操作简单,原料易得,成本低,对于水的输运、转移和分离具有广泛的应用前景。 The method is simple, raw materials, low cost, for water transport, transfer and separation has broad application prospects.
Claims(5)  translated from Chinese
1.一种粘附型超疏水材料,其特征在于:该材料是一种含有有机基团的二氧化硅纳米颗粒;该材料附着于基体表面形成超疏水表面,接触角在150~170之间,其对水滴的粘附力能使水滴在倾斜90或者倒置的情况下不会滑落下来; 以所述的材料作为构建单元,在基体上进行沉积得到具有二重纳米粗糙度的表面。 An adhesion super hydrophobic material, wherein: the material is an organic group containing silica nanoparticles; the material is attached to form a super-hydrophobic surface on the substrate surface, the contact angle of 150 ~ 170 among which enables adhesion of the water droplets in the droplet is inclined 90 or upside down situation will not fall down; to the material as building blocks, deposited on the substrate to give a surface roughness having a double nanometer.
2.按照权利要求1所述粘附型超疏水材料,其特征在于: 基体是玻璃片、硅片、金属或金属氧化物。 2. according to claim 1 superhydrophobic adherent material, characterized in that: the substrate is glass, silicon, metal or metal oxide.
3.按照权利要求1所述粘附型超疏水材料,其特征在于:所述含有有机基团的二氧化娃纳米颗粒,有机基团为甲基、乙基、丙基、乙烯基、苯基、十二烷基、十八烷基、二氣丙基、全氟癸基和五氟苯基有机基团中的一种或者多种,质量含量为0.1~60% ;有机修饰的二氧化硅颗粒表面粗糙,粒径为20~lOOOnm。 3. according to claim 1 superhydrophobic adherent material, characterized in that: said organic group containing baby dioxide nanoparticles, the organic groups are methyl, ethyl, propyl, vinyl, phenyl , dodecyl, octadecyl, two gas-propyl, perfluoro decyl and pentafluorophenyl organic group of one or more mass content of 0.1 to 60 percent; organically modified silica particle surface roughness, diameter of 20 ~ lOOOnm.
4.一种权利要求1所述粘附型超疏水表面的制备方法,其特征在于: a)无机沉淀剂在油相中分散及其均匀沉淀:将表面活性剂、有机相、助表面活性剂和沉淀剂氨水按照比例配置成微乳液A ;正硅酸乙酯和有机硅烷为硅源或者正硅酸甲酯和有机硅烷为硅源,配成溶液B ;室温下,往A微乳液中滴入溶液B,搅拌6~48h ; 所得最终混合溶液的质量比为I~10表面活性剂:0.5~6氨水:5~15有机相:0~6助表面活性剂:1正硅酸乙酯或者正硅酸甲酯:0.05~1.5有机硅烷;氨水浓度为I~30wt % ; 加入1-10倍硅源质量的丙酮破乳,离心得到固体,加入5-50倍硅源质量的乙醇回流5~30min,离心,重复2~5次洗涤,分散在乙醇中,得二氧化硅乙醇分散液,二氧化硅质量浓度为I~20wt% ; b)超疏水表面的形成:基体先用洗涤剂超声清洗,再用水清洗2~6次、丙酮清洗2~6次,将二氧化硅乙醇分散液在基体表面上沉积,20~200C下保持I~48h,得到超疏水表面; 所述有机硅烷为甲基二甲氧基硅烷、乙基二甲氧基硅烷、丙基二甲氧基硅烷、乙烯基二甲氧基硅烷、氣丙基二甲氧基硅烷、苯基二甲氧基硅烷、十烷基二甲氧基硅烷、十八烷基基三甲氧基硅烷、三氟丙基三甲氧基硅烷、五氟苯基三甲氧基硅烷及其相对应的乙氧基硅烷中的一种或二种以上。 1. Preparation adherent superhydrophobic surface according to claim 4, characterized in that: a) inorganic precipitant and evenly dispersed in the oil phase precipitation: surfactant, an organic phase, cosurfactant and precipitant ammonia arranged in accordance with the proportion of the microemulsion A; TEOS and silane as the silicon source or are methyl silicate and organic silane as the silicon source, dubbed solution B; at room temperature, to A microemulsion droplets into the solution B, was stirred for 6 ~ 48h; the final quality of the resulting mixed solution ratio of I ~ 10 Surfactant: aqueous ammonia 0.5-6: 5 to 15 organic phase: 0-6 cosurfactant: 1 TEOS or n-methyl silicate: 0.05 to 1.5 organosilane; ammonia concentration of I ~ 30wt%; added 10 times the quality of the silicon source acetone breaking centrifuged to give a solid silicon source added 5-50 times the mass of ethanol was 5 ~ 30min, centrifugation, washing was repeated 2 to 5 times, dispersed in ethanol, ethanol to obtain a dispersion of silica, the silica concentration of I ~ 20wt%; b) forming a superhydrophobic surface: a base first ultrasonic cleaning with detergent , then washed with water 2-6 times, 2-6 times washing with acetone, the silica dispersion in ethanol was kept I ~ 48h deposition surface of the substrate, 20 ~ 200 C, the resulting superhydrophobic surface; the organic silane methyl dimethoxy silane, ethyl dimethoxy silane, propyl dimethoxy silane, vinyl dimethoxysilane, gas propyl dimethoxysilane, phenyl dimethoxysilane, ten alkyl dimethoxysilane, stearyl alkyl trimethoxysilane, trifluoropropyl trimethoxysilane, pentafluorophenyl trimethoxysilane and tetraethoxysilane corresponding to one or two or more.
5.按照权利要求4所述的制备方法,其特征在于:所述表面活性剂为阴离子表面活性剂中的C8-20直链烷基苯磺酸钠或α -烯基磺酸钠,或为非离子表面活性剂中的C8-20长链的有机伯胺、Np系列或吐温系列表面活性剂,或为阳离子表面活性剂中的十六烷基三甲基溴化胺;所述有机相为环己烷、正己烷或甲苯;助表面活性剂为正丁醇、正戊醇、正己醇或正辛醇。 5. The production method according to claim 4, wherein, wherein: said surfactant is an anionic surfactant of C8-20 linear alkylbenzene sulfonate or α - olefin sulfonate, or Non-ionic surface active agents C8-20 long-chain organic primary amine, Np series or Tween series surfactants, or cationic surfactant cetyl trimethyl ammonium bromide; the organic phase cyclohexane, n-hexane or toluene; co-surfactant is n-butanol, n-pentanol, n-hexanol or n-octanol.
Description  translated from Chinese

一种粘附型超疏水材料及其制备方法 An adhesion type superhydrophobic material and method

技术领域 Technical Field

[0001] 本发明涉及到一种超疏水粘附型材料及其制备方法。 [0001] The present invention relates to a super-hydrophobic adherent material and preparation method.

背景技术 Background

[0002] 超疏水是指表面上水的表观接触角超过150的一种特殊表面现象。 [0002] superhydrophobic means the apparent contact angle of water on the surface above 150 A special appearances. 近年来,超疏水表面引起了人们极大的关注,它在自清洁材料、微流体装置、催化、采油、涂饰、防水、和生物材料等许多领域等领域中有着广泛的应用前景。 In recent years, superhydrophobic surface has aroused great concern, it has a wide range of applications in the field of self-cleaning materials, microfluidic devices, catalysis, oil, coating, waterproofing, and biological materials and many other fields like. 最典型的例子就是自然界中的荷叶表面,水滴在叶面上可以自由滚动,能够将附着在叶面上的灰尘等污染物带走,从而使表面保持清洁。 The most typical example is the nature of the lotus leaf surface, water droplets can roll freely on the leaf surface, it can be attached to the leaf surface of dust and other pollutants away, so keep the surface clean. 传统超疏水表面的制备一般采用两种方法:一种是在粗糙表面修饰低表面能的物质;另一种是在疏水性表面构建粗糙结构。 Preparation of traditional super-hydrophobic surface generally use two methods: one is rough surface modification of materials with low surface energy; the other is to build a hydrophobic surface roughness. 关于超疏水粗糙表面的研制方法,主要有相分离法、模板法、溶胶-凝胶法、电纺法、刻蚀法、腐蚀法、自组装、化学气相沉积及其他方法。 On the development of methods superhydrophobic rough surface, there are phase separation, template, sol - gel, electro-spinning method, etching method, etching, self-assembly, chemical vapor deposition and other methods. 根据液体在表面的滚动效果,超疏水表面又可分为斥水型和粘附型超疏水表面。 The liquid in the surface of the rolling effect, super-hydrophobic surface can be divided into water-repellent and adhesion super hydrophobic surface. 斥水型超疏水表面与水滴的接触角大于150 ,但是对水滴粘附力很小,水滴很容易从表面滚落。 Water-repellent superhydrophobic surface contact angle with water droplets greater than 150 , but the adhesion of small droplets, water droplets easily rolled from the surface. 自然界大量存在这种超疏水表面,比如荷叶,鸟的羽毛和水虫等都是这种低粘附力的斥水型表面。 Nature abound this super hydrophobic surface, such as leaves, bird feathers and water insects are of such low adhesion surface water-repellent. 由于这种超疏水表面自清洁性能,大量的研究都专注这种表面的合成。 Because of this super-hydrophobic surface self-cleaning properties, a large number of studies have focused on the synthesis of such surfaces. 粘附型超疏水表面不但与水滴的接触角大于150,而且对水滴具有很强的粘附力,将表面倾斜或者倒置,水滴都不会滚动下来。 Not only super hydrophobic surface adhesion contact angle with water droplets greater than 150 , but also has a strong adhesion of water droplets, the surface is tilted or upside down, the water droplets will not roll down. 这种超疏水表面虽然不能够自清洁,但是此种对液体高的粘附力,有利于在微米级别上对水滴进行操作,在无损失液体转移,微流控制体系和生物传感器等方面表现出很好的应用前景。 This super-hydrophobic surface, while not capable of self-cleaning, but such a high adhesion of the liquid, is conducive to the micron level to drop to operate without loss of fluid transfer control system and aspects of microfluidic biosensors exhibit good prospects. 相对而言,粘附型超疏水表面研究的较少。 In contrast, less adherent superhydrophobic surface studies. 现有的研究都集中在对表面的结构控制上,利用毛细管力对液体进行粘附。 Existing studies have focused on the structural control of the surface of the capillary force of the liquid adhesion. 发展一种简便合成超疏水粘附型表面的方法具有重要的意义发明内容 The development of a simple synthetic superhydrophobic surface adherent approach has important significance DISCLOSURE

[0003] 本发明提供一种粘附型超疏水材料及其制备方法。 [0003] The present invention provides an adherent superhydrophobic material and preparation method.

[0004] 该材料是一种含有有机基团的二氧化硅纳米颗粒,通过控制表面的化学成分来调控粘附力大小。 [0004] This material is an organic group comprising silica nanoparticles by controlling the surface chemical composition to control adhesion size. 以该材料作为构建单元,在基体上进行沉积得到具有二维纳米粗糙度的表面。 In the material as a building block, deposited on the substrate to obtain two-dimensional surface roughness. 基体可以是玻璃片,硅片,金属或金属氧化物。 The substrate may be glass, silicon, metal or metal oxide.

[0005] 传统超疏水表面的制备一般米用两种方法:一种是在粗糙表面修饰低表面能的物质;另一种是在疏水性表面构建粗糙结构。 [0005] The preparation of the general meter traditional superhydrophobic surface in two ways: one is to modify the low surface energy materials rough surface; the other is to build a hydrophobic surface roughness. 与上不同,本发明采用低表面能有机物修饰的二氧化硅纳米颗粒为构建单元在基体上沉积,得到具有二重纳米粗糙度的表面。 And on, the present invention is the use of low surface energy organic-modified silica nanoparticles as building blocks deposited on a substrate to obtain a surface having a double-nanometer roughness. 低表面能物质和粗糙度在沉积过程中一步实现。 Low surface energy material and roughness during the deposition process step to achieve. 操作更为简单,方便。 Operation more simple and convenient. 传统的粗糙结构只有一重粗糙度,或者一重微米级别粗糙度和一重纳米级别粗糙度。 Traditional roughness only a heavy roughness, or a re-micron level roughness and a heavy nanoscale roughness. 本发明制备的表面具有二重纳米粗糙结构。 Surface preparation of the present invention has a double nanorough structure. 二氧化硅纳米颗粒本体组装成一重纳米粗糙度,本发明合成的有机修饰的二氧化硅表面本身非常粗糙,形成第二重纳米粗糙结构,两重粗糙结构都在纳米级别。 Silica nanoparticles assemble into a body weight of nano-roughness, the synthesis of the present invention, organically modified silica surface itself is very rough, a second re-nanometer roughness, double roughness in nanometer level.

[0006] 与通过控制表面结构来调变粘附力不同,本发明通过控制化学成分来调控粘附力大小,可以获得超疏水粘附型材料,接触角在140-170之间,而且具有很强的粘附力,水滴在倾斜或者倒置的情况下不回滑落下来。 [0006] By controlling the surface structure and to adjust the adhesion of different variations, by controlling the chemical composition of the present invention is to regulate the size of adhesion, adhesion can be obtained superhydrophobic materials, the contact angle between 140-170 , and having strong adhesion, water droplets in a tilted or upside down without falling back down.

[0007] 沉淀剂是水溶性的,而硅烷是油溶性的,为了合成粒径均一,高分散的含有有机基团的二氧化硅纳米颗粒,必须使沉淀剂与硅烷充分且均匀接触,本发明采用表面活性剂和助表面活性剂将氨水溶液高分散在油相之中,使得硅烷与沉淀剂充分且均匀接触,均匀沉淀。 [0007] precipitating agent is water soluble, but are oil soluble silane, to synthesize a uniform particle size, high dispersion of silica nanoparticles containing organic group, must be sufficiently precipitant and uniform contact with the silane, the present invention use of surfactants and co-surfactants in the aqueous ammonia solution highly dispersed oil phase being such that the silane with sufficient and uniform contact with the precipitating agent, homogeneous precipitation. 通过简单沉积和老化处理可以在基体上形成一个超疏水表面。 And aging by simply depositing a super-hydrophobic surface may be formed on the substrate.

[0008] 所述粘附型超疏水表面制备步骤,可按如下步骤操作: [0008] The adherent superhydrophobic surface preparation steps, according to the following steps:

[0009] a)无机沉淀剂在油相中的分散及其均匀沉淀:表面活性剂,有机相,助表面活性剂和氨水按照一定比例配置成溶液A。 [0009] a) an inorganic precipitation and homogeneous precipitation in the dispersion of the oil phase: surfactant, an organic phase, cosurfactant and aqueous ammonia solution is configured in accordance with a certain percentage of A. 一定量的正硅酸乙酯或者正硅酸甲酯为硅源,配成溶液B。 TEOS or the amount of methyl orthosilicate as silicon source, match the solution B. 室温下,往A微乳液中加入溶液B,搅拌6~48h。 At room temperature, was added to the A microemulsion solution B, stirred 6 ~ 48h.

[0010] 所得最终混合溶液的质量比为I~10表面活性剂:0.5~6氨水:5~15有机相:O~6助表面活性剂:I硅烷:0.05~1.5有机硅烷。 [0010] The resulting final mass ratio of the mixed solution of Surfactant I ~ 10: 0.5 ~ aqueous ammonia 6: 5 to 15 organic phase: O ~ 6 cosurfactant: I Silane: 0.05 to 1.5 organosilane. 氨水浓度为I~30wt%。 Ammonia concentration of I ~ 30wt%.

[0011] 加入1-10倍硅源质量的丙酮破乳,离心得到固体,加入5-50倍硅源质量的乙醇回流5~30min,离心,重复2~5次洗涤,分散在乙醇中,得二氧化硅乙醇分散液二氧化硅质量浓度为I~20wt% ; [0011] the silicon source is added 1-10 times the mass of demulsification acetone, centrifuged to obtain a solid, the silicon source is added 5-50 times the mass of ethanol was refluxed for 5 ~ 30min, centrifugation, washing was repeated 2 to 5 times, dispersed in ethanol, to give ethanol dispersion liquid of silica silica concentration of I ~ 20wt%;

[0012] b)超疏水表面的形成:基体先用洗涤剂超声清洗,再用水、丙酮反复清洗2~6次,将二氧化硅乙醇分散液在基体表面上沉积,20~200C下老化I~48h,得到超疏水表面。 [0012] b) forming a superhydrophobic surface: substrate ultrasonically cleaned first with a detergent and then with water, repeatedly washed with acetone 2-6 times, the silica dispersion in ethanol was aged at the deposition surface of the substrate, 20 ~ 200 C under I ~ 48h, to get super-hydrophobic surface. [0013] 所述表面活性剂为阴离子表面活性剂中的C8-20直链烷基苯磺酸钠或α -烯基磺酸钠,或为非离子表面活性剂中的C8-20长链的有机伯胺、Np系列或吐温系列表面活性剂,或为阳离子表面活性剂中的十六烷基三甲基溴化胺。 [0013] The surfactant is an anionic surfactant in the C8-20 linear alkyl benzene sulfonate or α - olefin sulfonate, or non-ionic surfactants in the long chain of C8-20 organic primary amine, Np series or Tween series surfactants, or cationic surfactant cetyl trimethyl ammonium bromide. 所述有机相为环己烷、正己烷或者甲苯;助表面活性剂为正丁醇、正戊醇、正己醇或正辛醇。 The organic phase cyclohexane, hexane or toluene; co-surfactant is n-butanol, n-pentanol, n-hexanol or n-octanol. 有机基团为甲基、乙基、丙基、乙烯基、苯基、十二烷基、十八烷基、二氣丙基、全氣奏基和五氣苯基一种或者几种。 Organic groups are methyl, ethyl, propyl, vinyl, phenyl, dodecyl, octadecyl, two gas-propyl, full gas played five gas phenyl group and one or several. 基体为玻璃片,硅片,金属或金属氧化物。 Substrate is a glass, silicon, metal or metal oxide.

[0014] 本发明制备的有机修饰的二氧化硅纳米颗粒,大小可控,粒径在20~1000nm(见图1)。 [0014] The present invention for preparing organically modified silica nanoparticles, controlled size, particle size 20 ~ 1000nm (see FIG. 1). 所制备的表面具有粗糙结构(见图2)。 Prepared surface having a roughness (see FIG. 2). 所制备的超疏水粘附型表面接触角为140~170,水滴在90或180倾斜不会滚动下来(见图3)。 Superhydrophobic surface prepared adherent contact angle 140 ~ 170 , drop at least 90 or 180 tilt will not roll down (see Figure 3).

附图说明 Brief Description

[0015] 图1实例I中合成的二氧化硅颗粒A的透射电镜照片。 [0015] FIG. 1 Example I silica particles synthesized A TEM image.

[0016] 图2实例7中采用二氧化硅A制备的超疏水表面扫描电镜照片。 [0016] Figure 2 in Example 7 using superhydrophobic surfaces A scanning electron micrograph of silica prepared.

[0017] 图3实例7中采用二氧化硅A制备的超疏水表面水滴接触角图片。 [0017] FIG. 3 Example 7, an ultra-hydrophobic surface of water droplets produced silica A contact angle picture.

具体实施方式 DETAILED DESCRIPTION

[0018] 表面活性剂,有机相,助表面活性剂和氨水按照一定比例配置成溶液A。 [0018] surfactant, an organic phase, cosurfactant and aqueous ammonia solution is configured in accordance with a certain percentage of A. 一定量的正硅酸乙酯或正硅酸甲酯和有机硅烷配成溶液B。 TEOS or n-methyl certain amount of silicon and silane match the solution B.

[0019] 室温下,往A微乳液中滴入溶液B,搅拌6~48h。 Under the [0019] room temperature dropped to A microemulsion solution B, stirred 6 ~ 48h. 所得最终混合溶液的质量比为I~10表面活性剂:0.5~6氨水:5~15有机相:O~6助表面活性剂:I硅烷:0.05~1.5有机硅烷。 The resulting final mass ratio of the mixed solution I ~ 10 Surfactant: aqueous ammonia 0.5-6: 5 to 15 organic phase: O ~ 6 cosurfactant: I Silane: 0.05 to 1.5 organosilane. 加入1-10倍硅源质量的丙酮破乳,离心得到固体,加入5-50倍硅源质量的乙醇回流5~30min,离心,重复2~5次洗涤,分散在乙醇中,得二氧化硅乙醇分散液,二氧化硅质量浓度为I~20Wt% ;基体先用洗涤剂超声清洗,再反复用水,丙酮清洗2~6次,将二氧化硅乙醇分散液在基体表面上沉积,20~200C下保持I~48h,得到超疏水表面。 Added 1-10 times the mass of the silicon source demulsification acetone, centrifuged to obtain a solid, the silicon source is added 5-50 times the mass of ethanol was refluxed for 5 ~ 30min, centrifugation, washing was repeated 2 to 5 times, dispersed in ethanol, to give silica ethanol dispersion, the silica concentration of I ~ 20Wt%; matrix first ultrasonic cleaning with detergent, and then repeatedly washed with water, acetone 2-6 times, the silica dispersion in ethanol, the deposition surface of the substrate, 20 to 200 C maintained at I ~ 48h, to get super-hydrophobic surface.

[0020] 下面通过实施例对本发明提供的方法进行详述,但不以任何形式限制本发明。 [0020] The following examples are described in detail on the process of the present invention provides, but without limiting the invention in any way.

[0021] 实施例1 二氧化硅A (Ph-SiO2)的制备 Preparation 1 Silica A (Ph-SiO2) of Example [0021]

[0022] 取8.0g Np-12、15.0g环己烷、3.0g正辛醇和5.0g IOwt %,得溶液A ; 1.0g正硅酸乙酯0.5g苯基基三甲氧基硅烷为溶液C ;在搅拌下将溶液B加入溶液D中,老化8h ;然后,加入8g丙酮,搅拌30min,离心得到固体; [0022] to take 8.0g Np-12,15.0g cyclohexane, 3.0g of n-octanol and 5.0g IOwt%, to obtain solution A; 1.0g 0.5g TEOS phenyl trimethoxysilane the solution C; under stirring solution B was added to solution D, the aging 8h; Then, 8g of acetone was added and stirred for 30min, centrifuged to obtain a solid;

[0023] 向此固体中加入30g乙醇,加热搅拌lOmin,离心;重复此步骤5次,直至表面活性剂去除干净;所得固体分散在IOg乙醇中。 [0023] To this solid was added 30g of ethanol was heated with stirring lOmin, centrifuged; this procedure was repeated five times, until the surface active agent to remove and clean; IOg resulting solid was dispersed in ethanol. 如图1所示,可以看出有机修饰的二氧化硅纳米颗粒,粒径均匀,粒径在lOOnm,表面非常粗糙。 As shown in Figure 1, we can see organically modified silica nanoparticles, uniform particle size, particle size in lOOnm, the surface is very rough.

[0024] 实施例2 二氧化硅BL的制备 Preparation Example 2 of silica BL [0024] Example

[0025] 材料BL的制备方法同材料A,不同之处在于有机硅烷的种类和加入量上,具体采用的有机硅烷的种类和加入量见表1,所得到的材料列于表1。 Preparation [0025] material BL with material A, except that the type and amount of organic silane, the type and amount of specific organic silane used in Table 1, the resulting materials are shown in Table 1.

[0026] 表1材料BH制备中采用的有机硅烷的种类和加入量 [0026] The type and amount Table 1 BH materials used in the preparation of organosilane

Figure CN102453465BD00051

[0028] 实施例3 二氧化硅I (Me-SiO2)的制备 [0028] Preparation Example 3 Silica I (Me-SiO2) of

[0029] 取2.0g十二烷基苯磺酸钠、10.0g正己烧、L Og正丁醇和4.0g 15wt%氨水混合得微乳液A ; 1.0g正硅酸甲酯和0.5g甲基三甲氧基硅烷为溶液B。 [0029] Take 2.0g of sodium dodecylbenzenesulfonate, 10.0g n-hexyl burning, L Og butanol and 4.0g 15wt% aqueous ammonia was mixed microemulsion A; 1.0g 0.5g n-methyl silicate and methyltrimethoxysilane silane as a solution B. 在搅拌下将溶液B滴入溶液D中,老化15h ;然后加入IOg丙酮,搅拌30min,离心得到固体; Under stirring solution B was added dropwise a solution of D in aging 15h; IOg acetone was then added, stirred 30min, centrifuged to obtain a solid;

[0030] 向此固体中加入30g乙醇,加热搅拌lOmin,离心;重复此步骤4次,直至表面活性剂去除干净。 [0030] To this solid was added 30g of ethanol was heated with stirring lOmin, centrifuged; this procedure was repeated four times, until the surfactants were cleanly removed. 所得固体分散在IOg乙醇中。 The resulting solid was dispersed in ethanol IOg.

[0031 ] 实施例4 二氧化硅JR的制备[0032] 材料JR的制备方法同材料I,不同之处在于有机硅烷的种类和加入量,具体采用的有机硅烷和加入量种类见表2,所得到的材料列于表2。 JR silica prepared in Example 4 [0032] [0031] The preparation of the material with the material JR I, except that the kind and amount of organic silane, organic silane and addition of specific types of use are shown in Table 2, the The resulting material is shown in Table 2.

[0033] 表2材料JR制备中采用的有机硅烷的种类和加入量 [0033] the type and amount in Table 2 Materials used in the preparation JR organosilane

Figure CN102453465BD00061

[0035] 实施例5 二氧化硅S (Do-SiO2)的制备 Preparation Example 5 Silica S (Do-SiO2) in the [0035] embodiments

[0036] 取5.0g十六烷基三甲基溴化胺、12.0g甲苯、2.0g正戍醇和4.5g 5wt%氨水混合得微乳液液A ;1.0g正硅酸甲酯和0.1g十二烷基三甲氧基硅烷为溶液B ;在搅拌下将溶液C滴入溶液A中,老化24h ;然后,加入IOg丙酮,搅拌30min,离心得到固体; [0036] to take 5.0g of cetyl trimethyl ammonium bromide, 12.0g of toluene, 2.0g 4.5g 5wt% positive garrison alcohol and ammonia mixed to give microemulsion liquid A; 1.0g and 0.1g of methyl silicate twelve alkyl trimethoxysilane a solution B; C under stirring solution was added dropwise to solution A, aging 24h; then, IOg acetone was added and stirred for 30min, centrifuged to obtain a solid;

[0037] 向此固体中加入30g乙醇,加热搅拌lOmin,离心;重复此步骤3次,直至表面活性剂去除干净。 [0037] To this solid in 30g of ethanol, heated and stirred lOmin, centrifugal; repeat this step three times until the surfactant to remove and clean. 所得固体分散在IOg乙醇中。 The resulting solid was dispersed in ethanol IOg.

[0038] 实施例6 二氧化硅UZ的制备 Preparation Example 6 silica UZ of [0038] Example

[0039] 材料TZ的制备方法同材料S,不同之处在于有机硅烷的种类和加入量,具体采用的有机硅烷和加入量种类见表3,所得到的材料列于表3。 Preparation [0039] Materials TZ same material S, except that the kind and amount of organic silane, organic silane and addition of specific types of use are shown in Table 3, the resulting materials are shown in Table 3.

[0040] 表3 二氧化硅TZ制备中采用的有机硅烷的种类和加入量 [0040] Table 3 the type and amount of silica used in the preparation of TZ organosilane

[0041] [0041]

Figure CN102453465BD00071

[0042] 实施例7超疏水表面的制备 Preparation 7 superhydrophobic surface [0042] Example

[0043] 玻璃片先用洗涤剂超声清洗,再反复用水清洗3次,丙酮清洗4次,干燥。 [0043] First glass ultrasonic cleaning with detergent, and then repeatedly washed with water three times, washed four times with acetone, and dried. 将制备好的AZ 二氧化硅乙醇分散液在基体表面上进行沉积,150温度下,老化24h。 The good AZ ethanol dispersion liquid of silica in the deposition surface of the substrate, at a temperature of 150 , aged 24h.

[0044] 如图2和3所不,可以看出,所制备的表面具有粗糖结构。 [0044] Figures 2 and 3 do not, it can be seen, the surface of the prepared structure having a raw sugar. 此表面具有超疏水性质,水滴接触角大于150,且具有很强的粘附性能,水滴在倒置的情况下不会掉下来。 This surface has a super-hydrophobic nature, water contact angle greater than 150 , and has a strong adhesive properties, in the case of inverted drop will not fall.

[0045] 本发明提供的方法制备的超疏水材料可以粘附到不同的基体上,形成一个超疏水表面,具有超疏水高粘附性能,该方法操作简单,原料易得,成本低,在无损失液体转移,液体携带生物材料,微流控制体系,生物微量液体转移,分离材料和生物传感器等方面具有广泛的应用前景。 [0045] superhydrophobic material preparation method of the present invention can provide adhesion to different substrates, forming a super-hydrophobic surface with super-hydrophobic high adhesion properties, the method is simple, raw materials, low cost, without loss of liquid transfer, liquid carrying biological materials, microfluidic control system, biological micro fluid transfer, separation material aspects and biological sensors with a wide range of applications.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
CN1392097A28 May 200222 Jan 2003湖南大学Silicon amide shell nano particle material and its preparing process
CN101113012A28 Jul 200630 Jan 2008北京化工大学Highly-adherent super-hydrophobic double-functional intercalation configuration type hydrotalcite film and method for preparing same
CN101143989A15 Sep 200619 Mar 2008中国科学院大连化学物理研究所Hydrophobic coating and application thereof
CN101629066A28 Jul 200920 Jan 2010上海理工大学Nanometer composite hydrophobic hard transparent film and preparation method thereof
CN101817980A22 Apr 20101 Sep 2010复旦大学Sol-gel preparation method of silica-based superhydrophobic thin films
JP2000017229A Title not available
US674346721 Aug 20001 Jun 2004Unisearch LimitedHydrophobic material
WO2010002859A230 Jun 20097 Jan 2010Stc.UnmA superhydrophobic aerogel that does not require per-fluoro compounds or contain any fluorine
WO2010018744A127 Jul 200918 Feb 2010財団法人川村理化学研究所Ultrahydrophobic powder, structure with ultrahydrophobic surface, and processes for producing these
WO2010033288A230 Jun 200925 Mar 2010Stc.UnmDurable polymer-aerogel based superhydrophobic coatings: a composite material
Non-Patent Citations
Reference
1杨泰生.乳液法制备超疏水二氧化硅薄膜的研究.《山东轻工业学院硕士学位论文》.2010,第26-33页.
Classifications
International ClassificationC09K3/18
Legal Events
DateCodeEventDescription
16 May 2012C06Publication
27 Jun 2012C10Request of examination as to substance
3 Sep 2014C14Granted