US20020148601A1 - Apparatus for accelerating condensation with the aid of structured surfaces - Google Patents

Apparatus for accelerating condensation with the aid of structured surfaces Download PDF

Info

Publication number
US20020148601A1
US20020148601A1 US10/028,365 US2836501A US2002148601A1 US 20020148601 A1 US20020148601 A1 US 20020148601A1 US 2836501 A US2836501 A US 2836501A US 2002148601 A1 US2002148601 A1 US 2002148601A1
Authority
US
United States
Prior art keywords
condensation surface
condensation
elevations
water
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/028,365
Inventor
Martin Roos
Edwin Nun
Markus Oles
Bernhard Schleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creavis Gesellschaft fuer Technologie und Innovation mbH
Original Assignee
Creavis Gesellschaft fuer Technologie und Innovation mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creavis Gesellschaft fuer Technologie und Innovation mbH filed Critical Creavis Gesellschaft fuer Technologie und Innovation mbH
Assigned to CREAVIS GESELLSCHAFT FUER TECHNOLOGIE UND INNOVATION MBH reassignment CREAVIS GESELLSCHAFT FUER TECHNOLOGIE UND INNOVATION MBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NUN, EDWIN, OLES, MARKUS, ROOS, MARTIN, SCHLEICH, BERNHARD
Publication of US20020148601A1 publication Critical patent/US20020148601A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0015Plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Definitions

  • the invention relates to an apparatus and method for condensing gases.
  • An important parameter for many industrial processes is the condensation behavior of a vapor/gas.
  • condensation is the phase change of an element or of a compound from a gaseous phase into a liquid phase.
  • Relative humidity of 100% therefore means that the water vapor partial pressure is the same as the saturation vapor pressure of water at a given temperature and pressure. It is known from thermodynamics that for two phases to exist alongside one another in equilibrium their chemical potentials have to be identical. Liquid phase and vapor phase can therefore only exist alongside one another at a certain pressure, which is temperature-dependent.
  • Condensation processes are used in a wide variety of industrial processes, e.g. distillation, reactive distillation, cooling water circuits in power plant turbines, and work-up of aqueous or organic solutions by drawing off the solvent. These processes therefore have a major part to play in industry.
  • a surface (condenser) is cooled with respect to the surrounding gas phase. In the immediate vicinity of the surface there is cooling of the gas and of the water vapor. If the pressure is held constant here, the prevailing water vapor partial pressure can exceed the saturation vapor pressure associated with the lower temperature. In that case condensation occurs, leading to deposition of water on the surface. The droplet present on the surface then gives up heat to the surface and thus cools. In many types of condensation apparatus, this transfer of heat has to be compensated, therefore requiring constant recooling of the condensation surface. The cooling of these surfaces is a very energy-intensive process. The greater the amount of condensate on the surface and the longer its residence time, the more energy the condensate gives up to the surface. It is therefore desirable that the water droplet is conducted away from the surface as rapidly as possible and that its temperature is as high as possible at that juncture.
  • the present invention provides an apparatus and method for condensing a gas on a surface, where the surface for condensing the gas (condensation surface) has elevations of average height of from 50 nm to 1 mm, and with an average separation of from 50 nm to 1 mm.
  • the arrangement of the elevations may be regular (ordered) or stochastic (randomly distributed).
  • the elevations may moreover have an average height of from 500 nm to 50 ⁇ m.
  • the surface energy may be from 5 to 20 mN/m, preferably from 10-20 mN/m. Higher surface energies, such as from 20-40 mN/m, are also possible but are not generally necessary, e.g. for condensing water.
  • Structured surfaces are known and termed lotus surfaces, and have been described, e.g. in DE 198 03 787 and WO 96/04123, both incorporated herein by reference, where the self-cleaning action of the structured surfaces is described.
  • condensation nuclei The sites at which the liquid phase is produced are termed condensation nuclei. Condensation within the vapor has to begin with formation of small droplets. The smaller the droplet, the greater its vapor pressure, and therefore at a given level of oversaturation the droplets that can grow are only those whose radius exceeds a certain value. All droplets with a smaller radius tend to re-evaporate. Condensation of the oversaturated vapor can take place only after a nucleus has been produced as a result of a fluctuation phenomenon associated with a fall in entropy. The frequency of this nucleation is a decisive factor in determining whether a phase change from gaseous to liquid is likely to occur at a given level of oversaturation.
  • the frequency is found to be very sensitive to the level of oversaturation of the vapor/gas. Within a relatively narrow range of oversaturation levels, the scale will extend from almost no condensation events to very frequent condensation events. Whether oversaturation of the vapor is present or not depends to a major extent on the microscopic environmental parameters applicable to the vapor.
  • the condensation surface of the present invention therefore preferably has one or more of the following features:
  • a material polytetrafluoroethylene, polyvinylidene fluoride, or polymers made from perfluoroalkoxy compounds, and/or metals, as sole constituent, main constituent, or coating,
  • the apparatus of the invention may be used in cooling systems, distillation systems, reactors, reflux condensers, or power plant condensers, or else in air conditioning systems, dehumidifiers, or cold traps.
  • the apparatus may contain a means for removing condensate formed on the condensation surface. Such means may rely on gravity for drawing the condensate liquid to a reservoir or outlet from the apparatus.
  • a preferred means of removing condensate utilizes gravity to allow the condensate to move under the influence of its own weight down the condensation surface to a removal or containment reservoir or outlet from the apparatus. It is preferred to orient the condensation surface at an angle to improve the condensate's ability to move under the influence of gravity.
  • the method of the invention may be used to improve the energy efficiency of any process that involves condensing a condensable gas.
  • the method may be conducted by bringing a condensable gas into contact with the condensation surface.
  • the condensation surface is preferably cooled.
  • the pressure of the condensation gas is preferably substantially constant and may be adjusted so as to change the rate of condensation of the gas on the condensation surface.
  • the rate of condensation may be further regulated by adjusting the cooling of the condensation surface.
  • Particular applications of the invention include cooling, distillation, or condensation systems for any of the elements and compounds which can change their phase from gaseous to liquid, in particular for water, ethanol, methanol, MTBE, hydrocarbons, fuels, combustion gases, or liquefied gases, such as N 2 or air.
  • a gas containing a condensable vapor is brought into contact with the invention condensation surface, preferably with cooling of the condensation surface and collection of the resultant condensate.
  • a negative shape was produced by UV lithography of a photosensitive plastic and subsequent electroforming with nickel according to EP 0 933 388, incorporated herein by reference. This shape was used to cast a polycarbonate film having a microstructure with protuberances of about 2 ⁇ m wide (measured at half height) and about 4 ⁇ m height with a spacing of 4 ⁇ m. The structure of the shape has the same dimensions with opposite sign.
  • the polycarbonate film structured in this manner was then rendered hydrophobic with Dynasilan F 8262 (Degussa AG).
  • An unstructured polycarbonate film was also rendered hydrophobic with Dynasilan F 8262 (Degussa AG).
  • a polycarbonate film rendered hydrophobic in the same manner but unstructured had a contact angle with water of 109.8° and a surface energy of less than 20 mN/m (determined according to Owens et al.) and the structured film a contact angle of 150°.
  • a second negative shape was produced in the same manner as described above. With the second shape a polycarbonate film having protuberances of about 0.5 ⁇ m wide (measured at half height) and about 0.5 ⁇ m height with a spacing of 0.5 ⁇ m, was produced.
  • the films having different structured surfaces as well as a hydrophobic and unstructured polycarbonate film were fixed on the outside of metal tubes. Those tubes were one after another installed into a second, larger tube. The first tube was cooled by streaming cooling water (10° C.) through the inside of the tube. The larger tube was filled with steam of water having a pressure of 10 5 N/m 2 . A schematic picture of this arrangement is given in the drawing.
  • the inner tubes with the different films fixed on the outside were exchanged after a given period of time.
  • the water condensed on the different sheets or films in the same period of time was collected and weighted.
  • the mass of the water collected on structured surfaces was at least 50% higher than the mass of water collected on the tubes having hydrophobic but non structured surfaces. There was no significant difference in the mass of water collected on structured surfaces having protuberances with a wide of 2 ⁇ m and those having protuberances with a wide of 0.5 ⁇ m.
  • the same negative shape as described in the Example above can be used to form a structured nickel sheet by galvanic forming.
  • This sheet once again can have a microstructure with protuberances of about 2 ⁇ m wide (measured at half height) and about 4 ⁇ m height with a spacing of 4 ⁇ m.
  • a nickel sheet with this structure can be rendered hydrophobic with Dynasilan F 8262 (Degussa AG).
  • An unstructured nickel sheet can also be rendered hydrophobic with Dynasilan F 8262 (Degussa AG).
  • a second negative shape can be produced in the same manner as described above.
  • a nickel sheet can be produced having protuberances of about 0.5 ⁇ m wide (measured at half height) and about 0.5 ⁇ m height with a spacing of 0.5 ⁇ m.
  • the sheets with different structured surfaces as well as a hydrophobic and unstructured nickel sheet can be fixed on the outside of metal tubes. Those tubes can be installed one after another into a second, larger tube.
  • the first tube can be cooled by streaming cooling water (10° C.) through the inside of the tube.
  • the larger tube can be filled with steam of water having a pressure of 10 5 N/m 2 .
  • the inner tubes with the different sheets on the outside can be exchanged after a given period of time.
  • the water that can condense on the different sheets in the same period of time can be collected and weighted.
  • the mass of the water that could be collected is at least 50% higher than the mass of water for the tubes with hydrophobic but non structured surfaces.
  • the mass of water that could collect at the tube can be much higher when using tubes having metal sheets fixed on it instead of polycarbonate films. There is no significant difference expected in the mass of water collected on structured surfaces with protuberances with a wide of 2 ⁇ m and those with protuberances with a wide of 0.5 ⁇ m.

Abstract

A condensation apparatus for condensing a gas on a surface, where the surface for condensing the gas has elevations of average height of from 50 nm to 1 mm, and with an average separation of from 50 nm to 1 mm, allows increased condensation efficiency. The apparatus is used for condensing organic or inorganic gases and may be incorporated into distillation systems.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The invention relates to an apparatus and method for condensing gases. An important parameter for many industrial processes is the condensation behavior of a vapor/gas. For the purposes of the present invention, condensation is the phase change of an element or of a compound from a gaseous phase into a liquid phase. [0002]
  • 2. Discussion of the Background [0003]
  • Taking the example of the water/air system, i.e. humidity, a certain percentage of water vapor is present in the air of the outdoor atmosphere. This water vapor is termed humidity. The ratio of the mass of water vapor present in a volume of air to that volume of air is termed the absolute humidity. However, a more important value is that known as relative humidity. Relative humidity is defined as the mass of water vapor present in a volume of air divided by the mass of water vapor when that volume of air is saturated, and can be [0004] ϕ = P D P S = f f max
    Figure US20020148601A1-20021017-M00001
  • described by the following formula: [0005]
  • where φ=relative humidity; P[0006] D=water vapor partial pressure; Ps=saturation vapor pressure; f=absolute moisture level; fmax=maximum moisture level.
  • Relative humidity of 100% therefore means that the water vapor partial pressure is the same as the saturation vapor pressure of water at a given temperature and pressure. It is known from thermodynamics that for two phases to exist alongside one another in equilibrium their chemical potentials have to be identical. Liquid phase and vapor phase can therefore only exist alongside one another at a certain pressure, which is temperature-dependent. [0007]
  • Condensation processes are used in a wide variety of industrial processes, e.g. distillation, reactive distillation, cooling water circuits in power plant turbines, and work-up of aqueous or organic solutions by drawing off the solvent. These processes therefore have a major part to play in industry. [0008]
  • The energy balance is an important economic criterion here, implying that the less energy needed to condense a liquid, the more cost-effective the condensation process. This process may be described as follows, taking the example of condensation of water vapor from air: [0009]
  • A surface (condenser) is cooled with respect to the surrounding gas phase. In the immediate vicinity of the surface there is cooling of the gas and of the water vapor. If the pressure is held constant here, the prevailing water vapor partial pressure can exceed the saturation vapor pressure associated with the lower temperature. In that case condensation occurs, leading to deposition of water on the surface. The droplet present on the surface then gives up heat to the surface and thus cools. In many types of condensation apparatus, this transfer of heat has to be compensated, therefore requiring constant recooling of the condensation surface. The cooling of these surfaces is a very energy-intensive process. The greater the amount of condensate on the surface and the longer its residence time, the more energy the condensate gives up to the surface. It is therefore desirable that the water droplet is conducted away from the surface as rapidly as possible and that its temperature is as high as possible at that juncture. [0010]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention, therefore, to improve the economics of the condensation process, i.e. the process extending from condensation of a vapor to collecting the resultant liquid. [0011]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Surprisingly, it has been found that increased condensation efficiency is possible with the aid of a structured surface. [0012]
  • The present invention provides an apparatus and method for condensing a gas on a surface, where the surface for condensing the gas (condensation surface) has elevations of average height of from 50 nm to 1 mm, and with an average separation of from 50 nm to 1 mm. [0013]
  • The arrangement of the elevations may be regular (ordered) or stochastic (randomly distributed). The elevations may moreover have an average height of from 500 nm to 50 μm. [0014]
  • The surface energy may be from 5 to 20 mN/m, preferably from 10-20 mN/m. Higher surface energies, such as from 20-40 mN/m, are also possible but are not generally necessary, e.g. for condensing water. [0015]
  • Structured surfaces are known and termed lotus surfaces, and have been described, e.g. in DE 198 03 787 and WO 96/04123, both incorporated herein by reference, where the self-cleaning action of the structured surfaces is described. [0016]
  • Those surfaces of the apparatus of the invention at which the vapor condenses have a very small run-off angle for liquids, in this case for the condensate. Once a condensed droplet has begun to move, it can run off the surface without assistance and can collect other droplets, and this applies even to very small droplets. A droplet size below 0.5 μl is sufficient for this purpose. The droplets therefore have relatively low adhesion to the surfaces and thus run off from the surface relatively rapidly. This phenomenon affords many thermodynamic/technical advantages. The shorter residence time of the condensate on the surface reduces the amount of heat which can be given up by the liquid to the surface, since this process proceeds in proportion to temperature difference and time. The results of the more rapid transport of the condensate away from the surface are firstly that less energy is transferred and secondly that what are known as condensation nuclei are made available again more rapidly. [0017]
  • The sites at which the liquid phase is produced are termed condensation nuclei. Condensation within the vapor has to begin with formation of small droplets. The smaller the droplet, the greater its vapor pressure, and therefore at a given level of oversaturation the droplets that can grow are only those whose radius exceeds a certain value. All droplets with a smaller radius tend to re-evaporate. Condensation of the oversaturated vapor can take place only after a nucleus has been produced as a result of a fluctuation phenomenon associated with a fall in entropy. The frequency of this nucleation is a decisive factor in determining whether a phase change from gaseous to liquid is likely to occur at a given level of oversaturation. The frequency is found to be very sensitive to the level of oversaturation of the vapor/gas. Within a relatively narrow range of oversaturation levels, the scale will extend from almost no condensation events to very frequent condensation events. Whether oversaturation of the vapor is present or not depends to a major extent on the microscopic environmental parameters applicable to the vapor. [0018]
  • The condensation surface of the present invention therefore preferably has one or more of the following features: [0019]
  • an angle of inclination of at least 3°, in particular at least 10°, preferably at least 30°, particularly preferably at least 45°, [0020]
  • a surface energy of from 5-20 mN/m, determined on a surface without elevations (by the method of Owens et al., J. Appl. Polym. Sci. 13, 1741, 1969, incorporated herein by reference), [0021]
  • a material: polytetrafluoroethylene, polyvinylidene fluoride, or polymers made from perfluoroalkoxy compounds, and/or metals, as sole constituent, main constituent, or coating, [0022]
  • a coating made from fluoroalkanes, from alkyl-fluorosilanes, or from fluorinated vinyl compounds. [0023]
  • The apparatus of the invention may be used in cooling systems, distillation systems, reactors, reflux condensers, or power plant condensers, or else in air conditioning systems, dehumidifiers, or cold traps. The apparatus may contain a means for removing condensate formed on the condensation surface. Such means may rely on gravity for drawing the condensate liquid to a reservoir or outlet from the apparatus. A preferred means of removing condensate utilizes gravity to allow the condensate to move under the influence of its own weight down the condensation surface to a removal or containment reservoir or outlet from the apparatus. It is preferred to orient the condensation surface at an angle to improve the condensate's ability to move under the influence of gravity. [0024]
  • The method of the invention may be used to improve the energy efficiency of any process that involves condensing a condensable gas. The method may be conducted by bringing a condensable gas into contact with the condensation surface. The condensation surface is preferably cooled. The pressure of the condensation gas is preferably substantially constant and may be adjusted so as to change the rate of condensation of the gas on the condensation surface. The rate of condensation may be further regulated by adjusting the cooling of the condensation surface. [0025]
  • Particular applications of the invention include cooling, distillation, or condensation systems for any of the elements and compounds which can change their phase from gaseous to liquid, in particular for water, ethanol, methanol, MTBE, hydrocarbons, fuels, combustion gases, or liquefied gases, such as N[0026] 2 or air.
  • In the invention method, a gas containing a condensable vapor is brought into contact with the invention condensation surface, preferably with cooling of the condensation surface and collection of the resultant condensate. [0027]
  • German Application Number 100 65 797.4, filed on Dec. 20, 2000, is incorporated herein by reference in its entirety.[0028]
  • BRIEF DESCRIPTION OF THE DRAWING
  • A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein the condensation apparatus of the Examples is shown.[0029]
  • EXAMPLE 1
  • A negative shape was produced by UV lithography of a photosensitive plastic and subsequent electroforming with nickel according to EP 0 933 388, incorporated herein by reference. This shape was used to cast a polycarbonate film having a microstructure with protuberances of about 2 μm wide (measured at half height) and about 4 μm height with a spacing of 4 μm. The structure of the shape has the same dimensions with opposite sign. [0030]
  • The polycarbonate film structured in this manner was then rendered hydrophobic with Dynasilan F 8262 (Degussa AG). An unstructured polycarbonate film was also rendered hydrophobic with Dynasilan F 8262 (Degussa AG). A polycarbonate film rendered hydrophobic in the same manner but unstructured had a contact angle with water of 109.8° and a surface energy of less than 20 mN/m (determined according to Owens et al.) and the structured film a contact angle of 150°. [0031]
  • A second negative shape was produced in the same manner as described above. With the second shape a polycarbonate film having protuberances of about 0.5 μm wide (measured at half height) and about 0.5 μm height with a spacing of 0.5 μm, was produced. [0032]
  • The films having different structured surfaces as well as a hydrophobic and unstructured polycarbonate film were fixed on the outside of metal tubes. Those tubes were one after another installed into a second, larger tube. The first tube was cooled by streaming cooling water (10° C.) through the inside of the tube. The larger tube was filled with steam of water having a pressure of 10[0033] 5 N/m2. A schematic picture of this arrangement is given in the drawing.
  • The inner tubes with the different films fixed on the outside were exchanged after a given period of time. The water condensed on the different sheets or films in the same period of time was collected and weighted. The mass of the water collected on structured surfaces was at least 50% higher than the mass of water collected on the tubes having hydrophobic but non structured surfaces. There was no significant difference in the mass of water collected on structured surfaces having protuberances with a wide of 2 μm and those having protuberances with a wide of 0.5 μm. [0034]
  • EXAMPLE 2
  • The same negative shape as described in the Example above can be used to form a structured nickel sheet by galvanic forming. This sheet once again can have a microstructure with protuberances of about 2 μm wide (measured at half height) and about 4 μm height with a spacing of 4 μm. [0035]
  • A nickel sheet with this structure can be rendered hydrophobic with Dynasilan F 8262 (Degussa AG). An unstructured nickel sheet can also be rendered hydrophobic with Dynasilan F 8262 (Degussa AG). [0036]
  • A second negative shape can be produced in the same manner as described above. With the second shape a nickel sheet can be produced having protuberances of about 0.5 μm wide (measured at half height) and about 0.5 μm height with a spacing of 0.5 μm. [0037]
  • The sheets with different structured surfaces as well as a hydrophobic and unstructured nickel sheet can be fixed on the outside of metal tubes. Those tubes can be installed one after another into a second, larger tube. The first tube can be cooled by streaming cooling water (10° C.) through the inside of the tube. The larger tube can be filled with steam of water having a pressure of 10[0038] 5 N/m2.
  • The inner tubes with the different sheets on the outside can be exchanged after a given period of time. The water that can condense on the different sheets in the same period of time can be collected and weighted. On structured surfaces, the mass of the water that could be collected is at least 50% higher than the mass of water for the tubes with hydrophobic but non structured surfaces. The mass of water that could collect at the tube can be much higher when using tubes having metal sheets fixed on it instead of polycarbonate films. There is no significant difference expected in the mass of water collected on structured surfaces with protuberances with a wide of 2 μm and those with protuberances with a wide of 0.5 μm. [0039]
  • Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein. [0040]

Claims (21)

1. A condensation apparatus comprising,
a condensation surface, wherein said condensation surface comprises a plurality of elevations, said plurality of elevations having an average height of from 50 nm to 1 mm and an average separation of from 50 nm to 1 mm.
2. The apparatus as claimed in claim 1, wherein the condensation surface has an angle of inclination of at least 3°.
3. The apparatus as claimed in claim 1, wherein the condensation surface has a surface energy of from 5 to 20 mN/m when the plurality of elevations is not present.
4. The apparatus as claimed in claim 1, wherein the condensation surface is coated with polytetrafluoroethylene, polyvinylidene fluoride, or polymers comprising perfluoroalkoxy compounds.
5. The apparatus as claimed in claim 1, wherein the condensation surface comprises at least one metal.
6. The apparatus as claimed in claim 1, wherein the condensation surface comprises a coating, said coating comprising at least one compound selected from the group consisting of fluoroalkanes, alkylfluorosilanes and fluorinated vinyls.
7. The apparatus as claimed in claim 1, wherein the condensation surface comprises polytetrafluoroethylene, polyvinylidene, fluoride, or polymers made from perfluoroalkoxy compounds.
8. The apparatus as claimed in claim 1, wherein the plurality of elevations is randomly distributed on the condensation surface.
9. The apparatus as claimed in claim 1, wherein the plurality of elevations are distributed in an ordered pattern on the condensation surface.
10. A distillation system comprising the apparatus as claimed in claim 1.
11. A method for condensing a gas comprising,
contacting a condensable gas with a condensation surface to form a condensate,
wherein said condensation surface comprises a plurality of elevations having an average height of from 50 nm to 1 mm and an average separation of from 50 nm to 1 mm.
12. The method as claimed in claim 11, wherein the condensable gas is steam, alcohol vapor or fuel vapor.
13. The method as claimed in claim 11, wherein the condensate is water, alcohol or fuel.
14. The method as claimed in claim 11, wherein the condensation surface has an angle of inclination of at least 3°.
15. The method as claimed in claim 11, wherein the condensation surface has a surface energy of from 5 to 20 mN/m when the plurality of elevations is not present.
16. The method as claimed in claim 11, wherein the condensation surface is coated with polytetrafluoroethylene, polyvinylidene fluoride, or polymers comprising perfluoroalkoxy compounds.
17. The method as claimed in claim 11, wherein the condensation surface comprises at least one metal.
18. The method as claimed in claim 11, wherein the condensation surface comprises a coating, said coating comprising at least one compound selected from the group consisting of fluoroalkanes, alkylfluorosilanes and fluorinated vinyls.
19. The method as claimed in claim 11, wherein the condensation surface comprises polytetrafluoroethylene, polyvinylidene, fluoride, or polymers made from perfluoroalkoxy compounds.
20. The method as claimed in claim 11, wherein the plurality of elevations is randomly distributed on the condensation surface.
21. The method as claimed in claim 11, wherein the plurality of elevations are distributed in an ordered pattern on the condensation surface.
US10/028,365 2000-12-30 2001-12-28 Apparatus for accelerating condensation with the aid of structured surfaces Abandoned US20020148601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10065797A DE10065797A1 (en) 2000-12-30 2000-12-30 Device for accelerating condensation using structured surfaces
DE10065797.4 2000-12-30

Publications (1)

Publication Number Publication Date
US20020148601A1 true US20020148601A1 (en) 2002-10-17

Family

ID=7669478

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/028,365 Abandoned US20020148601A1 (en) 2000-12-30 2001-12-28 Apparatus for accelerating condensation with the aid of structured surfaces

Country Status (5)

Country Link
US (1) US20020148601A1 (en)
EP (1) EP1219912A1 (en)
JP (1) JP2002219301A (en)
CA (1) CA2366236A1 (en)
DE (1) DE10065797A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013795A1 (en) * 2001-07-16 2003-01-16 Creavis Gesellschaft F. Techn. U. Innovation Mbh Surfaces rendered self-cleaning by hydrophobic structures and a process for their production
US20030108716A1 (en) * 2001-12-06 2003-06-12 Creavis Gesellschaft Fuer Tech. Und Innovation Mbh Light-scattering materials which have self-cleaning surfaces
US20030134086A1 (en) * 2001-12-06 2003-07-17 Creavis Gesellschaft Fur Tech. Und Innovation Mbh Diffuse-reflection surfaces and process for their production
US20040154106A1 (en) * 2001-04-12 2004-08-12 Markus Oles Flat textile structures with self-cleaning and water-repellent surfaces
US20050056411A1 (en) * 2003-09-11 2005-03-17 Roland Dilley Heat exchanger
US20050112326A1 (en) * 2002-03-12 2005-05-26 Degussa Ag Shaping method for producing shaped bodies with at least one surface that has self-cleaning properties, and shaped bodies produced according to this method
US20050118433A1 (en) * 2002-02-07 2005-06-02 Creavis Gesellschaft Fuer Method for the production of protective layers with dirt and water repelling properties
US20050163951A1 (en) * 2002-03-12 2005-07-28 Markus Oles Device produced using an injection molding method and provided for storing liquids, and method for producing this device
US20050208269A1 (en) * 2002-03-12 2005-09-22 Degussa Ag Sheet extrudates with self-cleaning properties, and method for producing these extrudates of this type
US20050227045A1 (en) * 2002-07-25 2005-10-13 Creavis Gesellschaft Fuer Tech.Und Innovation Mbh Method for the flame spray coating of surfaces with powder to create the lotus effect
US20050253302A1 (en) * 2002-03-12 2005-11-17 Degussa Ag Release agents comprising hydrophobic, nanoscalar particles, and the use of these mold release agents
US20060128239A1 (en) * 2002-09-13 2006-06-15 Edwin Nun Production of self-cleaning surfaces on textile coatings
US20060141223A1 (en) * 2004-12-27 2006-06-29 Degussa Ag Enhancing the watertightness of textile sheetlike constructions, textile sheetlike constructions thus finished and use thereof
US20060147675A1 (en) * 2004-12-27 2006-07-06 Degussa Ag Self-cleaning surfaces comprising elevations formed by hydrophobic particles and having improved mechanical strength
US20060156475A1 (en) * 2004-12-27 2006-07-20 Degussa Ag Enhancing the watertightness of textile sheetlike constructions, textile sheetlike constructions thus enhanced and use thereof
US20060222815A1 (en) * 2003-05-15 2006-10-05 Degussa Ag Use of particles hydrophobized by fluorosilanes for the production of self-cleaning surfaces having lipophobic, oleophobic, lactophobic and hydrophobic properties
US20070014970A1 (en) * 2003-02-27 2007-01-18 Edwin Nun Dispersion of water in hydrophobic oxides for producing hydrophobic nanostructured surfaces
US20070184981A1 (en) * 2003-04-03 2007-08-09 Degussa Ag Method for preventing mold formation by using hydrophobic materials, and mold-controlling agent for building parts
US7399353B2 (en) 2002-10-29 2008-07-15 Degussa Ag Production of suspensions of hydrophobic oxide particles
EP2294931A1 (en) * 2009-09-02 2011-03-16 Drom Fragrances GmbH & Co. KG Improved process and improved apparatus for yielding plant ingredients
US7964244B2 (en) 2002-07-13 2011-06-21 Evonik Degussa Gmbh Method for producing a surfactant-free suspension based on nanostructured, hydrophobic particles, and use of the same
CN111481957A (en) * 2020-05-21 2020-08-04 江西依思特香料有限公司 Quick condensing equipment is used in extraction of essence spices

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029616A1 (en) * 2004-09-17 2006-03-23 Peter Vinz Heat transfer wall with multifunctional nanostructured surface coatings
US20070031639A1 (en) * 2005-08-03 2007-02-08 General Electric Company Articles having low wettability and methods for making
US20070028588A1 (en) * 2005-08-03 2007-02-08 General Electric Company Heat transfer apparatus and systems including the apparatus
US20080073063A1 (en) * 2006-06-23 2008-03-27 Exxonmobil Research And Engineering Company Reduction of fouling in heat exchangers
US8349267B2 (en) 2007-10-05 2013-01-08 Exxonmobil Research And Engineering Company Crude oil pre-heat train with improved heat transfer
DE102008032431A1 (en) * 2008-07-10 2010-01-14 Behr Gmbh & Co. Kg Bionically inspired condenser for fuel cell system, has fluid channel provided with wall that includes projection, where projection has surface with hydrophilic surface materials at side of projection
DE102008045201A1 (en) * 2008-08-30 2010-03-04 Wolf, Peter, Dr. Device for utilization of energy of condensable gases from gas flow, has evaporation space equipped with distribution device for fluid, where energy of condensable gases is used directly for processing of fluids by evaporation
DE202008014853U1 (en) * 2008-11-08 2010-04-15 Potthoff, Rüdiger Molded plastic part
DE102009060760A1 (en) * 2009-12-30 2011-07-07 Hinterding, Hans, 48282 Drinking water producing sea water container extracting drinking water from salty sea water, comprises a glass or an appropriate foil
JP5940226B2 (en) * 2013-10-15 2016-06-29 株式会社Natomics Heat exchange surface maintenance method and humid air cooling method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354022A (en) * 1964-03-31 1967-11-21 Du Pont Water-repellant surface
US4492268A (en) * 1979-09-14 1985-01-08 Hisaka Works, Ltd. Condenser
US4601933A (en) * 1983-10-19 1986-07-22 Yoshiro Nakamura Heat transfer promoters and method of using the same
US5199486A (en) * 1988-05-18 1993-04-06 Dri-Steem Humidifier Company Coated heat exchanger for humidifier
US5599489A (en) * 1993-01-18 1997-02-04 Onoda Cement Co., Ltd. Preparing molded articles of fluorine-containing polymer with increased water-repellency
US6018963A (en) * 1994-07-01 2000-02-01 Hitachi, Ltd Refrigeration cycle
US6068911A (en) * 1996-04-18 2000-05-30 Hitachi, Ltd. Super water-repellent coating material, and super water-repellent coating film using the same
US6176302B1 (en) * 1998-03-04 2001-01-23 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer tube
US6427767B1 (en) * 1997-02-26 2002-08-06 American Standard International Inc. Nucleate boiling surface
US6447919B1 (en) * 1997-02-03 2002-09-10 Cytonix Corporation Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same
US6470691B1 (en) * 2000-06-13 2002-10-29 Atofina Chemicals, Inc. Fluid transport
US6571865B1 (en) * 1999-05-10 2003-06-03 Nanyang Technological University Heat transfer surface
US6649266B1 (en) * 1999-04-16 2003-11-18 Institut für Neue Materialien Gemeinnützige GmbH Substrates provided with a microstructured surface, methods for the production thereof, and their use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB889157A (en) * 1959-01-16 1962-02-07 Gen Electric Improvements in condensing surface structures particularly for use in distillation apparatus
JPS538855A (en) * 1976-07-13 1978-01-26 Hitachi Cable Ltd Condensing heat transmission wall
US4358046A (en) * 1977-03-17 1982-11-09 Union Carbide Corporation Oriented graphite layer and formation
DE19803787A1 (en) * 1998-01-30 1999-08-05 Creavis Tech & Innovation Gmbh Structured surfaces with hydrophobic properties

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354022A (en) * 1964-03-31 1967-11-21 Du Pont Water-repellant surface
US4492268A (en) * 1979-09-14 1985-01-08 Hisaka Works, Ltd. Condenser
US4601933A (en) * 1983-10-19 1986-07-22 Yoshiro Nakamura Heat transfer promoters and method of using the same
US5199486A (en) * 1988-05-18 1993-04-06 Dri-Steem Humidifier Company Coated heat exchanger for humidifier
US5599489A (en) * 1993-01-18 1997-02-04 Onoda Cement Co., Ltd. Preparing molded articles of fluorine-containing polymer with increased water-repellency
US6018963A (en) * 1994-07-01 2000-02-01 Hitachi, Ltd Refrigeration cycle
US6068911A (en) * 1996-04-18 2000-05-30 Hitachi, Ltd. Super water-repellent coating material, and super water-repellent coating film using the same
US6447919B1 (en) * 1997-02-03 2002-09-10 Cytonix Corporation Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same
US6427767B1 (en) * 1997-02-26 2002-08-06 American Standard International Inc. Nucleate boiling surface
US6176302B1 (en) * 1998-03-04 2001-01-23 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer tube
US6649266B1 (en) * 1999-04-16 2003-11-18 Institut für Neue Materialien Gemeinnützige GmbH Substrates provided with a microstructured surface, methods for the production thereof, and their use
US6571865B1 (en) * 1999-05-10 2003-06-03 Nanyang Technological University Heat transfer surface
US6470691B1 (en) * 2000-06-13 2002-10-29 Atofina Chemicals, Inc. Fluid transport

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040154106A1 (en) * 2001-04-12 2004-08-12 Markus Oles Flat textile structures with self-cleaning and water-repellent surfaces
US8629070B2 (en) 2001-04-12 2014-01-14 Evonik Degussa Gmbh Flat textile structures with self-cleaning and water-repellent surface
US20030013795A1 (en) * 2001-07-16 2003-01-16 Creavis Gesellschaft F. Techn. U. Innovation Mbh Surfaces rendered self-cleaning by hydrophobic structures and a process for their production
US7211313B2 (en) * 2001-07-16 2007-05-01 Degussa Ag Surfaces rendered self-cleaning by hydrophobic structures and a process for their production
US20060127643A1 (en) * 2001-12-06 2006-06-15 Creavis Gesellschaft Fuer Tech. Und Innovation Mbh Light-scattering materials which have self-cleaning sufraces
US20030108716A1 (en) * 2001-12-06 2003-06-12 Creavis Gesellschaft Fuer Tech. Und Innovation Mbh Light-scattering materials which have self-cleaning surfaces
US20030134086A1 (en) * 2001-12-06 2003-07-17 Creavis Gesellschaft Fur Tech. Und Innovation Mbh Diffuse-reflection surfaces and process for their production
US20060127644A1 (en) * 2001-12-06 2006-06-15 Creavis Gesellschaft Fur Tech. Und Innovation Mbh Diffuse-reflection surfaces and process for their production
US20050118433A1 (en) * 2002-02-07 2005-06-02 Creavis Gesellschaft Fuer Method for the production of protective layers with dirt and water repelling properties
US20050253302A1 (en) * 2002-03-12 2005-11-17 Degussa Ag Release agents comprising hydrophobic, nanoscalar particles, and the use of these mold release agents
US20050208269A1 (en) * 2002-03-12 2005-09-22 Degussa Ag Sheet extrudates with self-cleaning properties, and method for producing these extrudates of this type
US20050163951A1 (en) * 2002-03-12 2005-07-28 Markus Oles Device produced using an injection molding method and provided for storing liquids, and method for producing this device
US20050112326A1 (en) * 2002-03-12 2005-05-26 Degussa Ag Shaping method for producing shaped bodies with at least one surface that has self-cleaning properties, and shaped bodies produced according to this method
US7517487B2 (en) 2002-03-12 2009-04-14 Degussa Ag Release agents comprising hydrophobic, nanoscalar particles, and the use of these mold release agents
US7964244B2 (en) 2002-07-13 2011-06-21 Evonik Degussa Gmbh Method for producing a surfactant-free suspension based on nanostructured, hydrophobic particles, and use of the same
US20090123659A1 (en) * 2002-07-25 2009-05-14 Creavis Gesellschaft Fuer Tech. Und Innovation Mbh Method for producing a self-cleaning surface by flame spray coating
US20050227045A1 (en) * 2002-07-25 2005-10-13 Creavis Gesellschaft Fuer Tech.Und Innovation Mbh Method for the flame spray coating of surfaces with powder to create the lotus effect
US20060128239A1 (en) * 2002-09-13 2006-06-15 Edwin Nun Production of self-cleaning surfaces on textile coatings
US7858538B2 (en) 2002-09-13 2010-12-28 Evonik Degussa Gmbh Coated textile with self-cleaning surface
US20090137169A1 (en) * 2002-09-13 2009-05-28 Evonik Degussa Gmbh Coated textile with self-cleaning surface
US7517428B2 (en) 2002-09-13 2009-04-14 Degussa Ag Production of self-cleaning surfaces on textile coatings
US7399353B2 (en) 2002-10-29 2008-07-15 Degussa Ag Production of suspensions of hydrophobic oxide particles
US20070014970A1 (en) * 2003-02-27 2007-01-18 Edwin Nun Dispersion of water in hydrophobic oxides for producing hydrophobic nanostructured surfaces
US20070184981A1 (en) * 2003-04-03 2007-08-09 Degussa Ag Method for preventing mold formation by using hydrophobic materials, and mold-controlling agent for building parts
US8563010B2 (en) 2003-04-03 2013-10-22 Evonik Degussa Gmbh Method for preventing mold formation by using hydrophobic materials, and mold-controlling agent for building parts
US20060222815A1 (en) * 2003-05-15 2006-10-05 Degussa Ag Use of particles hydrophobized by fluorosilanes for the production of self-cleaning surfaces having lipophobic, oleophobic, lactophobic and hydrophobic properties
US20050056411A1 (en) * 2003-09-11 2005-03-17 Roland Dilley Heat exchanger
US20060141223A1 (en) * 2004-12-27 2006-06-29 Degussa Ag Enhancing the watertightness of textile sheetlike constructions, textile sheetlike constructions thus finished and use thereof
US20060156475A1 (en) * 2004-12-27 2006-07-20 Degussa Ag Enhancing the watertightness of textile sheetlike constructions, textile sheetlike constructions thus enhanced and use thereof
US7846529B2 (en) 2004-12-27 2010-12-07 Evonik Degussa Gmbh Self-cleaning surfaces comprising elevations formed by hydrophobic particles and having improved mechanical strength
US20060147675A1 (en) * 2004-12-27 2006-07-06 Degussa Ag Self-cleaning surfaces comprising elevations formed by hydrophobic particles and having improved mechanical strength
US20110045247A1 (en) * 2004-12-27 2011-02-24 Evonik Degussa Gmbh Self-cleaning surfaces comprising elevations formed by hydrophobic particles and having improved mechanical strength
US8420163B2 (en) 2004-12-27 2013-04-16 Evonik Degussa Gmbh Process for forming a surface comprising elevations of hydrophobic particles
EP2294931A1 (en) * 2009-09-02 2011-03-16 Drom Fragrances GmbH & Co. KG Improved process and improved apparatus for yielding plant ingredients
CN111481957A (en) * 2020-05-21 2020-08-04 江西依思特香料有限公司 Quick condensing equipment is used in extraction of essence spices

Also Published As

Publication number Publication date
JP2002219301A (en) 2002-08-06
CA2366236A1 (en) 2002-06-30
DE10065797A1 (en) 2002-07-04
EP1219912A1 (en) 2002-07-03

Similar Documents

Publication Publication Date Title
US20020148601A1 (en) Apparatus for accelerating condensation with the aid of structured surfaces
El-Dessouky et al. Performance of wire mesh mist eliminator
Wang et al. Water harvesting method via a hybrid superwettable coating with superhydrophobic and superhydrophilic nanoparticles
US8425656B2 (en) Transport membrane condenser using turbulence promoters
Eames et al. The evaporation coefficient of water: a review
US20220390191A1 (en) Droplet Ejecting Coatings
US20070193870A1 (en) Solar-powered desalination system
US9005404B2 (en) Controlled-gradient, accelerated-vapor-recompression apparatus and method
US20160339357A1 (en) Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
CA1115648A (en) Method of separation of a gas from a gas mixture
US9533238B2 (en) Controlled-gradient, accelerated vapor-recompression apparatus and method
RU2009140746A (en) METHOD OF DISTRIBUTING THE ORIGINAL MATERIAL AND INSTALLATION FOR IMPLEMENTING SUCH METHOD
JP3375050B2 (en) Waste sulfuric acid continuous purification device and purification method
Sheng-An et al. Role of surface tension and ellipticity in laminar film condensation on a horizontal elliptical tube
CN201923852U (en) Dismountable multilevel overlapped-disk solar distillator
US20200362543A1 (en) Surfaces with high surface areas for enhanced condensation and airborne liquid droplet collection
CN108671571A (en) Phosphoric Acid Concentration system and technique
Cosandey et al. Transport of salts and micron-sized particles entrained from a boiling water pool
JP3865217B2 (en) Evaporator
Aboabboud et al. An energy saving atmospheric evaporator utilizing low grade thermal or waste energy
Terasaka et al. Measurement of heat transfer coefficient for direct-contact condensation during bubble growth in liquid
Nitsche et al. Steam Distillation
Son et al. Investigation of water separation capabilities of demisters integrated with microstructured surfaces
CN208465212U (en) Phosphoric Acid Concentration system and phosphoric acid production system
US20230158448A1 (en) Hybrid structure, manufacturing method for the same, and fog capture including the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: CREAVIS GESELLSCHAFT FUER TECHNOLOGIE UND INNOVATI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROOS, MARTIN;NUN, EDWIN;OLES, MARKUS;AND OTHERS;REEL/FRAME:012922/0525

Effective date: 20020417

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION