US20040242755A1 - Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof - Google Patents

Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof Download PDF

Info

Publication number
US20040242755A1
US20040242755A1 US10/870,065 US87006504A US2004242755A1 US 20040242755 A1 US20040242755 A1 US 20040242755A1 US 87006504 A US87006504 A US 87006504A US 2004242755 A1 US2004242755 A1 US 2004242755A1
Authority
US
United States
Prior art keywords
fluorine
weight
vdf
aqueous dispersion
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/870,065
Inventor
Takayuki Araki
Nobuhiko Tsuda
Masahiro Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16961678&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040242755(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/870,065 priority Critical patent/US20040242755A1/en
Publication of US20040242755A1 publication Critical patent/US20040242755A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride

Definitions

  • the present invention relates to an aqueous dispersion of a fluorine-containing polymer usable for paints. More specifically the present invention relates to an aqueous dispersion of a vinylidene fluoride (VdF) type polymer, which comprises a VdF polymer having a particle size of not more than 200 nm and contains 30 to 50% by weight of solids, and a process for preparation thereof.
  • VdF vinylidene fluoride
  • Fluorine-containing paints are used as weather resistive paints for exterior and interior coating of medium- or low-storied buildings, and various techniques have been developed for preparation of the fluorine-containing paints. Though many of the fluorine-containing paints are in the form of organic solvent dispersions, there are problems in the use of organic solvents from safety and environmental protection points of view, and ones of aqueous dispersion type are preferable. As the methods of preparing an aqueous dispersion of a fluorine-containing polymer, there are known the methods mentioned below.
  • JP-B-28669/1974 discloses that when vinyl fluoride is suspension-polymerized in preparation of paints, a nonionic surfactant is added in an amount of 0.05 to 5% by weight on the basis of the monomer to increase yield, to prevent deposition of the polymer onto an inside wall of a polymerization tank and to control particle size of the polymer.
  • JP-A-123646/1986 discloses that in preparing a fluorine-containing copolymer in an aqueous medium, a stable aqueous emulsion can be obtained by adding a dispersion stabilizing agent after polymerization of the fluorine-containing copolymer, but before or during the condensation process of the aqueous dispersion.
  • JP-B-55441/1992 discloses that in preparing an aqueous fluorine-containing polymer dispersion for aqueous paints, 0.05 to 5.0% by weight of surfactants of various kinds including a nonionic surfactant is added when the seed-polymerization of a monomer having ethylenically unsaturated bond is carried out.
  • JP-A-225550/1990 discloses that a mixture of a fluorine-containing type surfactant and a nonionic type surfactant is used when copolymerizing a fluorine-containing olefin and a hydrophilic group-containing non-fluorine-containing olefin.
  • Koubunshi Ronbun Shu, Vol. 36, No. 11 (1979) discloses at pages 729 to 737 that when a large amount of surfactants of various kinds is used in emulsion polymerization, particles of a polymer latex become smaller, and also that by mixing an anion surfactant and a nonion surfactant in polymerization of an acrylic monomer, there can be obtained the same effect as in case of adding an anion surfactant solely.
  • JP-B-28669/1974 does not relate to emulsion polymerization, but relates to suspension polymerization without using a fluorine-containing surfactant, and intends to obtain a particle size larger than that of the present invention
  • the particle size described in Example of this patent publication is as large as 3.4 to 4.5 ⁇ m.
  • JP-A-123646/1986 discloses that a polymer latex having a concentration as high as not less than 30% by weight is obtained by using a fluorine-containing emulsifying agent in polymerization process.
  • a fluorine-containing surfactant for controlling the particles at a size lower than a certain size.
  • the invention is characterized by the use of a specific non-fluorine-containing dispersion stabilizing agent, and its amount to be used is as much as 2 to 8% by weight on the basis of a solid content.
  • the particle size of a latex tends to increase together with a polymer concentration, and when the fluorine-containing surfactant is used solely and if its amount is not more than 1% by weight, there cannot be obtained a particle size of not more than 200 nm if the solid content is assumed to be 30 to 50% by weight. Also there is no description as to controlling of the particle size of the aqueous latex. It is also described that if the nonionic surfactant is added in preparing an aqueous emulsion, there is an adverse effect such as coloring.
  • JP-A-225550/1990 is one wherein chlorotrifluoroethylene is used as a fluoroolefin unit and the amount of the nonionic surfactant used is as relatively much as 3% by weight on the basis of water.
  • VdF copolymerization of VdF, there has been generally known that there occur problems such that when the nonionic surfactant is added, the reaction rate is lowered remarkably and the molecular weight is not increased.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide an aqueous dispersion of a fluorine-containing polymer, which comprises a VdF polymer having a particle size as small as not more than 200 nm and contains solids in an amount as high as 30 to 50% by weight and a surfactant in an amount as low as not more than 1% by weight on the basis of water, and its preparation process.
  • the present invention relates to an aqueous dispersion of a VdF polymer, which comprises a VdF polymer having a particle size of not more than 200 nm, has a solid content of 30 to 50% by weight and contains a fluorine-containing surfactant in an amount of not more than 1% by weight on the basis of water.
  • the particle size can be decreased to not more than 200 nm by adding a nonionic non-fluorine-containing surfactant in a trace amount of 0.001 to 0.1% by weight on the basis of water in the presence of a small amount of a fluorine-containing surfactant, i.e. not more than 1% by weight, on the basis of water.
  • VdF polymer in the present invention there are homopolymer of VdF; a copolymer of VdF monomer and at least one of the other fluorine-containing monomers such as tetrafluoroethylene (TFE), trifluoroethylene (TrFE), chlorotrifluoroethylene (CTFE) and hexafluoropropylene (HFP); a copolymer of VdF, the other fluorine-containing monomer and a monomer having an unsaturated bond which is copolymerizable therewith.
  • TFE tetrafluoroethylene
  • TrFE trifluoroethylene
  • CTFE chlorotrifluoroethylene
  • HFP hexafluoropropylene
  • the preferable copolymers are, for example, VdF/TFE copolymer, VdF/TFE/HFP copolymer, VdF/TFE/CTFE copolymer, VdF/TFE/TrFE copolymer, VdF/CTFE copolymer, VdF/HFP copolymer, VdF/TFE/HFP/CTFE copolymer, VdF/TFE/perfluorobutenoic acid copolymer, VdF/TFE/maleic acid copolymer and the like.
  • the content of VdF units of these copolymers is preferably not less than 50% by mole, more preferably not less than 70% by mole.
  • the weight average molecular weight (Mw) of these VdF polymers is from 1,000 to 1,000,000, preferably from 10,000 to 500,000.
  • Mw weight average molecular weight
  • the particle size of the VdF polymer is not more than 200 nm, preferably from 150 to 100 nm. Since the particle size is as small as not more than 200 nm, the polymer is excellent in stability against sedimentation and dispersing property of additives is excellent. When the particle size is larger than 200 nm, there occurs 1.5 sedimentation and coagulation of the particles during storage of the dispersion and the dispersing property of the additives is poor. Also there is a tendency that gloss of the formed film is difficult to be obtained.
  • the fluorine-containing surfactant used in the present invention is one or a mixture of compounds containing fluorine atoms in their structures and having surface activity.
  • an acid represented by X(CF 2 ) n COOH (n is an integer of 6 to 20, X is F or H), its alkali metal salt, ammonium salt, amine salt or quaternary ammonium salt;
  • an ammonium salt of perfluoro(octanoic acid) an ammonium salt of perfluoro(nonanoic acid) or the like.
  • fluorine-containing surfactants there can be used known fluorine-containing surfactants.
  • the amount of the fluorine-containing surfactant to be used is not more than 1.0% by weight on the basis of water, preferably not more than 0.5% by weight, more preferably not more than 0.2% by weight.
  • the lower limit is usually 0.01% by weight.
  • the amount of the fluorine-containing surfactant is more than 1.0% by weight.
  • the solid content of the aqueous dispersion of the present invention is from 30 to 50% by weight, preferably from 35 to 45% by weight. When less than 30% by weight, there is a tendency such that when forming a film, viscosity adjustment is difficult and leveling property is lowered. When more than 50%, stability of the dispersion becomes worse, and deposition and coagulation tend to occur in polymerization process.
  • Water to be used for an aqueous dispersion of the present invention is preferably a deionized water.
  • the aqueous dispersion of the VdF polymer of the present invention can be prepared, for example, by emulsion-polymerizing VdF monomer or a monomer mixture containing VdF under coexistence of the above-mentioned fluorine-containing surfactant in an amount of not more than 1% by weight on the basis of water and a trace amount of the nonionic non-fluorine-containing surfactant.
  • the aqueous dispersion which comprises the VdF polymer having a particle size of not more than 200 nm and contains solids in an amount of 30 to 50% by weight, it is usually necessary to use a large amount of a fluorine-containing surfactant.
  • a fluorine-containing surfactant it is possible to decrease the amount of the fluorine-containing surfactant to a small amount of not more than 1% by weight by adding a trace amount of the nonionic non-fluorine-containing surfactant. Namely, a small particle size of not more than 200 nm can be attained by adding the nonionic non-fluorine-containing surfactant.
  • nonionic non-fluorine-containing surfactant there are polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, polyoxyethylene sorbitan alkyl esters, glycerol esters, their derivatives and the like.
  • polyoxyethylene alkyl ethers are polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene behenyl ether and the like;
  • examples of polyoxyethylene alkyl phenyl ethers are polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether and the like;
  • examples of polyoxyethylene alkyl esters are polyethylene glycol monolaurylate, polyethylene glycol monooleate, polyethylene glycol monostearate and the like;
  • examples of sorbitan alkyl esters are polyoxyethylene sorbitan monolaurylate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate and the like;
  • examples of polyoxyethylene sorbitan alkyl esters are polyoxyethylene sorbitan monolaurylate, polyoxyethylene
  • polyoxyethylene alkyl amine polyoxyethylene alkyl phenyl-formaldehyde condensate
  • polyoxyethylene alkyl ether phosphate and the like.
  • Particularly preferable are polyoxyethylene alkyl ethers and polyoxyethylene alkyl esters which have an HLB value of 10 to 18. More particularly there are polyoxyethylene lauryl ether (EO: 5 to 20. EO stands for an ethylene oxide unit.), polyethylene glycol monostearate (EO: 10 to 55) and polyethylene glycol monooleate (EO: 6 to 10).
  • the amount of the nonionic non-fluorine-containing surfactant used in the present invention is from 0.001 to 0.1% by weight on the basis of water, preferably from 0.01 to 0.05% by weight. When more than 0.1% by weight, it is not practicable because the rate of reaction is lowered because of chain transfer reaction and the reaction is stopped. Also when less than 0.001% by weight, there is almost no effect of making the particle size fine.
  • the emulsion having a relatively high concentration can also be obtained by polymerizing, in an organic solvent, a monomer mixture containing an ethylenically unsaturated monomer having an ionic group or polyalkylene oxide group, then adding water and distilling off the organic solvent.
  • an emulsion can be obtained by solution-polymerizing, in ethyl acetate, a mixture of VdF, TFE and perfluorobutenoic acid (CF 2 ⁇ CF—CF 2 COOH), adding aqueous ammonia solution to neutralize, then pouring dropwise into ion-exchanged water containing a fluorine-containing surfactant with stirring to disperse homogeneously, and distilling off ethyl acetate by using an evaporator.
  • an initiator is usually used.
  • the initiator particularly there is no restriction if it serves to generate radicals usable for free radical reaction in an aqueous medium at a temperature between 20° C. and 90°.
  • the water soluble initiator there are potassium salt and ammonium salt of persulfuric acid, and hydrogen peroxide; and as the oil soluble initiator, there are diisopropyl peroxydicarbonate (IPP), azobisisobutyronitrile (AIBN) and the like.
  • the amount of the initiator to be added is from 0.005 to 1.0% by weight on the basis of water, preferably from 0.01 to 0.5% by weight. When less than 0.005% by weight, the polymerization rate tends to be lowered extremely, and when more than 1.0% by weight, there is a tendency such that a concentration of an electrolyte is increased and thus the particle size is increased.
  • the polymerization temperature is from 20° to 120° C., preferably from 30° to 70° C.
  • the polymerization rate tends to be decreased due to chain transfer reaction.
  • Polymerization is usually carried out by heating for 5 to 100 hours under a pressure of 1.0 to 50 kgf/cm 2 (gauge pressure) though it depends on kind of the polymer.
  • a one-liter pressure resistive reactor equipped with a stirrer was charged with 500 ml of deionized water, 0.5 g of a fluorine-containing surfactant, i.e. an ammonium salt of perfluoro(octanoic acid) (PFOA) and 0.05 g of a nonionic non-fluorine-containing surfactant, i.e. polyoxyethylene lauryl ether (MYS40 available from Nikko Chemicals Co., Ltd.), and steps of introduction of pressurized nitrogen gas and deaeration were repeated to remove the dissolved air.
  • the inside pressure of the reactor was then raised to 20 kgf/cm 2 (gauge pressure) at 60° C. by using VdF.
  • the solid content is represented in percentage of the weight of the aqueous dispersion after dried at 150° C. for one hour in a vacuum dryer to its weight before drying.
  • the particle size is an average size obtained by measuring the particle sizes with a laser beam scattering particle size analyzer (ELS-3000 available from Otsuka Denshi Kogyo Kabushiki Kaisha). The stability against sedimentation was evaluated as follows by allowing an aqueous dispersion to be tested to stand at 25° C. for 60 days.
  • The dispersion is separated into a transparent water phase and a dispersed particle phase and it is possible to re-disperse by shaking.
  • X The dispersion is separated into a transparent water phase and a dispersed particle phase, and it is impossible to re-disperse by shaking.
  • a one-liter pressure: resistive reactor equipped with a stirrer was charged with 500 ml of deionized water, 0.5 g of an ammonium salt of perfluoro(octanoic acid) and 0.05 g of polyoxyethylene lauryl ether, and steps of introduction of pressurized nitrogen gas and deaeration were repeated to remove the dissolved air.
  • the inside pressure of the reactor was then raised to 8 kgf/cm 2 (gauge pressure) at 60° C. by using a VdF/TFE monomer mixture (80/20% by mole).
  • a one-liter pressure resistive reactor equipped with a stirrer was charged with 500 ml of deionized water, 0.5 g of an ammonium salt of perfluoro(octanoic acid) and 0.05 g of polyoxyethylene lauryl ether, and steps of introduction of pressurized nitrogen gas and deaeration were repeated to remove the dissolved air.
  • the inside pressure of the reactor was then raised to 8 kgf/cm 2 (gauge pressure) at 60° C. by using a VdF/TFE/HFP monomer mixture (72/20/8% by mole).
  • a one-liter pressure resistive reactor equipped with a stirrer was charged with 500 ml of deionized water, 0.5 g of an ammonium salt of perfluoro(octanoic acid) and 0.05 g of polyoxyethylene lauryl ether, and steps of introduction of pressurized nitrogen gas and deaeration were repeated to remove the dissolved air.
  • the inside pressure of the reactor was raised to 8 kgf/cm 2 (gauge pressure) at 60° C. by using a VdF/TFE/CTFE monomer mixture (75/15/10% by mole).
  • Aqueous dispersions of the VdF polymer were prepared in the same manner as in EXAMPLES 1 to 4 except that the nonionic non-fluorine-containing surfactant was not used and the amount of the fluorine-containing surfactant was changed as shown in TABLE 1.
  • the measured characteristic values of the obtained aqueous dispersions are shown in TABLE 1.
  • aqueous dispersion of the VdF polymer was prepared in the same manner as in EXAMPLE 3 except that CTFE was used instead of HFP and the amount of the fluorine-containing surfactant was changed as shown in TABLE 1.
  • the measured characteristic values of the obtained aqueous dispersion are shown in TABLE 1. As shown in TABLE 1, these characteristics were preferable, but there was found precipitation of the fluorine-containing surfactant at drying the formed film.
  • the aqueous dispersion of the VdF polymer of the present invention is excellent in stability against sedimentation notwithstanding a small amount of a surfactant and can provide coating films excellent in water resistance and leveling property. According to the preparation process of the present invention, the above-mentioned aqueous dispersion can be prepared easily by using a trace amount of a nonionic non-fluorine-containing surfactant even if the amount of a fluorine-containing surfactant is decreased greatly.

Abstract

Aqueous dispersion of a vinylidene fluoride (VdF) polymer which comprises a VdF polymer having a particle size of not more than 200 nm and contains 30 to 50% by weight of solids and not more than 1% by weight of a fluorine-containing surfactant on the basis of water. This aqueous dispersion is prepared by emulsion-polymerizing VdF monomer or a monomer mixture containing VdF under coexistence of not more than 1% by weight of the fluorine-containing surfactant and 0.001 to 0.1% by weight of a nonionic non-fluorine-containing surfactant on the basis of water, and is suitably used for paints.

Description

    TECHNICAL FIELD
  • The present invention relates to an aqueous dispersion of a fluorine-containing polymer usable for paints. More specifically the present invention relates to an aqueous dispersion of a vinylidene fluoride (VdF) type polymer, which comprises a VdF polymer having a particle size of not more than 200 nm and contains 30 to 50% by weight of solids, and a process for preparation thereof. [0001]
  • BACKGROUND ART
  • Fluorine-containing paints are used as weather resistive paints for exterior and interior coating of medium- or low-storied buildings, and various techniques have been developed for preparation of the fluorine-containing paints. Though many of the fluorine-containing paints are in the form of organic solvent dispersions, there are problems in the use of organic solvents from safety and environmental protection points of view, and ones of aqueous dispersion type are preferable. As the methods of preparing an aqueous dispersion of a fluorine-containing polymer, there are known the methods mentioned below. For example, JP-B-28669/1974 discloses that when vinyl fluoride is suspension-polymerized in preparation of paints, a nonionic surfactant is added in an amount of 0.05 to 5% by weight on the basis of the monomer to increase yield, to prevent deposition of the polymer onto an inside wall of a polymerization tank and to control particle size of the polymer. [0002]
  • Also JP-A-123646/1986 discloses that in preparing a fluorine-containing copolymer in an aqueous medium, a stable aqueous emulsion can be obtained by adding a dispersion stabilizing agent after polymerization of the fluorine-containing copolymer, but before or during the condensation process of the aqueous dispersion. [0003]
  • Further JP-B-55441/1992 discloses that in preparing an aqueous fluorine-containing polymer dispersion for aqueous paints, 0.05 to 5.0% by weight of surfactants of various kinds including a nonionic surfactant is added when the seed-polymerization of a monomer having ethylenically unsaturated bond is carried out. [0004]
  • Also JP-A-225550/1990 discloses that a mixture of a fluorine-containing type surfactant and a nonionic type surfactant is used when copolymerizing a fluorine-containing olefin and a hydrophilic group-containing non-fluorine-containing olefin. [0005]
  • Also Koubunshi Ronbun Shu, Vol. 36, No. 11 (1979) discloses at pages 729 to 737 that when a large amount of surfactants of various kinds is used in emulsion polymerization, particles of a polymer latex become smaller, and also that by mixing an anion surfactant and a nonion surfactant in polymerization of an acrylic monomer, there can be obtained the same effect as in case of adding an anion surfactant solely. [0006]
  • However the technique in JP-B-28669/1974 does not relate to emulsion polymerization, but relates to suspension polymerization without using a fluorine-containing surfactant, and intends to obtain a particle size larger than that of the present invention The particle size described in Example of this patent publication is as large as 3.4 to 4.5 μm. [0007]
  • Also JP-A-123646/1986 discloses that a polymer latex having a concentration as high as not less than 30% by weight is obtained by using a fluorine-containing emulsifying agent in polymerization process. However there is no description as to the use of a fluorine-containing surfactant for controlling the particles at a size lower than a certain size. In addition, the invention is characterized by the use of a specific non-fluorine-containing dispersion stabilizing agent, and its amount to be used is as much as 2 to 8% by weight on the basis of a solid content. Usually the particle size of a latex tends to increase together with a polymer concentration, and when the fluorine-containing surfactant is used solely and if its amount is not more than 1% by weight, there cannot be obtained a particle size of not more than 200 nm if the solid content is assumed to be 30 to 50% by weight. Also there is no description as to controlling of the particle size of the aqueous latex. It is also described that if the nonionic surfactant is added in preparing an aqueous emulsion, there is an adverse effect such as coloring. [0008]
  • Further in the technique disclosed in JP-B-55441/1992, no surfactant is used in the polymerization of a fluorine-containing olefin, and also there is no disclosure as to the use of a fluorine-containing surfactant as the surfactant to be used in the seed-polymerization. [0009]
  • Also the technique specifically disclosed in JP-A-225550/1990 is one wherein chlorotrifluoroethylene is used as a fluoroolefin unit and the amount of the nonionic surfactant used is as relatively much as 3% by weight on the basis of water. However in copolymerization of VdF, there has been generally known that there occur problems such that when the nonionic surfactant is added, the reaction rate is lowered remarkably and the molecular weight is not increased. [0010]
  • Also in the techniques disclosed in the above-mentioned Koubunshi Ronbun Shu, the use of the surfactant in a large amount causes an adverse effect on water resistance when used for paints. [0011]
  • The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide an aqueous dispersion of a fluorine-containing polymer, which comprises a VdF polymer having a particle size as small as not more than 200 nm and contains solids in an amount as high as 30 to 50% by weight and a surfactant in an amount as low as not more than 1% by weight on the basis of water, and its preparation process. [0012]
  • DISCLOSURE OF THE INVENTION
  • The present invention relates to an aqueous dispersion of a VdF polymer, which comprises a VdF polymer having a particle size of not more than 200 nm, has a solid content of 30 to 50% by weight and contains a fluorine-containing surfactant in an amount of not more than 1% by weight on the basis of water. [0013]
  • It is possible in the present invention that in the known emulsion polymerization system, notwithstanding that the solid content is as high as 30 to 50% by weight, the particle size can be decreased to not more than 200 nm by adding a nonionic non-fluorine-containing surfactant in a trace amount of 0.001 to 0.1% by weight on the basis of water in the presence of a small amount of a fluorine-containing surfactant, i.e. not more than 1% by weight, on the basis of water.[0014]
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • As the VdF polymer in the present invention, there are homopolymer of VdF; a copolymer of VdF monomer and at least one of the other fluorine-containing monomers such as tetrafluoroethylene (TFE), trifluoroethylene (TrFE), chlorotrifluoroethylene (CTFE) and hexafluoropropylene (HFP); a copolymer of VdF, the other fluorine-containing monomer and a monomer having an unsaturated bond which is copolymerizable therewith. The preferable copolymers are, for example, VdF/TFE copolymer, VdF/TFE/HFP copolymer, VdF/TFE/CTFE copolymer, VdF/TFE/TrFE copolymer, VdF/CTFE copolymer, VdF/HFP copolymer, VdF/TFE/HFP/CTFE copolymer, VdF/TFE/perfluorobutenoic acid copolymer, VdF/TFE/maleic acid copolymer and the like. The content of VdF units of these copolymers is preferably not less than 50% by mole, more preferably not less than 70% by mole. The weight average molecular weight (Mw) of these VdF polymers is from 1,000 to 1,000,000, preferably from 10,000 to 500,000. When lower than 1,000, mechanical properties and weatherability when forming a film tend to be inferior, and when higher than 1,000,000, there are tendencies that the resin does not flow when forming a film, leveling property is lowered and no gloss is exhibited. [0015]
  • The particle size of the VdF polymer is not more than 200 nm, preferably from 150 to 100 nm. Since the particle size is as small as not more than 200 nm, the polymer is excellent in stability against sedimentation and dispersing property of additives is excellent. When the particle size is larger than 200 nm, there occurs 1.5 sedimentation and coagulation of the particles during storage of the dispersion and the dispersing property of the additives is poor. Also there is a tendency that gloss of the formed film is difficult to be obtained. [0016]
  • The fluorine-containing surfactant used in the present invention is one or a mixture of compounds containing fluorine atoms in their structures and having surface activity. For example, there are an acid represented by X(CF[0017] 2)nCOOH (n is an integer of 6 to 20, X is F or H), its alkali metal salt, ammonium salt, amine salt or quaternary ammonium salt; an acid represented by Y(CH2CF2)nCOOH (m is an integer of 6 to 13, Y is F or Cl), its alkali metal salt, ammonium salt, amine salt or quaternary ammonium salt; or the like. More specifically there are used an ammonium salt of perfluoro(octanoic acid), an ammonium salt of perfluoro(nonanoic acid) or the like. In addition, there can be used known fluorine-containing surfactants.
  • The amount of the fluorine-containing surfactant to be used is not more than 1.0% by weight on the basis of water, preferably not more than 0.5% by weight, more preferably not more than 0.2% by weight. The lower limit is usually 0.01% by weight. When more than 1.0% by weight, there occurs a phenomenon such as precipitation of the surfactant in the film formed from the aqueous dispersion and also there is a tendency such that water absorption increases to make the dispersion whiten. Thus it is not preferable if the amount of the fluorine-containing surfactant is more than 1.0% by weight. [0018]
  • The solid content of the aqueous dispersion of the present invention is from 30 to 50% by weight, preferably from 35 to 45% by weight. When less than 30% by weight, there is a tendency such that when forming a film, viscosity adjustment is difficult and leveling property is lowered. When more than 50%, stability of the dispersion becomes worse, and deposition and coagulation tend to occur in polymerization process. [0019]
  • Water to be used for an aqueous dispersion of the present invention is preferably a deionized water. [0020]
  • The aqueous dispersion of the VdF polymer of the present invention can be prepared, for example, by emulsion-polymerizing VdF monomer or a monomer mixture containing VdF under coexistence of the above-mentioned fluorine-containing surfactant in an amount of not more than 1% by weight on the basis of water and a trace amount of the nonionic non-fluorine-containing surfactant. [0021]
  • In order to prepare the aqueous dispersion which comprises the VdF polymer having a particle size of not more than 200 nm and contains solids in an amount of 30 to 50% by weight, it is usually necessary to use a large amount of a fluorine-containing surfactant. How ever according to the preparation process of the present invention, it is possible to decrease the amount of the fluorine-containing surfactant to a small amount of not more than 1% by weight by adding a trace amount of the nonionic non-fluorine-containing surfactant. Namely, a small particle size of not more than 200 nm can be attained by adding the nonionic non-fluorine-containing surfactant. [0022]
  • As the nonionic non-fluorine-containing surfactant, there are polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, polyoxyethylene sorbitan alkyl esters, glycerol esters, their derivatives and the like. More specifically examples of polyoxyethylene alkyl ethers are polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene behenyl ether and the like; examples of polyoxyethylene alkyl phenyl ethers are polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether and the like; examples of polyoxyethylene alkyl esters are polyethylene glycol monolaurylate, polyethylene glycol monooleate, polyethylene glycol monostearate and the like; examples of sorbitan alkyl esters are polyoxyethylene sorbitan monolaurylate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate and the like; examples of polyoxyethylene sorbitan alkyl esters are polyoxyethylene sorbitan monolaurylate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate and the like; and examples of glycerol esters are glycerol monomyristate, glycerol monostearate, glycerol monooleate and the like. Also examples of their derivatives are polyoxyethylene alkyl amine, polyoxyethylene alkyl phenyl-formaldehyde condensate, polyoxyethylene alkyl ether phosphate and the like. Particularly preferable are polyoxyethylene alkyl ethers and polyoxyethylene alkyl esters which have an HLB value of 10 to 18. More particularly there are polyoxyethylene lauryl ether (EO: 5 to 20. EO stands for an ethylene oxide unit.), polyethylene glycol monostearate (EO: 10 to 55) and polyethylene glycol monooleate (EO: 6 to 10). [0023]
  • The amount of the nonionic non-fluorine-containing surfactant used in the present invention is from 0.001 to 0.1% by weight on the basis of water, preferably from 0.01 to 0.05% by weight. When more than 0.1% by weight, it is not practicable because the rate of reaction is lowered because of chain transfer reaction and the reaction is stopped. Also when less than 0.001% by weight, there is almost no effect of making the particle size fine. [0024]
  • The emulsion having a relatively high concentration can also be obtained by polymerizing, in an organic solvent, a monomer mixture containing an ethylenically unsaturated monomer having an ionic group or polyalkylene oxide group, then adding water and distilling off the organic solvent. For example, an emulsion can be obtained by solution-polymerizing, in ethyl acetate, a mixture of VdF, TFE and perfluorobutenoic acid (CF[0025] 2═CF—CF2COOH), adding aqueous ammonia solution to neutralize, then pouring dropwise into ion-exchanged water containing a fluorine-containing surfactant with stirring to disperse homogeneously, and distilling off ethyl acetate by using an evaporator.
  • In order to polymerize VdF monomer, an initiator is usually used. As the initiator, particularly there is no restriction if it serves to generate radicals usable for free radical reaction in an aqueous medium at a temperature between 20° C. and 90°. Usually as the water soluble initiator, there are potassium salt and ammonium salt of persulfuric acid, and hydrogen peroxide; and as the oil soluble initiator, there are diisopropyl peroxydicarbonate (IPP), azobisisobutyronitrile (AIBN) and the like. The amount of the initiator to be added is from 0.005 to 1.0% by weight on the basis of water, preferably from 0.01 to 0.5% by weight. When less than 0.005% by weight, the polymerization rate tends to be lowered extremely, and when more than 1.0% by weight, there is a tendency such that a concentration of an electrolyte is increased and thus the particle size is increased. [0026]
  • In preparing the aqueous dispersion of the VdF polymer of the present invention, the polymerization temperature is from 20° to 120° C., preferably from 30° to 70° C. When lower than 20° C., in general there is a tendency such that stability of the formed latex is lowered, and when higher than 120° C., the polymerization rate tends to be decreased due to chain transfer reaction. Polymerization is usually carried out by heating for 5 to 100 hours under a pressure of 1.0 to 50 kgf/cm[0027] 2 (gauge pressure) though it depends on kind of the polymer.
  • The aqueous dispersion of the VdF polymer of the present invention-can be used as water base paints for coating by blending additives such as pigments, thickeners, dispersing agents, defoaming agents, antifreezing agents and film forming auxiliaries or in addition thereto by combining with other high molecular compounds. [0028]
  • The present invention is explained further in detail based on examples, but is not limited thereto. [0029]
  • EXAMPLE 1
  • A one-liter pressure resistive reactor equipped with a stirrer was charged with 500 ml of deionized water, 0.5 g of a fluorine-containing surfactant, i.e. an ammonium salt of perfluoro(octanoic acid) (PFOA) and 0.05 g of a nonionic non-fluorine-containing surfactant, i.e. polyoxyethylene lauryl ether (MYS40 available from Nikko Chemicals Co., Ltd.), and steps of introduction of pressurized nitrogen gas and deaeration were repeated to remove the dissolved air. The inside pressure of the reactor was then raised to 20 kgf/cm[0030] 2 (gauge pressure) at 60° C. by using VdF. Then 0.2 g of an initiator, i.e. ammonium persulfate was added, VdF was continuously supplied to maintain the inside pressure of the reactor constant at 20 kgf/cm2 (gauge pressure), and the reaction was carried out for 20 hours. Afterwards the reaction system was rendered to normal temperature and normal pressure, and thereby the reaction was terminated. The intrinsic viscosity [η] of the obtained polymer comprising VdF solely, which was measured in a dimethylfuran (DMF) solvent at 35° C., was 0.63. The measured characteristic values of the obtained aqueous dispersion are shown in TABLE 1.
  • In TABLE 1; the solid content is represented in percentage of the weight of the aqueous dispersion after dried at 150° C. for one hour in a vacuum dryer to its weight before drying. The particle size is an average size obtained by measuring the particle sizes with a laser beam scattering particle size analyzer (ELS-3000 available from Otsuka Denshi Kogyo Kabushiki Kaisha). The stability against sedimentation was evaluated as follows by allowing an aqueous dispersion to be tested to stand at 25° C. for 60 days. [0031]
  • ◯: There is no change in dispersed state with naked eyes. [0032]
  • Δ: The dispersion is separated into a transparent water phase and a dispersed particle phase and it is possible to re-disperse by shaking. [0033]
  • X: The dispersion is separated into a transparent water phase and a dispersed particle phase, and it is impossible to re-disperse by shaking. [0034]
  • EXAMPLE 2
  • A one-liter pressure: resistive reactor equipped with a stirrer was charged with 500 ml of deionized water, 0.5 g of an ammonium salt of perfluoro(octanoic acid) and 0.05 g of polyoxyethylene lauryl ether, and steps of introduction of pressurized nitrogen gas and deaeration were repeated to remove the dissolved air. The inside pressure of the reactor was then raised to 8 kgf/cm[0035] 2 (gauge pressure) at 60° C. by using a VdF/TFE monomer mixture (80/20% by mole). Then 0.05 g of ammonium persulfate was added, the above-mentioned monomer mixture was continuously supplied to maintain the inside pressure of the reactor constant at 8 kgf/cm2 (gauge pressure), and the reaction was carried out for 20 hours. Afterwards the reaction system was rendered to normal temperature and normal pressure, and thereby the reaction was terminated. The intrinsic viscosity [η] of the obtained VdF/TFE copolymer in a methyl ethyl ketone (MEK) solution at 35° C. was 1.43. The measured characteristic values of the obtained aqueous dispersion are shown in TABLE 1.
  • EXAMPLE 3
  • A one-liter pressure resistive reactor equipped with a stirrer was charged with 500 ml of deionized water, 0.5 g of an ammonium salt of perfluoro(octanoic acid) and 0.05 g of polyoxyethylene lauryl ether, and steps of introduction of pressurized nitrogen gas and deaeration were repeated to remove the dissolved air. The inside pressure of the reactor was then raised to 8 kgf/cm[0036] 2 (gauge pressure) at 60° C. by using a VdF/TFE/HFP monomer mixture (72/20/8% by mole). Then 0.2 g of ammonium persulfate was added, the above-mentioned monomer mixture was continuously supplied to maintain the inside pressure of the reactor constant at 8 kgf/cm2 (gauge pressure), and the reaction was carried out for 38 hours. Afterwards the reaction system was rendered to normal temperature and normal pressure, and thereby the reaction was terminated. The intrinsic viscosity [η] of the obtained VdF/TFE/HFP copolymer in an MEK solvent at 35° C. was 1.08. The measured characteristic values of the obtained aqueous dispersion are shown in TABLE 1.
  • EXAMPLE 4
  • A one-liter pressure resistive reactor equipped with a stirrer was charged with 500 ml of deionized water, 0.5 g of an ammonium salt of perfluoro(octanoic acid) and 0.05 g of polyoxyethylene lauryl ether, and steps of introduction of pressurized nitrogen gas and deaeration were repeated to remove the dissolved air. The inside pressure of the reactor was raised to 8 kgf/cm[0037] 2 (gauge pressure) at 60° C. by using a VdF/TFE/CTFE monomer mixture (75/15/10% by mole). Then 0.2 g of ammonium persulfate was added, the above-mentioned monomer mixture was continuously supplied to maintain the inside pressure of the reactor constant at 8 kgf/cm2 (gauge pressure), and the reaction was carried out for 40 hours. Afterwards the reaction system was rendered to normal temperature and normal pressure, and thereby the reaction was terminated. The intrinsic viscosity [η] of the obtained VdF/TFE/CTFE copolymer in an MEK solvent at 35° C. was 1.20. The measured characteristic values of the obtained aqueous dispersion are shown in TABLE 1.
  • COMPARATIVE EXAMPLES 1 TO 4
  • Aqueous dispersions of the VdF polymer were prepared in the same manner as in EXAMPLES 1 to 4 except that the nonionic non-fluorine-containing surfactant was not used and the amount of the fluorine-containing surfactant was changed as shown in TABLE 1. The measured characteristic values of the obtained aqueous dispersions are shown in TABLE 1. [0038]
  • COMPARATIVE EXAMPLE 5
  • An aqueous dispersion of the VdF polymer was prepared in the same manner as in EXAMPLE 3 except that CTFE was used instead of HFP and the amount of the fluorine-containing surfactant was changed as shown in TABLE 1. The measured characteristic values of the obtained aqueous dispersion are shown in TABLE 1. As shown in TABLE 1, these characteristics were preferable, but there was found precipitation of the fluorine-containing surfactant at drying the formed film. [0039]
    TABLE 1
    Com. Com. Com. Com. Com.
    Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5
    Monomer VdF*1 100 80 72 75 100 80 72 75 72
    (% by mole) TFE*2 20 20 15 20 20 15 20
    HFP*3 8 8
    CTFE*4 10 10 8
    Surfactant Fluorine- PFOA*5 PFOA PFOA PFOA PFOA PFOA PFOA PFOA PFOA
    (% by weight) containing (0.1) (0.1) (0.1) (0.1) (1.0) (1.0) (1.0) (0.1) (2.0)
    type
    Nonionic MYS40*6 MYS40 MYS40 MYS40
    non-fluorine- (0.01) (0.01) (0.01) (0.01)
    containing type
    Aqueous Solid content 30.1 32.1 33.4 42.0 18.5 24.6 32.0 34.6 31.5
    dispersion (% by weight)
    Particle size 180.5 167.3 125.9 165.0 231.7 269.2 234.5 320.1 196.3
    (nm)
    Stability against Δ X X X
    sedimentation
  • INDUSTRIAL APPLICABILITY
  • The aqueous dispersion of the VdF polymer of the present invention is excellent in stability against sedimentation notwithstanding a small amount of a surfactant and can provide coating films excellent in water resistance and leveling property. According to the preparation process of the present invention, the above-mentioned aqueous dispersion can be prepared easily by using a trace amount of a nonionic non-fluorine-containing surfactant even if the amount of a fluorine-containing surfactant is decreased greatly. [0040]

Claims (3)

1. An aqueos dispersion of a vinylidene fluoride polymer, which comprises a vinylidene fluoride wherein a solid content is from 30 to 50% by weight and a content of a fluorine-containing surfactant is not more that 1% by weight on the basis of water.
2. The aqueous dispersion of the vinylidene fluoride polymer of claim 1, which contains 0.001 to 0.1% by weight of a nonionic non-fluorine-containing surfactant on the basis of water.
3. A process for preparing the aqueous dispersion of the vinylidene fluoride polymer of claim 1 or 2, wherein vinylidene fluoride monomer or a monomer mixture containing vinylidene fluoride is emulsion-polymerized under coexistence of not more than 1% by weight of a fluorine-containing surfactant on the basis of water and 0.001 to 0.1% by weight of a nonionic non-fluorine-containing surfactant on the basis of water.
US10/870,065 1993-09-20 2004-06-18 Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof Abandoned US20040242755A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/870,065 US20040242755A1 (en) 1993-09-20 2004-06-18 Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP23385893A JP3172983B2 (en) 1993-09-20 1993-09-20 Aqueous dispersion of vinylidene fluoride polymer and process for producing the same
JP233858/1993 1993-09-20
US08/612,865 US5925705A (en) 1993-09-20 1994-09-16 Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof
US09/095,842 US20010007889A1 (en) 1993-09-20 1998-06-11 Aqueous dispersion of vinylidene fluoride polymer and preparation process therof
US10/870,065 US20040242755A1 (en) 1993-09-20 2004-06-18 Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/095,842 Division US20010007889A1 (en) 1993-09-20 1998-06-11 Aqueous dispersion of vinylidene fluoride polymer and preparation process therof

Publications (1)

Publication Number Publication Date
US20040242755A1 true US20040242755A1 (en) 2004-12-02

Family

ID=16961678

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/612,865 Expired - Lifetime US5925705A (en) 1993-09-20 1994-09-16 Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof
US09/095,842 Abandoned US20010007889A1 (en) 1993-09-20 1998-06-11 Aqueous dispersion of vinylidene fluoride polymer and preparation process therof
US10/870,065 Abandoned US20040242755A1 (en) 1993-09-20 2004-06-18 Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof
US11/370,938 Abandoned US20060173117A1 (en) 1993-09-20 2006-03-09 Acqueous dispersion of vinylidene flouride polymer and preparation process thereof

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/612,865 Expired - Lifetime US5925705A (en) 1993-09-20 1994-09-16 Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof
US09/095,842 Abandoned US20010007889A1 (en) 1993-09-20 1998-06-11 Aqueous dispersion of vinylidene fluoride polymer and preparation process therof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/370,938 Abandoned US20060173117A1 (en) 1993-09-20 2006-03-09 Acqueous dispersion of vinylidene flouride polymer and preparation process thereof

Country Status (7)

Country Link
US (4) US5925705A (en)
EP (1) EP0721974B1 (en)
JP (1) JP3172983B2 (en)
KR (1) KR100301144B1 (en)
DE (1) DE69419617T2 (en)
TW (1) TW293826B (en)
WO (1) WO1995008598A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070117914A1 (en) * 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070149695A1 (en) * 2005-12-23 2007-06-28 Klaus Hintzer Fluoropolymer dispersion and method for making the same
US20090105725A1 (en) * 2005-09-27 2009-04-23 Integra Radionics, Inc. Stereotactic head frame localizer
US7671112B2 (en) 2005-07-15 2010-03-02 3M Innovative Properties Company Method of making fluoropolymer dispersion
US7754795B2 (en) 2006-05-25 2010-07-13 3M Innovative Properties Company Coating composition
US7776946B2 (en) 2005-07-15 2010-08-17 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US7838608B2 (en) 2005-12-21 2010-11-23 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
US20110124782A1 (en) * 2008-07-18 2011-05-26 Dams Rudolf J Fluorinated ether compounds and methods of using the same
US8119750B2 (en) 2006-07-13 2012-02-21 3M Innovative Properties Company Explosion taming surfactants for the production of perfluoropolymers
US8338517B2 (en) 2007-05-23 2012-12-25 3M Innovative Properties Company Aqueous compositions of fluorinated surfactants and methods of using the same
US8404790B2 (en) 2005-07-15 2013-03-26 3M Innovative Properties Company Aqueous emulsion polymerization process for producing fluoropolymers
US8476385B2 (en) 2007-06-06 2013-07-02 3M Innovative Properties Company Fluorinated ether compositions and methods of using the same
US8598267B2 (en) 2001-09-05 2013-12-03 3M Innovative Properties Company Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant
US8629089B2 (en) 2008-12-18 2014-01-14 3M Innovative Properties Company Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions
US10202496B2 (en) 2013-12-03 2019-02-12 Toray Industries, Inc. Polyvinylidene fluoride resin particles and method for producing same

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169139B1 (en) 1998-04-27 2001-01-02 Dupont Dow Elastomers Llc Fluoroelastomer latex
DE19857111A1 (en) 1998-12-11 2000-06-15 Dyneon Gmbh Aqueous dispersions of fluoropolymers
DE10232379B4 (en) * 2002-07-17 2006-09-14 Dilo Trading Ag Electrically conductive adhesion promoter, electrode, process for its production and secondary battery
US6841616B2 (en) 2003-03-28 2005-01-11 Arkema Inc. Polymerization of halogen-containing monomers using siloxane surfactant
US6869997B2 (en) 2003-05-06 2005-03-22 Arkema, Inc. Polymerization of fluoromonomers using a 3-allyloxy-2-hydroxy-1-propanesulfonic acid salt as surfactant
CN100404566C (en) * 2003-10-22 2008-07-23 大金工业株式会社 Aqueous tetrafluoroethylene polymer dispersion, process for producing the same, tetrafluoroethylene polymer powder, and molded tetrafluoroethylene polymer
US7122610B2 (en) * 2004-04-27 2006-10-17 Arkema Inc. Method of producing thermoplastic fluoropolymers using alkyl sulfonate surfactants
ITMI20050007A1 (en) 2005-01-05 2006-07-06 Solvay Solexis Spa USE OF VDF-BASED POLYMER DISPERSIONS IN THE PREPARATION OF PAINTS FOR ARCHITECTURAL SUBSTRATE COATINGS
US7803867B2 (en) 2005-05-19 2010-09-28 Arkema Inc. Highly weatherable roof coatings containing aqueous fluoropolymer dispersions
US20060281845A1 (en) * 2005-06-10 2006-12-14 Ramin Amin-Sanayei Aqueous process for making fluoropolymers
US8338518B2 (en) * 2005-06-10 2012-12-25 Arkema Inc. Aqueous process for making a stable fluoropolymer dispersion
US8124699B2 (en) 2005-08-08 2012-02-28 Arkema Inc. Polymerization of fluoropolymers using alkyl phosphonate surfactants
JP5375095B2 (en) * 2006-08-31 2013-12-25 旭硝子株式会社 Method for producing perfluorocarboxylate, method for producing perfluorocarboxylate aqueous solution, method for producing homopolymer or copolymer of tetrafluoroethylene
JP5439186B2 (en) * 2006-11-09 2014-03-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aqueous polymerization of fluorinated monomers using a polymeric agent containing a fluoropolyether acid or salt and a hydrocarbon surfactant.
EP2087017B1 (en) 2006-11-09 2011-05-25 E.I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
WO2008060462A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and siloxane surfactant
US9040646B2 (en) * 2007-10-04 2015-05-26 W. L. Gore & Associates, Inc. Expandable TFE copolymers, methods of making, and porous, expanded articles thereof
US9650479B2 (en) 2007-10-04 2017-05-16 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
US8637144B2 (en) * 2007-10-04 2014-01-28 W. L. Gore & Associates, Inc. Expandable TFE copolymers, method of making, and porous, expended articles thereof
WO2009126504A2 (en) * 2008-04-07 2009-10-15 Arkema Inc. Polymerization of fluoropolymers using polycaprolactone
US20090281241A1 (en) * 2008-05-09 2009-11-12 E. I. Du Pont De Nemours And Company Aqueous Polymerization of Fluorinated Monomer Using a Mixture of Fluoropolyether Acids or Salts
WO2010075495A1 (en) 2008-12-23 2010-07-01 E. I. Du Pont De Nemours And Company Fluorinated ionomer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US8835547B2 (en) 2008-12-23 2014-09-16 E I Du Pont De Nemours And Company Fluoropolymer particles having a nucleus of fluorinated ionomer
US8058376B2 (en) 2008-12-23 2011-11-15 E. I. Du Pont De Nemours And Company Fluoropolymer produced by aqueous polymerization using dispersed particulate of fluorinated lonomer produced in situ
US8153738B2 (en) 2008-12-23 2012-04-10 E I Du Pont De Nemours And Company Fluoropolymer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US8436053B2 (en) * 2008-12-23 2013-05-07 E.I. Du Pont De Nemours And Company Fluorinated ionomer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US8436054B2 (en) * 2008-12-23 2013-05-07 E I Du Pont De Nemours And Company Fluorinated ionomer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer produced in situ
WO2012030784A1 (en) 2010-09-01 2012-03-08 Arkema Inc. Method of producing fluoropolymers using acid-functionalized monomers
CN106188353B (en) 2010-11-09 2018-08-31 科慕埃弗西有限公司 Use the aqueous polymerization of the fluorochemical monomer of hydrocarbon surfactants
JP6201236B2 (en) 2010-11-09 2017-09-27 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Nucleation in aqueous polymerization of fluoromonomers.
WO2012064858A1 (en) 2010-11-09 2012-05-18 E. I. Du Pont De Nemours And Company Reducing the telogenic behavior of hydrocarbon-containing surfactants in aqueous dispersion fluoromonomer polymerization
JP5730093B2 (en) * 2011-03-28 2015-06-03 株式会社クレハ Method for producing vinylidene fluoride polymer
JP6097492B2 (en) * 2012-06-04 2017-03-15 株式会社遠藤照明 Straight tube LED lamp and lighting apparatus using the same
JP5904209B2 (en) 2012-08-30 2016-04-13 東レ株式会社 Method for producing vinylidene fluoride resin fine particles, and vinylidene fluoride resin fine particles
CN106414510B (en) 2013-11-26 2018-11-30 得凯莫斯公司弗罗里达有限公司 It is nucleated in the aqueous polymerization of fluorochemical monomer using polyalkylene oxide
US9644054B2 (en) 2014-12-19 2017-05-09 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
US11254765B2 (en) * 2017-09-27 2022-02-22 Arkema Inc. Polymers of haloalkyl and haloalkenyl ether (meth)acrylates
KR102120447B1 (en) * 2017-11-22 2020-06-09 한국화학연구원 The method for preparation of polyvinylidene fluoride nanoparticle using poly(ethylene glycol)s and the polyvinylidene fluoride nanoparticle thereby
WO2021149022A1 (en) * 2020-01-24 2021-07-29 Gujarat Fluorochemicals Limited Process for polymerizing fluoromonomers using a combination of fluorinated and non-fluorinated surfactant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708463A (en) * 1971-03-18 1973-01-02 Diamond Shamrock Corp Process for preparing vinylidene fluoride polymers for coating applications
US3857827A (en) * 1974-01-25 1974-12-31 Pennwalt Corp Method of preparing high-quality vinylidene fluoride polymer in aqueous emulsion
US4025709A (en) * 1974-09-24 1977-05-24 Produits Chimiques Ugine Kuhlmann Process for the polymerization of vinylidene fluoride
US4076929A (en) * 1975-10-30 1978-02-28 Pennwalt Corporation Vinylidene fluoride polymer having improved melt flow properties
US4360652A (en) * 1981-08-31 1982-11-23 Pennwalt Corporation Method of preparing high quality vinylidene fluoride polymer in aqueous emulsion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841917A (en) * 1957-02-01 1960-07-20 Du Pont Improvements in or relating to coating compositions
JPS51144433A (en) * 1975-06-06 1976-12-11 Kureha Chem Ind Co Ltd Coating process with vinylidene fluoride resin and its paint
US4342675A (en) * 1978-06-16 1982-08-03 E. I. Du Pont De Nemours And Company Process for preparing aqueous dispersion of polytetrafluoroethylene
JPS5740866A (en) * 1980-08-22 1982-03-06 Matsushita Electric Ind Co Ltd Manufacture of sintered electrode
JPS5834814A (en) * 1981-08-24 1983-03-01 Daikin Ind Ltd Polymerization of vinylidene fluoride
JPS6152842A (en) * 1984-08-24 1986-03-15 松下電器産業株式会社 Indicator of electric cleaner
IT1204903B (en) * 1986-06-26 1989-03-10 Ausimont Spa POLYMERIZATION PROCESS IN WATER DISPERSION OF FLORATED MONOMERS
JP2993002B2 (en) * 1989-02-23 1999-12-20 ダイキン工業株式会社 Aqueous composition of vinylidene fluoride polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708463A (en) * 1971-03-18 1973-01-02 Diamond Shamrock Corp Process for preparing vinylidene fluoride polymers for coating applications
US3857827A (en) * 1974-01-25 1974-12-31 Pennwalt Corp Method of preparing high-quality vinylidene fluoride polymer in aqueous emulsion
US4025709A (en) * 1974-09-24 1977-05-24 Produits Chimiques Ugine Kuhlmann Process for the polymerization of vinylidene fluoride
US4076929A (en) * 1975-10-30 1978-02-28 Pennwalt Corporation Vinylidene fluoride polymer having improved melt flow properties
US4360652A (en) * 1981-08-31 1982-11-23 Pennwalt Corporation Method of preparing high quality vinylidene fluoride polymer in aqueous emulsion

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598267B2 (en) 2001-09-05 2013-12-03 3M Innovative Properties Company Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant
US8222322B2 (en) 2005-07-15 2012-07-17 3M Innovative Properties Company Method of making fluoropolymer dispersion
US8614265B2 (en) 2005-07-15 2013-12-24 3M Innovative Properties Company Method of making fluoropolymer dispersion
US7671112B2 (en) 2005-07-15 2010-03-02 3M Innovative Properties Company Method of making fluoropolymer dispersion
US7776946B2 (en) 2005-07-15 2010-08-17 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US8404790B2 (en) 2005-07-15 2013-03-26 3M Innovative Properties Company Aqueous emulsion polymerization process for producing fluoropolymers
US20090105725A1 (en) * 2005-09-27 2009-04-23 Integra Radionics, Inc. Stereotactic head frame localizer
US7659333B2 (en) 2005-11-24 2010-02-09 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070117914A1 (en) * 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US7838608B2 (en) 2005-12-21 2010-11-23 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
US7728087B2 (en) 2005-12-23 2010-06-01 3M Innovative Properties Company Fluoropolymer dispersion and method for making the same
US20070149695A1 (en) * 2005-12-23 2007-06-28 Klaus Hintzer Fluoropolymer dispersion and method for making the same
US7754795B2 (en) 2006-05-25 2010-07-13 3M Innovative Properties Company Coating composition
US8119750B2 (en) 2006-07-13 2012-02-21 3M Innovative Properties Company Explosion taming surfactants for the production of perfluoropolymers
US8338517B2 (en) 2007-05-23 2012-12-25 3M Innovative Properties Company Aqueous compositions of fluorinated surfactants and methods of using the same
US8476385B2 (en) 2007-06-06 2013-07-02 3M Innovative Properties Company Fluorinated ether compositions and methods of using the same
US20110124782A1 (en) * 2008-07-18 2011-05-26 Dams Rudolf J Fluorinated ether compounds and methods of using the same
US8633288B2 (en) * 2008-07-18 2014-01-21 3M Innovative Properties Company Fluorinated ether compounds and methods of using the same
US8629089B2 (en) 2008-12-18 2014-01-14 3M Innovative Properties Company Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions
US10202496B2 (en) 2013-12-03 2019-02-12 Toray Industries, Inc. Polyvinylidene fluoride resin particles and method for producing same

Also Published As

Publication number Publication date
KR100301144B1 (en) 2002-10-25
KR960704990A (en) 1996-10-09
US20010007889A1 (en) 2001-07-12
TW293826B (en) 1996-12-21
US20060173117A1 (en) 2006-08-03
JP3172983B2 (en) 2001-06-04
US5925705A (en) 1999-07-20
EP0721974A4 (en) 1997-08-20
JPH0790153A (en) 1995-04-04
EP0721974B1 (en) 1999-07-21
DE69419617T2 (en) 1999-12-09
WO1995008598A1 (en) 1995-03-30
DE69419617D1 (en) 1999-08-26
EP0721974A1 (en) 1996-07-17

Similar Documents

Publication Publication Date Title
US5925705A (en) Aqueous dispersion of vinylidene fluoride polymer and preparation process thereof
US5804650A (en) Aqueous dispersion of vinylidene fluoride copolymer, aqueous dispersion of vinylidene fluoride seed polymer and processes for preparation of the same
US5646201A (en) Aqueous dispersion of fluorine-containing copolymer
US8080621B2 (en) Aqueous process for making fluoropolymers
CN101223228B (en) Aqueous process for making a stable fluoropolymer dispersion
CN100404566C (en) Aqueous tetrafluoroethylene polymer dispersion, process for producing the same, tetrafluoroethylene polymer powder, and molded tetrafluoroethylene polymer
US11414506B2 (en) Process for manufacturing a fluoropolymer
US20070142513A1 (en) Surfactant, method of producing a fluoropolymer, fluoropolymer aqueous dispersion
ZA200504411B (en) Emulsifier free aqueous emulsion polymerization toproduce copolymers of a fluorinated olefin and hy drocarbon olefin.
US8765890B2 (en) Aqueous process for making fluoropolymers
EP0670353B1 (en) Poly(vinylidene fluoride) blends and their use for formulating high gloss paints
JP3304788B2 (en) Fluorinated resin aqueous dispersion
US7678859B2 (en) Preparation and stabilization of fluoropolymer dispersions
JP3870457B2 (en) Fluorine-containing copolymer aqueous dispersion
JP3255334B2 (en) Method for producing aqueous fluororesin dispersion
JP2817249B2 (en) Method for producing aqueous dispersion and aqueous coating composition
JPH07179809A (en) Aqueous dispersion of fluorine compound
JPH0753646A (en) Fluorine-containing aqueous dispersion
JPH0388882A (en) Aqueous coating composition
JPH05117481A (en) Aqueous dispersion

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION