DE10156619A1 - Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane sowie deren Verwendung - Google Patents

Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane sowie deren Verwendung

Info

Publication number
DE10156619A1
DE10156619A1 DE10156619A DE10156619A DE10156619A1 DE 10156619 A1 DE10156619 A1 DE 10156619A1 DE 10156619 A DE10156619 A DE 10156619A DE 10156619 A DE10156619 A DE 10156619A DE 10156619 A1 DE10156619 A1 DE 10156619A1
Authority
DE
Germany
Prior art keywords
functionalized
silasesquioxanes
oligomeric
oligomeric silasesquioxanes
incompletely condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10156619A
Other languages
English (en)
Inventor
Carsten Jost
Adolf Kuehnle
Hendrikus Cornelis L Abbenhuis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Creavis Gesellschaft fuer Technologie und Innovation mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creavis Gesellschaft fuer Technologie und Innovation mbH filed Critical Creavis Gesellschaft fuer Technologie und Innovation mbH
Priority to DE10156619A priority Critical patent/DE10156619A1/de
Priority to DE50202804T priority patent/DE50202804D1/de
Priority to US10/494,043 priority patent/US20050010012A1/en
Priority to PCT/EP2002/012678 priority patent/WO2003042223A1/de
Priority to AT02785385T priority patent/ATE293115T1/de
Priority to CA002463173A priority patent/CA2463173A1/en
Priority to CNA028228480A priority patent/CN1589274A/zh
Priority to JP2003544058A priority patent/JP2005509042A/ja
Priority to EP02785385A priority patent/EP1444240B8/de
Publication of DE10156619A1 publication Critical patent/DE10156619A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0874Reactions involving a bond of the Si-O-Si linkage

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane durch Umsetzung von unvollständig kondensierten oligomeren Silasesquioxanen mit Alkoxysilanen sowie deren Verwendung für weitere Derivatisierungen, für die Synthese von Katalysatoren und deren Ausgangsverbindungen sowie für die Synthese und Modifizierung von Polymeren.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane sowie deren Verwendung für weitere Derivatisierungen, für die Synthese von Katalysatoren und deren Ausgangsverbindungen sowie für die Synthese und Modifizierung von Polymeren.
  • Oligomere Silasesquioxane können zur Synthese und Modifizierung von Polymeren mit einem breiten Anwendungsfeld verwendet werden. Die daraus resultierenden Polymere können beispielsweise in Coatings und Klebstoffen, in Formteilen aus Kunststoff, in Fasern oder Verpackungsmaterialien Verwendung finden. Dadurch, dass die Silasesquioxane hinsichtlich ihrer Struktur in einer großen Variationsbreite hergestellt werden können, sind die Eigenschaften der aus Silasesquioxanen herstellbaren bzw. mit ihnen modifizierbaren Polymere über einen großen Bereich beeinflussbar. Zahlreiche thermische und mechanische Eigenschaften von Polymeren lassen sich durch das Blending, Grafting, Aufpropfen, Copolymerisieren bzw. Copolykondensation von Silasesquioxanen verbessern, so sind z. B. hier die verschiedenen Moduli, die Temperaturstabilität, die Haftungseigenschaften gegenüber einer Vielzahl von Werkstoffen, die Oxidationsstabilität und die Kratz- und Reißfestigkeit zu nennen.
  • Neuerdings gewinnen metallhaltige Silasesquioxane auch hinsichtlich ihrer möglichen Verwendung als Katalysatoren immer mehr an Bedeutung (Chem. Eur. J. 2000, 6, 25-32). Feher et al. (J. Am. Chem. Soc. 1989, 111, 1741-8) beschreiben die Synthese von verschiedenartig funktionalisierten oligomeren Silasesquioxanen der Struktur 1 (X = funktionelle Gruppe bzw. funktionalisierter Rest, R = Kohlenwasserstoffrest) durch sogenanntes "Corner Capping" der oligomeren Silasesquioxan-Trisilanole der Struktur 2 mit funktionalisierten Trichlorsilanen XSiCl3 in Gegenwart eines Amins. Dabei entsteht ungünstigerweise die dreifach stöchiometrische Menge an Ammoniumchloriden als Nebenprodukt der Kondensationsreaktion des Trisilanols 2 mit den Trichlorsilanen XSiCl3. Außerdem muss aufgrund der Hydrolyseempfindlichkeit der Trichlorsilane unter striktem Feuchtigkeitsausschluss gearbeitet werden. Von Nachteil ist die Verwendung von Trichlorsilanen auch deshalb, da diese Verbindungen in vielen Fällen relativ teuer sind. Die analogen Trialkoxysilane XSi(OR')3 sind oftmals kostengünstiger als die Trichlorsilane erhältlich.


  • Auch Lichtenhan et al. (US 5484867; Comments Inorg. Chem. 1995, 17, 115-30; Macromolecules 1996, 29, 7302-4; Macromolecules 1995, 28, 8435-7) beschreiben die Synthese von funktionalisierten oligomeren Silasesquioxanen der Struktur 1 durch Corner Capping der jeweiligen Trisilanol-Vorstufen 2 mit den Trichlorsilan-Bausteinen XSiCl3 unter Verwendung einer Amin-Base, wodurch über die funktionelle Gruppe X Silanol-, Silan-, Acryl-, Olefin-, Epoxid-, Halogen-, Alkohol-, Amin-, Isocyanat-Funktionen in das oligomere Silasesquioxan-Molekül eingeführt werden können.
  • Die bisherigen literaturbekannten Methoden erfordern die ungünstige Verwendung der teuren Trichlorsilan-Bausteine XSiCl3 unter Verwendung einer Amin-Base (Appl. Organomet. Chem. 1999, 13, 213-26) und ziehen notwendigerweise die aufwendige Abtrennung des entstehenden Ammoniumchloridsalzes nach sich. Das Arbeiten mit Trichlorsilanen erfordert außerdem den strikten Ausschluss von Feuchtigkeit und ist damit ebenfalls sehr aufwendig.
  • Die Aufgabe der Erfindung bestand deshalb darin, ein allgemein einsetzbares, effizientes Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane durch Umsetzung unvollständig kondensierter Silasesquioxane mit Alkoxysilanen bereitzustellen. Insbesondere war Aufgabe des vorliegenden Verfahrens, ein einfaches und effizientes Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane der Struktur 1 durch Corner Capping der Trisilanole der Struktur 2 (X = funktionelle Gruppe bzw. funktionalisierter Rest, R = Kohlenwasserstoffrest) bereitzustellen, welches bei der Umsetzung ohne Chlorsilane auskommt.
  • Überraschenderweise wurde gefunden, dass funktionalisierte oligomere Silasesquioxane durch Reaktion unvollständig kondensierter oligomerer Silasesquioxane mit Alkoxysilanen auf einfache Weise hergestellt werden können. Insbesondere lassen sich dabei funktionalisierte Silasesquioxane der Struktur 1 durch Corner Capping von unvollständig kondensierten oligomeren Silasesquioxanen der Struktur 2 mit Alkoxysilan-Monomeren XSi(OR')3 unter Basenkatalyse synthetisieren, wobei X eine Wasserstoff-, Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Silyloxy-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppe, wobei - sofern möglich - diese Reste X ihrerseits wiederum weiter funktionalisiert sein können, oder/und einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest, der mit Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Silyloxy-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppen funktionalisiert ist, darstellt. R stellt ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest oder ganz oder teilweise eine Gruppe X dar. R' stellt ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest dar.
  • Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane, welches dadurch gekennzeichnet ist, dass unvollständig kondensierte oligomere Silasesquioxane mit Alkoxysilanen umgesetzt werden.
  • Ebenso ist Gegenstand der vorliegenden Erfindung die Verwendung der nach den Ansprüchen 1 bis 20 hergestellten funktionalisierten oligomeren Silasesquioxane für weitere Derivatisierungen, für die Synthese von Katalysatoren und deren Ausgangsverbindungen sowie für die Synthese bzw. Modifizierung von Polymeren.
  • Die vorliegende Erfindung hat gegenüber den literaturbekannten Methoden, die Chlorsilane als Reagenzien beinhalten, den Vorteil, dass mit Alkoxysilanen kostengünstige Reagenzien zum Einsatz kommen, was die Wirtschaftlichkeit des Syntheseverfahrens für funktionalisierte oligomere Silasesquioxane erhöht. Des weiteren ist ein Arbeiten unter striktem Feuchtigkeitsausschluss ebenso wenig erforderlich wie die Abtrennung und Entsorgung der stöchiometrischen Mengen an Ammoniumchlorid-Salzen, die bei der bisher üblichen Reaktion von Silanolen mit Chlorsilanen, insbesondere Trichlorsilanen XSiCl3, und Aminen gebildet werden. Durch die Vermeidung von großen Mengen Ammoniumsalzen kann mit dem erfindungsgemäßen Verfahren vermieden werden, dass diese Salze als Abfall kostenintensiv entsorgt werden müssen.
  • Mittels des erfindungsgemäßen Verfahrens ist damit ein effizienter, neuartiger Weg zur Herstellung von funktionalisierten oligomeren Silasesquioxanen durch basenkatalysiertes Corner Capping unvollständig kondensierter oligomerer Silasesquioxane mit Alkoxysilanen eröffnet worden. Die Bereitstellung eines effizienten, kostengünstigen Herstellungsverfahrens für funktionalisierte oligomere Silasesquioxane ist von großer Bedeutung, da diese nicht nur für weitere Derivatisierungen, für die Synthese von Katalysatoren und deren Ausgangsverbindungen, sondern auch durch Copolymerisation, Aufpfropfen, Grafting und Blending für die Synthese und Modifizierung einer Vielzahl von Polymeren eingesetzt werden können.
  • Das erfindungsgemäße Verfahren wird im Folgenden beispielhaft beschrieben, ohne dass das Verfahren darauf beschränkt sein soll.
  • Das erfindungsgemäße Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane zeichnet sich dadurch aus, dass unvollständig kondensierte oligomere Silasesquioxane mit Alkoxysilanen umgesetzt werden. Vorzugsweise erfolgt die Umsetzung der unvollständig kondensierten oligomeren Silasesquioxane mit Alkoxysilanen unter Basenkatalyse. Als Alkoxysilane werden bevorzugt Verbindungen der Formel XmSi(OR')n eingesetzt, wobei X eine Wasserstoff-, Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Silyloxy-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppe, wobei - sofern möglich - diese Reste X ihrerseits wiederum weiter funktionalisiert sein können, und/oder einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest, der mit Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Silyloxy-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppen funktionalisiert ist, darstellen können, R' ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest darstellen kann, wobei die Reste R' gleich oder unterschiedlich sein können und m und n Werte von 1 bis 3 einnehmen können mit der Maßgabe, das die Summe aus m und n 4 ergibt. Besonders bevorzugt werden Alkoxysilane der Formel XSi(OR')3, ganz besonders solche, bei denen X nicht ein Halogen oder ein Hydroxy-, Alkoxy- oder Silyloxyrest darstellt, eingesetzt.
  • Das erfindungsgemäße Verfahren eignet sich insbesondere zur Herstellung von funktionalisierten oligomeren Silasesquioxanen der Struktur 1


    durch Reaktion unvollständig kondensierter oligomerer Silasesquioxane der Struktur 2 als Edukte


    mit Alkoxysilanen XmSi(OR')n, vorzugsweise XSi(OR')3, unter Basenkatalyse, wobei X eine Wasserstoff-, Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Silyloxy-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino- oder Phosphingruppe, wobei - sofern möglich - diese Reste X ihrerseits wiederum weiter funktionalisiert sein können, oder/und einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest, der mit Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Silyloxy-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppen funktionalisiert ist, darstellen können, R ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest oder ganz oder teilweise eine Gruppe X darstellen kann und R' ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest darstellen kann.
  • Das erfindungsgemäße Verfahren zur Funktionalisierung unvollständig kondensierter oligomerer Silasesquioxane ist aber nicht auf Substrate der Struktur 2 beschränkt, sondern kann generell zur Umsetzung und damit zur Derivatisierung aller unvollständig kondensierten oligomeren Silasesquioxane mit verschiedensten Alkoxysilanen eingesetzt werden, wobei die Alkoxysilane ein, zwei, drei oder vier Alkoxygruppen am Si-Atom besitzen können. Die durch die erfindungsgemäße Umsetzung gebildeten funktionalisierten oligomeren Silasesquioxane müssen nicht die Struktur 1 aufweisen, sondern können sowohl einfach als auch mehrfach funktionalisiert sein, sie können gleiche oder verschiedene funktionelle Gruppen X besitzen, sie können sowohl vollständig als auch unvollständig kondensiert sein und weitere nicht abgesättigte Hydroxygruppen aufweisen. Als unvollständig kondensierte Silasesquioxane mit einer von der Struktur 2 abweichenden Struktur können z. B. Disilanole, Tetrasilanole, verschiedene, von den würfelförmigen T8-Bausteinen abweichende Käfigstrukturen aufweisende, unvollständig kondensierte Silasesquioxane oder bereits funktionalisierte unvollständig kondensierte Silasesquioxane eingesetzt werden, die allesamt mittels des erfindungsgemäßen Verfahrens nun funktionalisiert werden können, wobei wiederum verschiedenste Strukturen entstehen können.
  • Zur Steuerung bzw. Beschleunigung der Reaktion ist es vorteilhaft, die Umsetzung in Gegenwart eines basischen Katalysators durchzuführen.
  • Als basische Katalysatoren werden bevorzugt zumindest solche aus der Gruppe OH-, RO-,, RCOO-, RNH-, RCONR-, R-, CO3 2-, PO4 3-, SO4 2-, NO3 -, F-, NR3, R3NO eingesetzt, wobei R ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl- oder Heteroarylrest darstellen kann. Besonders bevorzugt werden als basische Katalysatoren KOH, NaOH, (C2H5)4NOH, C6H5CH2(CH3)3NOH, (CH3)4NOH und/oder (C2H5)3N eingesetzt. Ganz besonders bevorzugt ist die Verwendung von Ammoniumhydroxiden, wie z. B. (C2H5)4NOH als basischer Katalysator. Die Aufzählung dieser Beispiele soll die Erfindung in keiner Weise einschränken, da jedweder basische Katalysator verwendet werden kann.
  • Das erfindungsgemäße Verfahren wird vorzugsweise so durchgeführt, dass in der Reaktionslösung zu Beginn der Reaktion ein Stoffmengenverhältnis von unvollständig kondensiertem Silasesquioxan zur eingesetzten Base von 1000 : 1 bis 1 : 1, bevorzugt von 100 : 1 bis 2 : 1 und besonders bevorzugt von 20 : 1 bis 5 : 1 vorliegt.
  • Es kann vorteilhaft sein, die erfindungsgemäße Umsetzung unvollständig kondensierter oligomerer Silasesquioxane mit Alkoxysilanen in Lösung durchzuführen. Als Lösungsmittel kann sowohl ein polares Solvens als auch ein unpolares Solvens verwendet werden.
  • Bevorzugt werden Alkohole, Ketone, Aldehyde, Ether, Säuren, Ester, Anhydride, Alkane, Aromaten und Nitrile, besonders bevorzugt werden Alkohole, Ether, Aceton, Acetonitril, Benzol und Toluol als Lösungsmittel eingesetzt. Ganz besonders bevorzugt ist die Verwendung von THF, Aceton, Methanol und Ethanol, insbesondere von THF als Lösungsmittel. Selbstverständlich können auch Mischungen dieser Lösungsmittel eingesetzt werden.
  • Die Konzentration der unvollständig kondensierten oligomeren Silasesquioxane, insbesondere der unvollständig kondensierten Silasesquioxane der Struktur 2 in der Reaktionslösung beträgt in dem erfindungsgemäßen Verfahren zu Beginn der Reaktion bevorzugt von 0.01 mol/l bis 10 mol/l, besonders bevorzugt von 0.1 mol/l bis 2 mol/l und ganz besonders bevorzugt von 0.2 bis 1 mol/l.
  • Es kann vorteilhaft sein, wenn die Konzentration des Alkoxysilans XmSi(OR')n in dem erfindungsgemäßen Verfahren zu Beginn der Reaktion die Konzentration des unvollständig kondensierten oligomeren Silasesquioxans übersteigt. Es ist ausreichend, wenn der Alkoxysilanüberschuss gering gehalten wird, jedoch ist ebenso der Einsatz eines deutlichen Überschusses an Alkoxysilan XmSi(OR')n möglich. Bevorzugt weist die Reaktionslösung zu Beginn der Reaktion einen molaren Überschuss an Alkoxysilan im Vergleich zum unvollständig kondensierten oligomeren Silasesquioxan von bis zu 100%, vorzugsweise von 0,02 bis 20%, besonders bevorzugt von 0,1 bis 5% auf.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens kann es vorteilhaft sein, wenn dem Reaktionsgemisch Wasser zugesetzt wird. Teilweise reichen aber auch die vorhandenen Spuren an Wasser im Lösemittel aus bzw. erfolgt die Reaktion bzw. der erfindungsgemäße Umsatz ohne das Vorhandensein von Wasser zu Beginn der Reaktion. Bevorzugt beträgt das Stoffmengenverhältnis von Wasser zum unvollständig kondensierten oligomeren Silasesquioxan zu Beginn des Umsatzes von 1000 : 1 bis 0.1 : 1, vorzugsweise von 100 : 1 bis 0.5 : 1, besonders bevorzugt von 10 : 1 bis 1 : 1.
  • Das erfindungsgemäße Verfahren kann z. B. bei Temperaturen von -50 bis 300°C durchgeführt werden, bevorzugt ist eine Temperatur von 0 bis 200°C. Besonders bevorzugt wird die Reaktion bei einer Temperatur von 0°C bis 100°C durchgeführt. Es ist durchaus möglich, die Temperatur während des erfindungsgemäßen Umsatzes zu variieren. So kann z. B. die Absenkung der Temperatur zum Ende der Reaktion hin, um das Produkt möglichst vollständig zu isolieren, vorteilhaft sein.
  • Die erfindungsgemäß hergestellten funktionalisierten oligomeren Silasesquioxane, insbesondere die erfindungsgemäß hergestellten funktionalisierten oligomeren Silasesquioxane der Struktur 1 können z. B. für weitere Derivatisierungen, für die Synthese von Katalysatoren und deren Ausgangsverbindungen sowie für die Synthese bzw. Modifizierung von Polymeren eingesetzt werden. Es ergibt sich für diese Silasesquioxane also ein breites Anwendungsfeld.
  • Die erfindungsgemäß hergestellten funktionalisierten oligomeren Silasesquioxane der Formel 1 können außerdem zur Verbesserung der Klebe- und Verbundeigenschaften, der rheologischen Eigenschaften und/oder der Sperrwirkung gegenüber Gasen und Flüssigkeiten in Polyolefinen, in amorphen Polyalphaolefinen, in Polyamiden, in Copolyamiden, in Polyamidcompounds, in Polyestern, in Copolyestern, in Polyacrylaten, in Polymethacrylaten, in Polycarbonaten, in Polyurethanen, in Phenolharzen, in Epoxidharzen, in Polysiloxanen, in Polysilanen, in Kautschuk, in Kautschukcompounds, in Polyvinylchlorid, in Vinylchloridcopolymeren, in Polystyrol, in Copolymeren des Styrols, in ABS-Polymeren und Olefinco- und -terpolymeren verwendet werden.
  • Ebenso können die erfindungsgemäß hergestellten funktionalisierten oligomeren Silasesquioxane der Formel 1 in Lacken und Druckfarben zur Verbesserung der rheologischen Eigenschaften, des Absetzverhaltens, der Appliziereigenschaften sowie der Oberflächeneigenschaften des Lack- bzw. Druckfarbenfilms eingesetzt werden.
  • Da zum einen über die R-Gruppe der physikalische Charakter der Silasesquioxane, zum andern über die funktionelle Gruppe X die chemische Reaktivität der Silasesquioxane breit variiert werden kann, ist eine Modifizierung aller gängigen Polymeren möglich. Die Modifizierung der Polymere durch die funktionalisierten oligomeren Silasesquioxane kann durch Blending, Grafting, Aufpfropfen, Copolymerisation und Copolykondensation erfolgen. Hierbei ermöglichen die durch das vorliegende erfindungsgemäße Verfahren eingeführten funktionellen Gruppe X die chemische Verankerung des oligomeren Silasesquioxans an Polymeren durch Grafting, Aufpfropfen, Copolymerisation und Copolykondensation.
  • Durch die Modifizierung mit geeigneten oligomeren Silasesquioxanen können die rheologischen Eigenschaften, die Klebe- und Verbundeigenschaften sowie die Sperrwirkung gegenüber Gasen und Flüssigkeiten in einer Vielzahl von Polymeren günstig beeinflusst werden. Solche organischen Polymere wie z. B. Polyolefine, Polyether, Polyester, Polycarbonate, Polyamide, Polyurethane, Polyacrylate, Polymethacrylate, Polysiloxane, Polysilane, Phenolharze, Epoxidharze, Polyvinylchlorid und Vinylchloridcopolymere, Polystyrol und Copolymere des Styrols, ABS-Polymere und Kautschuke können durch Blending, Grafting, Aufpfropfen, Copolymerisation und Copolykondensation mit den funktionalisierten oligomeren Silasesquioxanen modifiziert werden. Ebenso können die funktionalisierten oligomeren Silasesquioxane zur Modifizierung von Polymeroberflächen eingesetzt werden, auf denen sie physikalisch oder aber auch über die funktionellen Gruppen X chemisch verankert werden. Die resultierenden Polymere können beispielsweise in Form von Coatings, Lacken, spritzgegossenen oder extrudierten Formteilen, kalandrierten Folien, Schmierstoffen, Klebstoffen, Kosmetika, Pharmazeutika, Fasern, Glasfasern oder Verpackungsmaterialien Anwendung finden. Daneben können sie als bioaktive und fungizide Produkte, für Elektronikmaterialien, in der Raumfahrt und zur Herstellung medizinischer Prothesen verwendet werden.
  • Die Verwendung der erfindungsgemäß hergestellten funktionalisierten oligomeren Silasesquioxane zur Polymermodifizierung ist von Vorteil, da sie in den resultierenden Polymeren die Glas-, Zersetzungs- und damit die Gebrauchstemperatur erhöhen, die Reißfestigkeit, Schlagzähigkeit, Kratzfestigkeit und mechanische Härte erhöhen, die Dichte erniedrigen, die Wärmeleitfähigkeit, den thermischen Ausdehnungskoeffizient und die Dielektrizitätskonstante und die Viskosität erniedrigen, die Oberflächenspannung und Adhäsion verändern, die Entflammbarkeit, Brennbarkeit und Hitzeentwicklung herabsetzen, die O2-Permeabilität, die Oxidations- und Korrosionsstabilität erhöhen, die Verarbeitung vereinfachen und Schrumpfungsprozesse eindämmen.
  • Die nach dem erfindungsgemäßen Verfahren zugänglichen funktionalisierten oligomeren Silasesquioxane können nach gängigen Methoden weiter derivatisiert werden und auch als Ausgangsverbindungen für Katalysatoren dienen. Sie können dabei durch Umsetzung mit Metallverbindungen homogene und heterogene Katalysatoren ausbilden, welche ihrerseits für Oxidationen, Metathese, C-C-Kupplungsreaktionen, Oligomerisation, Polymerisation, Additionen, Reduktionen, Eliminierungen, Umlagerungen einsetzbar sind. Bevorzugt ist dabei die Umsetzung mit Metallverbindungen von Metallen der Nebengruppen inklusive der Lanthanoide und Actinoide und der 3. und 4. Hauptgruppe.
  • Die folgenden Beispiele sollen die Erfindung näher erläutern, ohne ihren Schutzumfang einzuschränken:
  • Beispiel 1 Reaktion von (Isobutyl)7Si7O9(OH)3 mit 3-Chlorpropyltrimethoxysilan
  • Zu einer Lösung von 10.0 g (12.6 mmol) (Isobutyl)7Si7O9(OH)3 in 20 ml THF werden bei 20°C 2.4 ml (13.2 mmol) 3-Chlorpropyltrimethoxysilan gegeben. Nach Zugabe von 0.5 ml Et4NOH (35% Lösung in H2O, 1.2 mmol Base, 18 mmol H2O) wird über Nacht gerührt. Die resultierende weiße Suspension wird mit 100 ml MeOH versetzt. Nach dem Abfiltrieren wird der Rückstand mit zweimal 50 ml Aceton gewaschen. Man erhält 6.0 g (60% Ausbeute) 3 als weißes Pulver.


  • Beispiel 2 Reaktion von (Isobutyl)7Si7O9(OH)3 mit Vinyltrimethoxysilan
  • Zu einer Lösung von 10.0 g (12.6 mmol) (Isobutyl)7Si7O9(OH)3 in 20 ml THF werden bei 20°C 2.0 ml (13.1 mmol) Vinyltrimethoxysilan gegeben. Nach Zugabe von 0.5 ml Et4NOH (35% Lösung in H2O, 1.2 mmol Base, 18 mmol H2O) wird über Nacht gerührt. Die resultierende trübe Lösung wird mit 200 ml MeOH versetzt. Nach dem Abfiltrieren wird der Rückstand mit 30 ml Aceton gewaschen. Man erhält 6.1 g (60% Ausbeute) 4 als weißes Pulver.


  • Beispiel 3 Reaktion von (Isobutyl)7Si7O9(OH)3 mit 3-Aminopropyltriethoxysilan
  • Zu einer Lösung von 10.0 g (12.6 mmol) (Isobutyl),Si7O9(OH)3 in 20 ml THF werden bei 20°C 3.0 ml (12.8 mmol) 3-Aminopropyltriethoxysilan gegeben. Nach Zugabe von 0.5 ml Et4NOH (35% Lösung in H2O, 1.2 mmol Base, 18 mmol WO) wird über Nacht gerührt. Die klare Lösung wird daraufhin mit 200 ml MeOH versetzt. Nach dem Abfiltrieren werden 3.1 g (30% Ausbeute) 5 als weißes Pulver erhalten.

  • Beispiel 4 Reaktion von (Isobutyl)7Si,O9(OH)3 mit N-[3-(Trimethoxysilyl)propyl]- ethylendiamin
  • Zu einer Lösung von 10.0 g (12.6 mmol) (Isobutyl)7Si7O9(OH)3 in 20 ml THF werden bei 20°C 2.8 ml (12.8 mmol) N-[3-(Trimethoxysilyl)propyl]-ethylendiamin gegeben. Nach Zugabe von 0.5 ml Et4NOH (35% Lösung in H2O, 1.2 mmol Base, 18 mmol H2O) wird über Nacht gerührt. Die klare Lösung wird daraufhin mit 200 ml MeOH versetzt. Anschließend wird die leicht trübe Lösung mit 100 ml Acetonitril versetzt. Nach dem Abfiltrieren werden 0.7 g (7% Ausbeute) 6 als weißes Pulver erhalten.


  • Beispiel 5 Reaktion von (Isobutyl)7Si7O9(OH)3 mit 3-(Trimethoxysilyl)propylmethacrylat
  • Zu einer Lösung von 10.0 g (12.6 mmol) (Isobutyl)7Si7O9(OH)3 in 20 ml THF werden bei 20°C 3.0 ml (12.6 mmol) 3-(Trimethoxysilyl)propylmethacrylat gegeben. Nach Zugabe von 0.5 ml Et4NOH (35% Lösung in H2O, 1.2 mmol Base, 18 mmol H2O) wird über Nacht gerührt. Die klare Lösung wird daraufhin mit 200 ml MeOH versetzt. Nach dem Abfiltrieren wird der verbleibende Feststoff mit 30 ml Aceton gewaschen. Man erhält 4.0 g (70% Ausbeute) 7 als weißes Pulver.

  • Beispiel 6 Reaktion von (Isobutyl)7Si7O9(OH)3 mit Isobutyltrimethoxysilan
  • Zu einer Lösung von 10.0 g (12.6 mmol) (Isobutyl)7Si7O9(OH)3 in 20 ml THF werden bei 20°C 2.5 ml Isobutyltrimethoxysilan gegeben. Nach Zugabe von 0.5 ml Et4NOH (35% Lösung in H2O, 1.2 mmol Base, 18 mmol H2O) wird über Nacht gerührt. Die resultierende leicht trübe Lösung wird daraufhin mit 200 ml MeOH versetzt. Nach dem Abfiltrieren wird der verbleibende Feststoff mit 30 ml Aceton gewaschen. Man erhält 4.0 g (40% Ausbeute) 8 als weißes Pulver.


Claims (24)

1. Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane, dadurch gekennzeichnet, dass unvollständig kondensierte oligomere Silasesquioxane mit Alkoxysilanen umgesetzt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Umsetzung der unvollständig kondensierten oligomeren Silasesquioxane mit Alkoxysilanen unter Basenkatalyse durchgeführt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Alkoxysilane Verbindungen der Formel XmSi(OR')n eingesetzt werden, wobei X eine Wasserstoff-, Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Silyloxy-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppe, wobei - sofern möglich - diese Reste X ihrerseits wiederum weiter funktionalisiert sein können, und/oder einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest, der mit Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Silyloxy-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppen funktionalisiert ist, darstellen können, R' ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest darstellt und m und n Werte von 1 bis 3 einnehmen können mit der Maßgabe, das die Summe aus m und n 4 ergibt.
4. Verfahren nach zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass funktionalisierte oligomere Silasesquioxane der Struktur 1


durch Reaktion unvollständig kondensierter oligomerer Silasesquioxane der Struktur 2


mit Alkoxysilanen XSi(OR')3 unter Basenkatalyse hergestellt werden, wobei X eine Wasserstoff-, Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Silyloxy-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppe, wobei - sofern möglich - diese Reste X ihrerseits wiederum weiter funktionalisiert sein können, oder/und einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest, der mit Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Silyloxy-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppen funktionalisiert ist, darstellen können, R ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest oder ganz oder teilweise eine Gruppe X darstellen kann und R' ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cyeloalkinyl-, Aryl-, Heteroarylrest darstellen kann.
5. Verfahren nach zumindest einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als basischer Katalysator zumindest einer aus der Gruppe, die OH-, RO-, RCOO-, RNH-, RCONR-, R, CO3 2-, PO4 3-, SO4 2-, NO3 -, F-, NR3 - und R3NO umfasst, eingesetzt wird, wobei R ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl- oder Heteroarylrest darstellen kann.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als basischer Katalysator KOH, NaOH, (C2H5)4NOH, C6H5CH2(CH3)3NOH, (CH3)4NOH und/oder (C2H5)3N eingesetzt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als basischer Katalysator (C2H5)4NOH verwendet wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Umsetzen von unvollständig kondensierten oligomeren Silasesquioxanen mit Alkoxysilanen in Lösung erfolgt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Lösemittel halogenfreie Systeme ausgewählt Alkoholen, Ketonen, Aldehyden, Ethern, Säuren, Estern, Anhydriden, Alkanen, Aromaten und Nitrilen oder deren Mischungen eingesetzt werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass als Lösungsmittel THF, Aceton, Methanol und Ethanol oder Mischungen dieser Lösungsmittel verwendet werden.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass als Lösungsmittel THF verwendet wird.
12. Verfahren nach zumindest einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die Konzentration des unvollständig kondensierten oligomeren Silasesquioxans in der Reaktionslösung zu Beginn der Reaktion von 0,01 mol/l bis 10 mol/l beträgt.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Konzentration des unvollständig kondensierten oligomeren Silasesquioxans in der Reaktionslösung zu Beginn der Reaktion von 0,2 mol/l bis 1 mol/l beträgt.
14. Verfahren nach zumindest einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Stoffmengenverhältnis des unvollständig kondensierten oligomeren Silasesquioxans zum basischen Katalysator von 1000 : 1 bis 1 : 1 beträgt.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass das Stoffmengenverhältnis des unvollständig kondensierten oligomeren Silasesquioxans zum basischen Katalysator von 20 : 1 bis 5 : 1 beträgt.
16. Verfahren nach zumindest einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Umsatz in Gegenwart von Wasser durchgeführt wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass das Stoffmengenverhältnis von Wasser zu dem unvollständig kondensierten oligomeren Silasesquioxan zu Beginn des Umsatzes von 1000 : 1 bis 0.1 : 1 beträgt.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Stoffmengenverhältnis von eingesetztem Wasser zu dem unvollständig kondensierten oligomeren Silasesquioxan von 10 : 1 bis 1 : 1 beträgt.
19. Verfahren nach zumindest einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Herstellung der funktionalisierten oligomeren Silasesquioxane bei einer Temperatur von -50°C bis 300°C durchgeführt wird.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Herstellung der funktionalisierten oligomeren Silasesquioxane bei einer Temperatur von 0°C bis 100°C durchgeführt wird.
21. Verwendung der nach den Ansprüchen 1 bis 20 hergestellten funktionalisierten oligomeren Silasesquioxane für weitere Derivatisierungen, für die Synthese von Katalysatoren und deren Ausgangsverbindungen sowie für die Synthese bzw. Modifizierung von Polymeren.
22. Verwendung der nach den Ansprüchen 4 bis 20 hergestellten funktionalisierten oligomeren Silasesquioxane der Formel 1 für weitere Derivatisierungen, für die Synthese von Katalysatoren und deren Ausgangsverbindungen sowie für die Synthese bzw. Modifizierung von Polymeren.
23. Verwendung der nach den Ansprüchen 4 bis 20 hergestellten funktionalisierten oligomeren Silasesquioxane der Formel 1 zur Verbesserung der Klebe- und Verbundeigenschaften, der rheologischen Eigenschaften und/oder der Sperrwirkung gegenüber Gasen und Flüssigkeiten in Polyolefinen, in amorphen Polyalphaolefinen, in Polyamiden, in Copolyamiden, in Polyamidcompounds, in Polyestern, in Copolyestern, in Polyacrylaten, in Polymethacrylaten, in Polycarbonaten, in Polyurethanen, in Phenolharzen, in Epoxidharzen, in Polysiloxanen, in Polysilanen, in Kautschuk, in Kautschukcompounds, in Polyvinylchlorid, in Vinylchloridcopolymeren, in Polystyrol, in Copolymeren des Styrols, in ABS-Polymeren und Olefinco- und -terpolymeren.
24. Verwendung der nach den Ansprüchen 4 bis 20 hergestellten funktionalisierten oligomeren Silasesquioxane der Formel 1 in Lacken und Druckfarben zur Verbesserung der rheologischen Eigenschaften, des Absetzverhaltens, der Appliziereigenschaften sowie der Oberflächeneigenschaften des Lack- bzw. Druckfarbenfilms.
DE10156619A 2001-11-17 2001-11-17 Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane sowie deren Verwendung Withdrawn DE10156619A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE10156619A DE10156619A1 (de) 2001-11-17 2001-11-17 Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane sowie deren Verwendung
DE50202804T DE50202804D1 (de) 2001-11-17 2002-11-13 Verfahren zur herstellung funktionalisierter oligomerer silasesquioxane sowie deren verwendung
US10/494,043 US20050010012A1 (en) 2001-11-17 2002-11-13 Method for producing functionalized oligomeric silsesquioxanes and the use of the same
PCT/EP2002/012678 WO2003042223A1 (de) 2001-11-17 2002-11-13 Verfahren zur herstellung funktionalisierter oligomerer silasesquioxane sowie deren verwendung
AT02785385T ATE293115T1 (de) 2001-11-17 2002-11-13 Verfahren zur herstellung funktionalisierter oligomerer silasesquioxane sowie deren verwendung
CA002463173A CA2463173A1 (en) 2001-11-17 2002-11-13 Process for preparing functionalized oligomeric silsesquioxanes and their use
CNA028228480A CN1589274A (zh) 2001-11-17 2002-11-13 制备官能化低聚三氧化二硅烷的方法及其应用
JP2003544058A JP2005509042A (ja) 2001-11-17 2002-11-13 官能化オリゴマーシルセスキオキサンの製法ならびにそれらの使用
EP02785385A EP1444240B8 (de) 2001-11-17 2002-11-13 Verfahren zur herstellung funktionalisierter oligomerer silasesquioxane sowie deren verwendung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10156619A DE10156619A1 (de) 2001-11-17 2001-11-17 Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane sowie deren Verwendung

Publications (1)

Publication Number Publication Date
DE10156619A1 true DE10156619A1 (de) 2003-05-28

Family

ID=7706155

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10156619A Withdrawn DE10156619A1 (de) 2001-11-17 2001-11-17 Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane sowie deren Verwendung
DE50202804T Expired - Fee Related DE50202804D1 (de) 2001-11-17 2002-11-13 Verfahren zur herstellung funktionalisierter oligomerer silasesquioxane sowie deren verwendung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50202804T Expired - Fee Related DE50202804D1 (de) 2001-11-17 2002-11-13 Verfahren zur herstellung funktionalisierter oligomerer silasesquioxane sowie deren verwendung

Country Status (8)

Country Link
US (1) US20050010012A1 (de)
EP (1) EP1444240B8 (de)
JP (1) JP2005509042A (de)
CN (1) CN1589274A (de)
AT (1) ATE293115T1 (de)
CA (1) CA2463173A1 (de)
DE (2) DE10156619A1 (de)
WO (1) WO2003042223A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097652A1 (de) * 2002-05-15 2003-11-27 Creavis Gesellschaft Für Technologie Und Innovation Mbh Nanofüllstoff, herstellung und verwendung
WO2004063207A1 (de) * 2003-01-09 2004-07-29 Degussa Ag Oligomere silasesquioxane, verfahren zu deren herstellung und verwendung
DE102007010544A1 (de) 2007-03-05 2008-09-11 Wacker Chemie Ag Schichten aus heterosubstituerten Silsesquioxanen
WO2011045218A1 (de) 2009-10-14 2011-04-21 Wacker Chemie Ag Verfahren zur herstellung von organooligosilsesquioxanen
US8568865B2 (en) 2004-02-10 2013-10-29 Evonik Degussa Gmbh Ceramic composite wall covering
US9096041B2 (en) 2004-02-10 2015-08-04 Evonik Degussa Gmbh Method for coating substrates and carrier substrates

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638195B2 (en) * 1999-08-04 2009-12-29 Hybrid Plastics, Inc. Surface modification with polyhedral oligomeric silsesquioxanes silanols
US7723415B2 (en) * 1999-08-04 2010-05-25 Hybrid Plastics, Inc. POSS nanostructured chemicals as dispersion aids and friction reducing agents
US7820761B2 (en) 1999-08-04 2010-10-26 Hybrid Plastics, Inc. Metallized nanostructured chemicals as cure promoters
US7888435B2 (en) * 1999-08-04 2011-02-15 Hybrid Plastics, Inc. Process for continuous production of olefin polyhedral oligomeric silsesquioxane cages
US8076443B2 (en) 1999-08-04 2011-12-13 Hybrid Plastics, Inc. Preparation of polyhedral oligomeric silsesquioxane silanols and siloxides functionalized with olefinic groups
DE10220853A1 (de) * 2002-05-08 2003-11-20 Creavis Tech & Innovation Gmbh Funktionalisierte polyedrische oligomere Silizium-Sauerstoff-Cluster als Vernetzer
JP4433740B2 (ja) * 2002-09-17 2010-03-17 チッソ株式会社 ケイ素化合物の製造方法及びケイ素化合物
US7976936B2 (en) * 2002-10-11 2011-07-12 University Of Connecticut Endoprostheses
DE10321555A1 (de) * 2003-05-14 2004-12-02 Degussa Ag Transparente Masterbatches für thermoplastische Kunstsoffe
DE10330022A1 (de) * 2003-07-03 2005-01-20 Degussa Ag Verfahren zur Herstellung von Iow-k dielektrischen Filmen
US20090085011A1 (en) * 2003-12-18 2009-04-02 Lichtenhan Joseph D Neutron shielding composition
JP4483331B2 (ja) * 2004-02-17 2010-06-16 チッソ株式会社 シルセスキオキサン骨格を有するジアミン及びそれを用いた重合体
JP2005272506A (ja) * 2004-03-23 2005-10-06 Daikin Ind Ltd 含フッ素シルセスキオキサン重合体
JP4645803B2 (ja) * 2004-10-05 2011-03-09 信越化学工業株式会社 かご状オリゴシロキサン構造を有する一官能性モノマー及びその製造方法
TWI399297B (zh) * 2005-01-27 2013-06-21 Hybrid Plastics Inc 利用多面體寡聚倍半矽氧烷矽醇之表面改質技術
CN101151298B (zh) * 2005-03-07 2012-07-11 杂混复合塑料公司 多面体低聚倍半硅氧烷单体组装的方法
US7799870B2 (en) 2005-03-24 2010-09-21 Bridgestone Corporation Compounding silica-reinforced rubber with low volatile organic compound (VOC) emission
JP4775561B2 (ja) * 2005-04-01 2011-09-21 信越化学工業株式会社 シルセスキオキサン系化合物混合物、その製造方法及びそれを用いたレジスト組成物並びにパターン形成方法
TW200700427A (en) * 2005-05-25 2007-01-01 Hybrid Plastics Inc Process for continuous production of olefin polyhedral oligomeric silsesquioxane cages
DE102006018417A1 (de) * 2006-04-20 2007-10-25 Hybrid Catalysis B.V. Verfahren zur Herstellung von polyedrischen, oligomeren Silasesquioxanen, polyedrische oligomere Silasesquioxane und ihre Verwendung
US8034532B2 (en) 2006-04-28 2011-10-11 International Business Machines Corporation High contact angle topcoat material and use thereof in lithography process
US7951524B2 (en) * 2006-04-28 2011-05-31 International Business Machines Corporation Self-topcoating photoresist for photolithography
US8945808B2 (en) * 2006-04-28 2015-02-03 International Business Machines Corporation Self-topcoating resist for photolithography
US20100081837A1 (en) * 2006-10-05 2010-04-01 Asahi Kasei Chemicals Corporation Process for production of powder of cage silsesquioxane compound
JP2008106165A (ja) * 2006-10-26 2008-05-08 Chisso Corp インクジェット用インクおよび当該インクにより得られる硬化膜
US7915368B2 (en) 2007-05-23 2011-03-29 Bridgestone Corporation Method for making alkoxy-modified silsesquioxanes
US8501895B2 (en) * 2007-05-23 2013-08-06 Bridgestone Corporation Method for making alkoxy-modified silsesquioxanes and amino alkoxy-modified silsesquioxanes
US8962746B2 (en) 2007-12-27 2015-02-24 Bridgestone Corporation Methods of making blocked-mercapto alkoxy-modified silsesquioxane compounds
US8513371B2 (en) * 2007-12-31 2013-08-20 Bridgestone Corporation Amino alkoxy-modified silsesquioxanes and method of preparation
US8794282B2 (en) * 2007-12-31 2014-08-05 Bridgestone Corporation Amino alkoxy-modified silsesquioxane adhesives for improved metal adhesion and metal adhesion retention to cured rubber
US20100159195A1 (en) * 2008-12-24 2010-06-24 Quincy Iii Roger B High repellency materials via nanotopography and post treatment
US8642691B2 (en) 2009-12-28 2014-02-04 Bridgestone Corporation Amino alkoxy-modified silsesquioxane adhesives for improved metal adhesion and metal adhesion retention to cured rubber
WO2011107417A1 (en) * 2010-03-01 2011-09-09 Evonik Degussa Gmbh Polyhedral oligomeric silsesquioxane (poss)-linked ligands
US9249313B2 (en) * 2011-09-21 2016-02-02 The United States Of America As Represented By The Secretary Of The Air Force Synthesis of functional fluorinated polyhedral oligomeric silsesquioxane (F-POSS)
JP6202431B2 (ja) * 2012-09-04 2017-09-27 学校法人神奈川大学 かご型シルセスキオキサン誘導体
CN105017910B (zh) * 2014-04-17 2018-04-17 浙江省海洋开发研究院 一种改性超疏水海洋防污涂料及其制备方法
WO2015188062A1 (en) 2014-06-06 2015-12-10 Government Of The United States As Represented By The Secretary Of The Air Force Surface coatings, treatments, and methods for removal of mineral scale by self-release
WO2016109625A1 (en) 2014-12-31 2016-07-07 Bridgestone Corporation Amino alkoxy-modified silsesquioxane adhesives for adhering steel alloy to rubber
WO2017131489A1 (ko) 2016-01-28 2017-08-03 주식회사 엘지화학 다면체 올리고머 실세스퀴옥산의 제조 방법
JP6942996B2 (ja) * 2016-05-26 2021-09-29 昭和電工マテリアルズ株式会社 ビニル基含有かご型シルセスキオキサン誘導体の製造方法、並びに二官能かご型シルセスキオキサン誘導体、及びその製造方法
WO2023053988A1 (ja) * 2021-09-28 2023-04-06 株式会社カネカ 重合体及び硬化性組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000695C2 (de) * 1990-01-12 1997-07-03 Huels Chemische Werke Ag Weitgehend amorphe Polyalphaolefine mit enger Molekulargewichtsverteilung, Verfahren zu deren Herstellung und Verwendung für Teppichschwerbeschichtungsmassen oder Schmelzklebstoffe
US5075103A (en) * 1990-07-06 1991-12-24 Dow Corning Corporation Hair fixatives comprising nonpolar silsesquioxanes
DE4026719A1 (de) * 1990-08-24 1992-02-27 Huels Chemische Werke Ag Schmelzfluessig applizierbare schutzmassen
US5412053A (en) * 1993-08-12 1995-05-02 The University Of Dayton Polymers containing alternating silsesquioxane and bridging group segments and process for their preparation
ATE349262T1 (de) * 1999-06-11 2007-01-15 Gas Separation Technology Inc Poröses gasdurchlässiges material zur gastrennung
DE19963125A1 (de) * 1999-12-24 2001-06-28 Creavis Tech & Innovation Gmbh Verfahren zur Herstellung von doppelbindungshaltigen Polymeren durch ringöffnende Polymerisation
WO2003064490A2 (en) * 2001-06-27 2003-08-07 Hybrid Plastics Llp Process for the functionalization of polyhedral oligomeric silsesquioxanes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097652A1 (de) * 2002-05-15 2003-11-27 Creavis Gesellschaft Für Technologie Und Innovation Mbh Nanofüllstoff, herstellung und verwendung
WO2004063207A1 (de) * 2003-01-09 2004-07-29 Degussa Ag Oligomere silasesquioxane, verfahren zu deren herstellung und verwendung
US8568865B2 (en) 2004-02-10 2013-10-29 Evonik Degussa Gmbh Ceramic composite wall covering
US9096041B2 (en) 2004-02-10 2015-08-04 Evonik Degussa Gmbh Method for coating substrates and carrier substrates
DE102007010544A1 (de) 2007-03-05 2008-09-11 Wacker Chemie Ag Schichten aus heterosubstituerten Silsesquioxanen
WO2011045218A1 (de) 2009-10-14 2011-04-21 Wacker Chemie Ag Verfahren zur herstellung von organooligosilsesquioxanen
DE102009045669A1 (de) 2009-10-14 2011-04-21 Wacker Chemie Ag Verfahren zur Herstellung von Organooligosilsesquioxanen
US8710254B2 (en) 2009-10-14 2014-04-29 Wacker Chemie Ag Method for producing organo-oligo silsesquioxanes

Also Published As

Publication number Publication date
DE50202804D1 (de) 2005-05-19
EP1444240A1 (de) 2004-08-11
EP1444240B8 (de) 2005-06-08
JP2005509042A (ja) 2005-04-07
ATE293115T1 (de) 2005-04-15
CN1589274A (zh) 2005-03-02
US20050010012A1 (en) 2005-01-13
WO2003042223A1 (de) 2003-05-22
CA2463173A1 (en) 2003-05-22
EP1444240B1 (de) 2005-04-13

Similar Documents

Publication Publication Date Title
DE10156619A1 (de) Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane sowie deren Verwendung
DE19834990B4 (de) Acryloxypropyl- oder Methacryloxypropyl-Gruppen enthaltende Siloxan-Oligomere, Verfahren zu ihrer Herstellung sowie deren Verwendung
EP0682033B1 (de) Hydrolisierbare und polymerisierbare Silane
EP0997469A2 (de) Aminopropyl-funktionelle Siloxan-Oligomere
EP2178947B1 (de) Verfahren zur kontrollierten hydrolyse und kondensation von epoxy-funktionellen organosilanen sowie deren cokondensation mit weiteren organofunktionellen alkoxysilanen
EP0781290B1 (de) Hydrolysierbare und polymerisierbare bzw. polyaddierbare silane
EP0799832B1 (de) Hydrolysierbare, fluorierte Silane, Verfahren zu deren Herstellung und deren Verwendung zur Herstellung von Kieselsäurepolykondensaten und Kieselsäreheteropolykondensaten
US20060009604A1 (en) Oligomer silasesquioxanes, method for the production thereof, and use of the same
EP0525392B1 (de) Hydrolysierbare und polymerisierbare Silane
DE102004033060A1 (de) Polyestermodifizierte Polysiloxane und deren Verwendung als Additive für Thermoplaste, Formmassen und Lacke
EP0927734B1 (de) Kontinuierliches Verfahren zur Herstellung von Polyorganosiloxanen
WO2006125707A2 (de) Funktionalisierte polyedrische oligomere silasesquioxane aufweisende zusammensetzung und verfahren zu deren herstellung
DE1720458A1 (de) Verfahren zur Herstellung von silylmodifizierten Epoxidharzen
WO2006027074A1 (de) Polyedrische oligomere silizium-sauerstoffcluster mit mindestens einer aldehydgruppe und ein verfahren zu deren herstellung
EP1511801B1 (de) Funktionalisierte polyedrische oligomere silizium-sauerstoff-cluster als vernetzer
WO2006125708A1 (de) Funktionalisierte polyedrische oligomere silasesquioxane aufweisende zusammensetzung und verfahren zu deren herstellung
DE10156622A1 (de) Oligomere Silasesquioxane, Verfahren zu deren Herstellung und Verwendung
DE102005024815A1 (de) Funktionalisierte polyedrische, oligomere silasesquioxane aufweisende Zusammensetzungen und ein Verfahren zu ihrer Herstellung
WO2007121908A1 (de) Verfahren zur herstellung von polyedri sehen, oligomeren silasesquioxanen, polyedrische oligomere silasesquioxane und ihre verwendung
WO2003097652A1 (de) Nanofüllstoff, herstellung und verwendung
WO2005123812A1 (de) Verfahren zur herstellung von hydroxyalkylpolysiloxanen
DE4436077A1 (de) Organosiloxane mit einer endständigen Aminopropylgruppe und einer am anderen Kettenende befindlichen weiteren funktionellen Gruppe sowie Verfahren zu ihrer Herstellung
DE102005024814A1 (de) Funktionalisierte polyedrische oligomere Silasesquioxane aufweisende Zusammensetzung und Verfahren zu deren Herstellung
DE10301754A1 (de) Nanofüllstoff, Herstellung und Verwendung

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: DEGUSSA AG, 40474 DUESSELDORF, DE

8127 New person/name/address of the applicant

Owner name: DEGUSSA GMBH, 40474 DUESSELDORF, DE

8139 Disposal/non-payment of the annual fee