US20130263546A1 - Building panel with compressed edges and method of making same - Google Patents

Building panel with compressed edges and method of making same Download PDF

Info

Publication number
US20130263546A1
US20130263546A1 US13/853,722 US201313853722A US2013263546A1 US 20130263546 A1 US20130263546 A1 US 20130263546A1 US 201313853722 A US201313853722 A US 201313853722A US 2013263546 A1 US2013263546 A1 US 2013263546A1
Authority
US
United States
Prior art keywords
edge
floorboard
core
curved edge
horizontal plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/853,722
Inventor
Darko Pervan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valinge Innovation AB
Original Assignee
Valinge Innovation AB
Valinge Aluminium AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valinge Innovation AB, Valinge Aluminium AB filed Critical Valinge Innovation AB
Priority to US13/853,722 priority Critical patent/US20130263546A1/en
Assigned to VALINGE ALUMINIUM AB reassignment VALINGE ALUMINIUM AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PERVAN, DARKO
Assigned to VALINGE INNOVATION BELGIUM BVBA reassignment VALINGE INNOVATION BELGIUM BVBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VALINGE INNOVATION AB
Assigned to VALINGE INNOVATION BELGIUM BVBA reassignment VALINGE INNOVATION BELGIUM BVBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CERALOC INNOVATION BELGIUM BVBA
Assigned to VALINGE INNOVATION AB reassignment VALINGE INNOVATION AB CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: VALINGE ALUMINIUM AB
Assigned to CERALOC INNOVATION BELGIUM BVBA reassignment CERALOC INNOVATION BELGIUM BVBA CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: VALINGE INNOVATION BELGIUM BVBA
Assigned to VALINGE INNOVATION AB reassignment VALINGE INNOVATION AB NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: VALINGE INNOVATION BELGIUM BVBA
Publication of US20130263546A1 publication Critical patent/US20130263546A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N7/00After-treatment, e.g. reducing swelling or shrinkage, surfacing; Protecting the edges of boards against access of humidity
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/02038Flooring or floor layers composed of a number of similar elements characterised by tongue and groove connections between neighbouring flooring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/04Ornamental plaques, e.g. decorative panels, decorative veneers
    • B44C5/0469Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature

Definitions

  • the present invention generally relates to building panels, especially floorboards, which have a wood fiber based core, a surface layer and compressed curved edge portions. More particularly, the present invention relates to interlocked building panels with compressed edge portions located below the panel surface. The invention relates to panels with such edge portions and to a method to produce such panels.
  • the present invention is particularly suitable for use in floating floors, which are formed of floorboards comprising a wood fiber based core with a surface layer and which are preferably joined mechanically with a locking system integrated with the floorboard.
  • a floorboard with a mechanical locking system has a rather advanced edge profile and curved edge portion are more difficult produce than in traditional furniture components.
  • the invention can be used in optional floorboards with optional locking systems, where the floorboards have a core and at least one surface layer and where these two parts are possible to be formed with a pressure force applied to the surface layer.
  • the invention can thus also be applicable to, for instance, floors with one or more surface layers of wood applied on a wood fiber core.
  • the present invention could also be used in building panels i.e. wall panels, ceilings and floor strips such as dilatation profiles, transition profiles or finishing profiles.
  • the visible surface of the installed floorboard is called “front side”, while the opposite side is called “rear side”.
  • “Horizontal plane” relates to a plane, which extends along the outer flat parts of the surface layer at the front side.
  • “Vertical plane” relates to a plane, which is perpendicular to the horizontal plane and at an outer edge of the surface layer. By “up” is meant towards front side, by “down” towards rear side, by “vertical” parallel with the vertical plane and by “horizontal” parallel with the horizontal plane.
  • edge portion is meant a part of the edge, which is below the horizontal plane.
  • floor surface is meant the outer flat parts of the surface layer along the horizontal plane.
  • edge surface is meant the surface of the edge portion.
  • locking system is meant cooperating connecting means, which interconnect the floorboards vertically and/or horizontally.
  • mechanical locking system is meant that joining can take place without glue.
  • Laminate floors and other similar floorboards are made up of one or more upper layers of decorative laminate, decorative plastic material or wood veneer, an intermediate core of wood fiber based material or plastic material and preferably a lower balancing layer on the rear side of the core.
  • Laminate flooring usually consists of a core of a 6-9 mm fiberboard, a 0.2-0.8 mm thick upper decorative surface layer of laminate and a 0.1-0.6 mm thick lower balancing layer of laminate, plastic, paper or like material.
  • the surface layer provides appearance and durability to the floorboards.
  • the core provides stability, and the balancing layer keeps the board plane when the relative humidity (RH) varies during the year.
  • the floorboards are laid floating, i.e. without gluing, on an existing subfloor. Traditional hard floorboards in floating flooring of this type are usually joined by means of glued tongue-and-groove joints.
  • floorboards In addition to such traditional floors, floorboards have been developed which do not require the use of glue and instead are joined mechanically by means of so-called mechanical locking systems. These systems comprise locking means, which lock the boards horizontally and vertically.
  • the mechanical locking systems can be formed by machining of the core. Alternatively, parts of the locking system can be formed of a separate material, which is integrated with the floorboard, i.e., joined with the floorboard in connection with the manufacture thereof.
  • the most common core material is a fiberboard with high density and good stability, usually called HDF—High Density Fiberboard. Sometimes also MDF Medium Density Fiberboard is used as core. MDF and HDF contain ground wood fibers, which by means of binding agents are combined into a sheet material.
  • Laminate flooring and also many other floorings with a surface layer of plastic, wood, veneer, cork and the like are produced in several steps.
  • the surface layer and the balancing layer is produced in a separate step and are then applied to a core material by for example gluing a previously manufactured decorative layer and balancing layer to a fiberboard.
  • a production process is used when a floor panel has a surface of a decorative high pressure laminate (HPL) which is made in a separate operation where a plurality of sheets of paper impregnated with a thermosetting resin, such as melamine and/or phenol are compressed under high pressure and at a high temperature.
  • HPL decorative high pressure laminate
  • DPL direct pressure laminate
  • FIGS. 1 a - 1 d shows how laminate flooring is produced according to known technology.
  • the above methods result in a floor element ( 3 in FIG. 1 b ) in the form of a large laminated board, which is then sawn into several individual floor panels ( 2 in FIG. 1 c ), which are then machined to floorboards ( 1 in FIG. 1 d ).
  • the floor panels are individually machined along their edges to floorboards with mechanical locking systems on the edges.
  • the machining of the edges is carried out in advanced milling machines where the floor panel is exactly positioned between one or more chains and belts or similar, so that the floor panel can be moved at high speed and with great accuracy past a number of milling motors, which are provided with diamond cutting tools or metal cutting tools, which machine the edge of the floor panel.
  • milling motors which are provided with diamond cutting tools or metal cutting tools, which machine the edge of the floor panel.
  • the upper edges of the floorboards are in most cases very sharp and perpendicular to the floor surface and in the same plane as the floor surface.
  • FIGS. 2 a and 2 b The starting material is a decorative paper with printed edge portions which is impregnated with melamine resin. Uncontrolled swelling takes place in this operation.
  • the decorative impregnated paper is placed on a core and lamination takes place against an embossed metal sheet, which forms a depression ( 20 ) in those parts of the floor element ( 3 ) where edge portions are to be formed.
  • FIG. 2 a The result is a floor element ( 1 , 1 ′) whose front side has an embedded or embossed edge pattern corresponding to the intended edge portions between floorboards, as shown in FIG. 2 b.
  • This manufacturing method suffers from a number of problems, which are above all related to difficulties in positioning the decorative paper and metal sheets in connection with laminating and the difficulty in positioning floor element and floor panels in the subsequent sawing and machining of the edges.
  • the result is a floor panel with edge portions, which show considerable and undesired variations in structure and design as shown in FIG. 2 b .
  • Another problem is that this method is only suitable for embossed textures which are less than about 0.2 mm deep and which cannot be made deeper than the thickness of the surface layer. Further disadvantages are that although the edge is below the floor surface, it is sharp and parallel with the surface.
  • FIGS. 2 c and 2 d show another method.
  • Decorative edge portions could be made in connection with the machining of the edges of the floor panel 1 , 1 ′. Laminating and sawing of the floor element ( 3 ) can then take place without any specific requirements as to alignment, and swelling problems do not occur.
  • the decorative and embedded edge portion can be provided by part of the decorative surface layer being removed so that the reinforcing layer of the laminate becomes visible ( FIG. 2 d ).
  • the core ( 30 ) itself can be used to create the decorative embedded edge portion. This is shown in FIG. 3 a .
  • the surface layer has been removed and the core ( 30 ) is uncovered within areas that are to constitute the decorative edge portion ( 20 ).
  • a decorative grove could be made on only one edge as shown in FIG. 3 a.
  • FIG. 3 b The most common method is shown in FIG. 3 b .
  • a part of the edge portion of a floorboard ( 1 , 1 ′) has been formed as a bevel 20 and this bevel is than in a separate operation covered with a separate material such as a tape, a plastic strip or it could be colored, printed etc.
  • Separate materials are complicated and costly to apply and it is not possible to make an edge portion with the same design and structure as the floor surface.
  • Such edge portion has considerable lower abrasion resistance and inferior moisture properties than the floor surface.
  • the production method is rather slow and several application unites are needed to meet the speed of a modern production line for laminate floorings.
  • FIG. 3 c Another method is shown in FIG. 3 c .
  • the edge portion ( 20 ) is formed in a separate material, which has been inserted or extruded into a groove. This method has the same disadvantages as the method described above.
  • FIG. 3 d show that a rounded edge portion ( 20 ) could be produced with the well-known postforming method used for furniture components.
  • a postforming laminate surface ( 31 ) of HPL which is so flexible that it can be formed after the production of the laminated sheet, could be glued to an already machined floorboard ( 1 ).
  • the edge In a second production step the edge could be heated and the laminate could be bent and glued around the edge portion. This method would be very complicated, costly and is not used in laminate floorings.
  • An objective of this invention is to provide building panels, especially floorboards, with curved edge portions made in one piece with the surface layer, which could be produced more efficiently than present products on the market.
  • An additional purpose is to provide such panels with edge portions, which have improved design and abrasion properties.
  • a floorboard is provided, with locking system, a wood fiber based core and a surface layer arranged on the upper side of the core.
  • the outer flat parts of the surface layer constituting a floor surface and a horizontal plane.
  • a plane, perpendicular to the horizontal plane and at the edge of the surface layer, constitutes a vertical plane.
  • the floorboard has an edge portion with an edge surface, which is located under the horizontal plane.
  • the edge surface at the vertical plane is at a distance from the horizontal plane which constitutes an edge depth and which exceeds the thickness of the surface layer.
  • the floor surface and the edge surface are made in one piece of the same material.
  • a part of the core in the edge portion under the edge surface adjacent to the vertical plane and at a vertical distance from the edge surface has a higher density than a part of the core under the floor surface adjacent to the edge portion and at the same vertical distance from the floor surface.
  • a method is provided to make a floorboard, with a locking system, a wood fiber based core and a surface layer arranged on the upper side of the core.
  • the outer flat parts of the surface layer constituting a floor surface and a horizontal plane.
  • the floorboard has an edge portion with an edge surface, which is located under the horizontal plane. The method comprises the steps of:
  • a method is provided to make a building panel, with a wood fiber based core and a surface layer arranged on the upper side of the core.
  • the outer flat parts of the surface layer constituting a panel surface and a horizontal plane.
  • the panel has an edge portion with an edge surface, which is located under the horizontal plane.
  • FIGS. 1 a - 1 d illustrate in different steps manufacture of a floorboard according to known technology.
  • FIGS. 2 a - 2 d illustrate production methods to form edge portions according to known technology.
  • FIGS. 3 a - 3 d illustrate examples of different ways of manufacture of edge portions.
  • FIGS. 4 a - 4 d illustrate press forming of an edge portion according to an embodiment of the invention.
  • FIGS. 5 a - 5 c illustrate different properties of a convex curved edge portion according to embodiments of the invention.
  • FIGS. 6 a - 6 b illustrate alternative methods to form embodiments of the invention.
  • FIG. 7 illustrates a dilatation profile according to an embodiment of the invention.
  • FIG. 8 illustrates an edge portion with a curved edge surface.
  • FIGS. 4 a - 4 c show in four steps the manufacture of floorboards according to one embodiment of the invention.
  • FIG. 4 a shows two opposite edges of two essentially similar floor panels 2 , 2 ′ which are intended to be joined together with a mechanical locking system.
  • the floorboards have a surface layer 31 of for example HPL, DPL or wood veneer, a core 30 of HDF and balancing layer 32 .
  • an edge groove 16 , 16 ′ is formed at the upper side of the edge and a part of the surface layer 31 is removed. This could be done in a separate operation or in connection with the sawing of the floor element 3 into floor panels 2 .
  • the surface layer 31 is laminate, at least a part of the edge groove 16 , 16 ′ and the surface layer 31 adjacent to the edge groove 16 , 16 ′ should preferably be heated with a suitable heating device H, such as for example heating nozzles which blow an even current of hot air.
  • the temperature should exceed 100 degrees C.
  • a preferable temperature is about 150-200 degrees C. In many applications a temperature of about 170 degrees C. gives the best result.
  • Normal laminate quality could be used as a surface layer 31 and no special post forming quality is needed.
  • the surface layer 31 is a wood veneer, heating is preferably not required.
  • the floor panel should preferably have a reference surface 17 , 17 ′ which could be used to position the floor panel correctly when edge portions and locking systems are formed. As shown in FIG.
  • the edge portions 20 , 20 ′ are then compressed with a compression tool TO which preferably is heated to similar temperatures as described above.
  • the compression tool TO could be a wheel and/or a pressure shoe or similar with a profile which preferably corresponds to the desired edge profile.
  • Several tools could be used to form the edge portion in several steps.
  • the fibers in the core will be permanently compressed, the fiber orientations will in most cases change and the density in the edge portion 20 will increase. A change in the fiber orientation might be difficult to detect in some core materials. Increased density could however be measured with great accuracy.
  • the edge portion 20 will be much stronger than traditional beveled edges in laminate flooring.
  • the abrasion resistance will be similar as in the floor surface and the visible edge portion will have the same design and structure as the floor surface.
  • the upper parts of the core 30 under the surface layer 31 which in a DPL flooring is impregnated with melamine and in a HPL flooring with glue, supports the laminate surface layer 31 during the bending and increases the flexibility of the laminate layer.
  • the advantage is that ordinary qualities of thermosetting decorative laminates, which are rather brittle, could be used.
  • HDF is particularly suitable for this kind of press forming with permanent compression according to the invention since the fiber structure and the binders, which are used in HDF, are ideal for this application.
  • a mechanical locking system with a tongue 10 and grove 9 for vertical locking and a strip 6 with a locking element 8 and a locking grove 12 for horizontal locking could easily be formed and positioned with high precision in relation to the compressed edge portions 20 , 20 ′.
  • the press forming of the edge portions 20 , 20 ′ is made on the floor panel 2 , which thereafter is machined to a floorboard 1 .
  • the advantage is that the forming of the mechanical locking system can be made with great accuracy and the press forming will not change the dimensions of the profile which in this embodiment is mainly the tongue 10 and the groove 9 .
  • FIG. 5 a shows a cross section of a panel edge according to the invention.
  • the floor panel 1 has a surface layer 31 of DPL with a surface thickness ST and an outer edge 51 .
  • the upper flat part of the surface layer 31 constitutes a horizontal plane HP and a floor surface 33 .
  • a plane perpendicular to the horizontal plane and at the outer edge 51 of the surface layer 31 constitutes a vertical plane VP.
  • the convex curved edge portion 20 which is located under the horizontal plane HP and which extends to the vertical plane VP has an edge width EW, measured parallel with the horizontal plane HP and an edge surface 50 .
  • the edge portion 20 has an edge depth ED measured vertically from the horizontal plane HP, which is equal to the distance SD from the horizontal plane HP to the outer edge 51 at the vertical plane VP. As shown in FIG. 5 a the fibers in the edge portion 20 have been compressed and the fiber orientation have been changed such that the fibers are curved in the same direction as the edge surface 50 of the edge portion 20 .
  • Edge depth ED should preferably be larger than the surface layer thickness ST. In the most preferable embodiment edge depth ED should be larger than 2 or even 3 times the surface thickness ST. The method allows forming of edge portions 20 with edge depths ED exceeding 10 times the surface thickness ST.
  • edge width EW should preferably be larger than the edge depth ED. In the most preferable embodiment edge width EW should be larger than 2 times the edge depth ED.
  • the edge depth ED should preferably be larger than 0.1 times the floorboard thickness T.
  • the thickness ST of the surface layer 31 should be 0.1-0.01 times the floor thickness T.
  • FIG. 5 b shows the density D profile in a part (A-A) of a floorboard 1 which has not been compressed and
  • FIG. 5 c shows the density profile D in a compressed edge portion (B-B) of the same floorboard.
  • Density profiles could be measured extremely accurately with a gamma beam. The distance between measuring points could be as small as 0.04 mm.
  • the surface layer 31 of laminate which is about 0.2 mm thick, has a density of about 1300 kg/m3.
  • Below the surface layer 31 there is a core portion 52 which in connection with the direct pressure lamination has been impregnated with melamine and where the density varies between about 1200-1000 kg/m3.
  • Under this core portion 52 there is another portion 53 where the density is slightly higher than in the middle parts of the core 30 .
  • the average density is shown by the line AD. It should be emphasized that compression in wood fiber based board material always gives an increased density.
  • FIG. 5 c shows the density profile in a compressed part B-B of the edge portion 20 .
  • a part of the core 30 in the edge portion adjacent to the vertical plane VP and at a vertical distance SD from the surface layer 31 has a higher density D than a part of the core which is under the floor surface adjacent to the edge portion 20 and at the same vertical distance SD from the surface layer 31 .
  • FIG. 6 a shows an alternative method to form an edge portion 20 in a DPL flooring.
  • a floorboard 1 is produced with an edge groove 19 under the surface layer 31 .
  • the upper part of the edge grove 19 consist of the surface layer 31 and a part of the core 30 .
  • This upper part of the edge grove 19 is folded against the lover part of the edge grove 19 and both parts are pressed and glued together.
  • FIG. 6 b shows that this method could be used to form an edge portion of a floor panel which is than machined to a floorboard. Both these methods are more complicated than the press forming since glue and separate machining is required. This method could be partly combined with the press forming and the core could be compressed in connection with the gluing.
  • FIG. 7 shows a dilatation profile 4 with press formed edge portions 20 , 20 ′, according to the invention.
  • FIG. 8 shows a floorboard with edge portions 20 at opposite edges which are curved and where the outer adjacent parts of the edge surfaces 50 are essential parallel with the horizontal plane HP.
  • the invention is especially suitable to produce laminate floorings which look like solid wood floor strips with a width of about 5-10 cm and where compressed edge portions are only formed on the long sides.
  • Such floorboards could also easily be made in random lengths since long press formed floor panels could be produced which are thereafter machined and cut to floorboards in different lengths.
  • a floor which consists of such floorboards will have many curved edge portions 20 and only very cost efficient production methods such as press forming could be used in order to obtain production costs which are competitive and lower than similar solid wood floors.
  • the method to compress the core with a surface layer of a laminate floor element, floor panel or floorboard or a similar building element panel according to the invention could be used to form embossed portions on other parts than the edges.

Abstract

Floorboards comprising a core and a surface layer with curved edge portions, which are formed by a compression of the core.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. application Ser. No. 11/822,692, filed on Jul. 9, 2007, which is a continuation of U.S. application Ser. No. 10/906,356, filed on Feb. 15, 2005, now U.S. Pat. No. 8,215,078.
  • The entire contents of each of U.S. application Ser. No. 11/822,692 and U.S. application Ser. No. 10/906,356 are hereby incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention generally relates to building panels, especially floorboards, which have a wood fiber based core, a surface layer and compressed curved edge portions. More particularly, the present invention relates to interlocked building panels with compressed edge portions located below the panel surface. The invention relates to panels with such edge portions and to a method to produce such panels.
  • FIELD OF APPLICATION OF THE INVENTION
  • The present invention is particularly suitable for use in floating floors, which are formed of floorboards comprising a wood fiber based core with a surface layer and which are preferably joined mechanically with a locking system integrated with the floorboard. A floorboard with a mechanical locking system has a rather advanced edge profile and curved edge portion are more difficult produce than in traditional furniture components. The following description of prior-art technique, problems of known systems and objects and features of the invention will therefore, as a non-restrictive example, be aimed above all at this field and in particular to laminate flooring with mechanical locking systems. However, it should be emphasized that the invention can be used in optional floorboards with optional locking systems, where the floorboards have a core and at least one surface layer and where these two parts are possible to be formed with a pressure force applied to the surface layer. The invention can thus also be applicable to, for instance, floors with one or more surface layers of wood applied on a wood fiber core. The present invention could also be used in building panels i.e. wall panels, ceilings and floor strips such as dilatation profiles, transition profiles or finishing profiles.
  • Definitions of Some Terms
  • In the following text, the visible surface of the installed floorboard is called “front side”, while the opposite side is called “rear side”. “Horizontal plane” relates to a plane, which extends along the outer flat parts of the surface layer at the front side. “Vertical plane” relates to a plane, which is perpendicular to the horizontal plane and at an outer edge of the surface layer. By “up” is meant towards front side, by “down” towards rear side, by “vertical” parallel with the vertical plane and by “horizontal” parallel with the horizontal plane.
  • By “edge portion” is meant a part of the edge, which is below the horizontal plane. By “floor surface” is meant the outer flat parts of the surface layer along the horizontal plane. By “edge surface” is meant the surface of the edge portion. By “locking system” is meant cooperating connecting means, which interconnect the floorboards vertically and/or horizontally. By “mechanical locking system” is meant that joining can take place without glue.
  • Background of the Invention, Prior-Art Techniques and Problems Thereof
  • Laminate floors and other similar floorboards are made up of one or more upper layers of decorative laminate, decorative plastic material or wood veneer, an intermediate core of wood fiber based material or plastic material and preferably a lower balancing layer on the rear side of the core.
  • Laminate flooring usually consists of a core of a 6-9 mm fiberboard, a 0.2-0.8 mm thick upper decorative surface layer of laminate and a 0.1-0.6 mm thick lower balancing layer of laminate, plastic, paper or like material. The surface layer provides appearance and durability to the floorboards. The core provides stability, and the balancing layer keeps the board plane when the relative humidity (RH) varies during the year. The floorboards are laid floating, i.e. without gluing, on an existing subfloor. Traditional hard floorboards in floating flooring of this type are usually joined by means of glued tongue-and-groove joints.
  • In addition to such traditional floors, floorboards have been developed which do not require the use of glue and instead are joined mechanically by means of so-called mechanical locking systems. These systems comprise locking means, which lock the boards horizontally and vertically. The mechanical locking systems can be formed by machining of the core. Alternatively, parts of the locking system can be formed of a separate material, which is integrated with the floorboard, i.e., joined with the floorboard in connection with the manufacture thereof.
  • The most common core material is a fiberboard with high density and good stability, usually called HDF—High Density Fiberboard. Sometimes also MDF Medium Density Fiberboard is used as core. MDF and HDF contain ground wood fibers, which by means of binding agents are combined into a sheet material.
  • Laminate flooring and also many other floorings with a surface layer of plastic, wood, veneer, cork and the like are produced in several steps. As shown in FIG. 1 a-1 d the surface layer and the balancing layer is produced in a separate step and are then applied to a core material by for example gluing a previously manufactured decorative layer and balancing layer to a fiberboard. Such a production process is used when a floor panel has a surface of a decorative high pressure laminate (HPL) which is made in a separate operation where a plurality of sheets of paper impregnated with a thermosetting resin, such as melamine and/or phenol are compressed under high pressure and at a high temperature.
  • The currently most common method when making laminate flooring, however, is the direct pressure laminate (DPL) method which is based on a more modern principle where both manufacture of the decorative laminate layer and the fastening to the fiberboard take place in one and the same manufacturing step. One or more papers impregnated with a thermosetting resin such as melamine are applied directly to the board and pressed together under pressure and heat without any gluing.
  • FIGS. 1 a-1 d shows how laminate flooring is produced according to known technology. As a rule, the above methods result in a floor element (3 in FIG. 1 b) in the form of a large laminated board, which is then sawn into several individual floor panels (2 in FIG. 1 c), which are then machined to floorboards (1 in FIG. 1 d). The floor panels are individually machined along their edges to floorboards with mechanical locking systems on the edges. The machining of the edges is carried out in advanced milling machines where the floor panel is exactly positioned between one or more chains and belts or similar, so that the floor panel can be moved at high speed and with great accuracy past a number of milling motors, which are provided with diamond cutting tools or metal cutting tools, which machine the edge of the floor panel. By using several milling motors operating at different angles, advanced profiles can be formed at speeds exceeding 100 m/min and with an accuracy of .+−.0.02 mm.
  • The upper edges of the floorboards are in most cases very sharp and perpendicular to the floor surface and in the same plane as the floor surface.
  • Recently laminate floors have been developed with decorative grooves or bevels at the edges, which looks like a real gap or a bevel between solid wood floor such as planks or parquet strips.
  • It is known that such edges cold be made in several different ways.
  • In recent years, laminate floors, which are imitations of stones, tiles and the like, have become more and more common. It is known that the method which is used to manufacture decorative edge portions of such floors could also be used to produce edge portions which look like a gap in solid wood floors. This is shown in FIGS. 2 a and 2 b. The starting material is a decorative paper with printed edge portions which is impregnated with melamine resin. Uncontrolled swelling takes place in this operation. In the subsequent lamination, the decorative impregnated paper is placed on a core and lamination takes place against an embossed metal sheet, which forms a depression (20) in those parts of the floor element (3) where edge portions are to be formed. This is shown in FIG. 2 a. The result is a floor element (1,1′) whose front side has an embedded or embossed edge pattern corresponding to the intended edge portions between floorboards, as shown in FIG. 2 b.
  • This manufacturing method suffers from a number of problems, which are above all related to difficulties in positioning the decorative paper and metal sheets in connection with laminating and the difficulty in positioning floor element and floor panels in the subsequent sawing and machining of the edges. The result is a floor panel with edge portions, which show considerable and undesired variations in structure and design as shown in FIG. 2 b. Another problem is that this method is only suitable for embossed textures which are less than about 0.2 mm deep and which cannot be made deeper than the thickness of the surface layer. Further disadvantages are that although the edge is below the floor surface, it is sharp and parallel with the surface.
  • FIGS. 2 c and 2 d show another method. Decorative edge portions could be made in connection with the machining of the edges of the floor panel 1, 1′. Laminating and sawing of the floor element (3) can then take place without any specific requirements as to alignment, and swelling problems do not occur. The decorative and embedded edge portion can be provided by part of the decorative surface layer being removed so that the reinforcing layer of the laminate becomes visible (FIG. 2 d). Alternatively, the core (30) itself can be used to create the decorative embedded edge portion. This is shown in FIG. 3 a. The surface layer has been removed and the core (30) is uncovered within areas that are to constitute the decorative edge portion (20). A decorative grove could be made on only one edge as shown in FIG. 3 a.
  • The most common method is shown in FIG. 3 b. A part of the edge portion of a floorboard (1, 1′) has been formed as a bevel 20 and this bevel is than in a separate operation covered with a separate material such as a tape, a plastic strip or it could be colored, printed etc. Separate materials are complicated and costly to apply and it is not possible to make an edge portion with the same design and structure as the floor surface. Such edge portion has considerable lower abrasion resistance and inferior moisture properties than the floor surface. The production method is rather slow and several application unites are needed to meet the speed of a modern production line for laminate floorings.
  • Another method is shown in FIG. 3 c. The edge portion (20) is formed in a separate material, which has been inserted or extruded into a groove. This method has the same disadvantages as the method described above.
  • FIG. 3 d show that a rounded edge portion (20) could be produced with the well-known postforming method used for furniture components. A postforming laminate surface (31) of HPL, which is so flexible that it can be formed after the production of the laminated sheet, could be glued to an already machined floorboard (1). In a second production step the edge could be heated and the laminate could be bent and glued around the edge portion. This method would be very complicated, costly and is not used in laminate floorings.
  • The principles of the present invention are directed to edge portions in building panels, which overcome one or more of the limitations and disadvantages of the prior art.
  • These and other objects of the invention are achieved by floorboards, and manufacturing methods having the features that are stated in the independent claims. The dependent claims define particularly preferred embodiments of the invention.
  • SUMMARY
  • An objective of this invention is to provide building panels, especially floorboards, with curved edge portions made in one piece with the surface layer, which could be produced more efficiently than present products on the market.
  • An additional purpose is to provide such panels with edge portions, which have improved design and abrasion properties.
  • To achieve these objectives, according to a first embodiment, a floorboard is provided, with locking system, a wood fiber based core and a surface layer arranged on the upper side of the core. The outer flat parts of the surface layer constituting a floor surface and a horizontal plane. A plane, perpendicular to the horizontal plane and at the edge of the surface layer, constitutes a vertical plane. The floorboard has an edge portion with an edge surface, which is located under the horizontal plane. The edge surface at the vertical plane is at a distance from the horizontal plane which constitutes an edge depth and which exceeds the thickness of the surface layer.
  • The floor surface and the edge surface are made in one piece of the same material. A part of the core in the edge portion under the edge surface adjacent to the vertical plane and at a vertical distance from the edge surface has a higher density than a part of the core under the floor surface adjacent to the edge portion and at the same vertical distance from the floor surface.
  • According to a second embodiment, a method is provided to make a floorboard, with a locking system, a wood fiber based core and a surface layer arranged on the upper side of the core. The outer flat parts of the surface layer constituting a floor surface and a horizontal plane. The floorboard has an edge portion with an edge surface, which is located under the horizontal plane. The method comprises the steps of:
  • Applying the surface layer on the core to form a floor element.
  • Cutting the floor element into floor panels.
  • Applying a pressure on the surface of an edge portion of the floor panel such that the core under the surface layer is compressed and the surface layer is permanently bended towards the rear side.
  • According to another aspect of the second principle, a method is provided to make a building panel, with a wood fiber based core and a surface layer arranged on the upper side of the core. The outer flat parts of the surface layer constituting a panel surface and a horizontal plane. The panel has an edge portion with an edge surface, which is located under the horizontal plane. The method comprises the steps of:
  • Applying the surface layer on the core to form a building element.
  • Cutting the building element into building panels.
  • Applying a pressure on the surface of an edge portion of the building panel such that the core under the surface layer is compressed and the surface layer is permanently bended towards the rear side of the core.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 a-1 d illustrate in different steps manufacture of a floorboard according to known technology.
  • FIGS. 2 a-2 d illustrate production methods to form edge portions according to known technology.
  • FIGS. 3 a-3 d illustrate examples of different ways of manufacture of edge portions.
  • FIGS. 4 a-4 d illustrate press forming of an edge portion according to an embodiment of the invention.
  • FIGS. 5 a-5 c illustrate different properties of a convex curved edge portion according to embodiments of the invention.
  • FIGS. 6 a-6 b illustrate alternative methods to form embodiments of the invention.
  • FIG. 7 illustrates a dilatation profile according to an embodiment of the invention.
  • FIG. 8 illustrates an edge portion with a curved edge surface.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIGS. 4 a-4 c show in four steps the manufacture of floorboards according to one embodiment of the invention. FIG. 4 a shows two opposite edges of two essentially similar floor panels 2, 2′ which are intended to be joined together with a mechanical locking system. The floorboards have a surface layer 31 of for example HPL, DPL or wood veneer, a core 30 of HDF and balancing layer 32. As show in FIG. 4 b an edge groove 16, 16′ is formed at the upper side of the edge and a part of the surface layer 31 is removed. This could be done in a separate operation or in connection with the sawing of the floor element 3 into floor panels 2. If the surface layer 31 is laminate, at least a part of the edge groove 16,16′ and the surface layer 31 adjacent to the edge groove 16,16′ should preferably be heated with a suitable heating device H, such as for example heating nozzles which blow an even current of hot air. The temperature should exceed 100 degrees C. A preferable temperature is about 150-200 degrees C. In many applications a temperature of about 170 degrees C. gives the best result. Normal laminate quality could be used as a surface layer 31 and no special post forming quality is needed. If the surface layer 31 is a wood veneer, heating is preferably not required. The floor panel should preferably have a reference surface 17, 17′ which could be used to position the floor panel correctly when edge portions and locking systems are formed. As shown in FIG. 4 c the edge portions 20, 20′ are then compressed with a compression tool TO which preferably is heated to similar temperatures as described above. The compression tool TO could be a wheel and/or a pressure shoe or similar with a profile which preferably corresponds to the desired edge profile. Several tools could be used to form the edge portion in several steps. During the compression, the fibers in the core will be permanently compressed, the fiber orientations will in most cases change and the density in the edge portion 20 will increase. A change in the fiber orientation might be difficult to detect in some core materials. Increased density could however be measured with great accuracy. The edge portion 20 will be much stronger than traditional beveled edges in laminate flooring. The abrasion resistance will be similar as in the floor surface and the visible edge portion will have the same design and structure as the floor surface. The upper parts of the core 30 under the surface layer 31, which in a DPL flooring is impregnated with melamine and in a HPL flooring with glue, supports the laminate surface layer 31 during the bending and increases the flexibility of the laminate layer. The advantage is that ordinary qualities of thermosetting decorative laminates, which are rather brittle, could be used. HDF is particularly suitable for this kind of press forming with permanent compression according to the invention since the fiber structure and the binders, which are used in HDF, are ideal for this application.
  • As shown in FIG. 4 d a mechanical locking system with a tongue 10 and grove 9 for vertical locking and a strip 6 with a locking element 8 and a locking grove 12 for horizontal locking could easily be formed and positioned with high precision in relation to the compressed edge portions 20,20′. In this embodiment the press forming of the edge portions 20, 20′ is made on the floor panel 2, which thereafter is machined to a floorboard 1. The advantage is that the forming of the mechanical locking system can be made with great accuracy and the press forming will not change the dimensions of the profile which in this embodiment is mainly the tongue 10 and the groove 9. Of course it is possible to form the edge portions 20, 20′ on the floorboard after the machining of the edges, but this is more complicated and the compression possibilities are more limited. In most cases further machining is than required to form the upper outer edge.
  • FIG. 5 a shows a cross section of a panel edge according to the invention. In this preferred embodiment the floor panel 1 has a surface layer 31 of DPL with a surface thickness ST and an outer edge 51. The upper flat part of the surface layer 31 constitutes a horizontal plane HP and a floor surface 33. A plane perpendicular to the horizontal plane and at the outer edge 51 of the surface layer 31, constitutes a vertical plane VP. The convex curved edge portion 20, which is located under the horizontal plane HP and which extends to the vertical plane VP has an edge width EW, measured parallel with the horizontal plane HP and an edge surface 50. The edge portion 20 has an edge depth ED measured vertically from the horizontal plane HP, which is equal to the distance SD from the horizontal plane HP to the outer edge 51 at the vertical plane VP. As shown in FIG. 5 a the fibers in the edge portion 20 have been compressed and the fiber orientation have been changed such that the fibers are curved in the same direction as the edge surface 50 of the edge portion 20.
  • Several relationships are favorable in order to produce an edge portion (20) according to the invention.
  • Edge depth ED should preferably be larger than the surface layer thickness ST. In the most preferable embodiment edge depth ED should be larger than 2 or even 3 times the surface thickness ST. The method allows forming of edge portions 20 with edge depths ED exceeding 10 times the surface thickness ST.
  • The edge width EW should preferably be larger than the edge depth ED. In the most preferable embodiment edge width EW should be larger than 2 times the edge depth ED.
  • The edge depth ED should preferably be larger than 0.1 times the floorboard thickness T.
  • The thickness ST of the surface layer 31 should be 0.1-0.01 times the floor thickness T.
  • These relationships could be used independently or in combination.
  • FIG. 5 b shows the density D profile in a part (A-A) of a floorboard 1 which has not been compressed and FIG. 5 c shows the density profile D in a compressed edge portion (B-B) of the same floorboard. Density profiles could be measured extremely accurately with a gamma beam. The distance between measuring points could be as small as 0.04 mm. In this example the surface layer 31 of laminate, which is about 0.2 mm thick, has a density of about 1300 kg/m3. Below the surface layer 31 there is a core portion 52 which in connection with the direct pressure lamination has been impregnated with melamine and where the density varies between about 1200-1000 kg/m3. Under this core portion 52 there is another portion 53 where the density is slightly higher than in the middle parts of the core 30. The average density is shown by the line AD. It should be emphasized that compression in wood fiber based board material always gives an increased density.
  • FIG. 5 c shows the density profile in a compressed part B-B of the edge portion 20. A part of the core 30 in the edge portion adjacent to the vertical plane VP and at a vertical distance SD from the surface layer 31, has a higher density D than a part of the core which is under the floor surface adjacent to the edge portion 20 and at the same vertical distance SD from the surface layer 31. This is contrary to traditional postforming where the edge portion is machined and the surface layer is glued to the part of the core, which have the same or lower density.
  • FIG. 6 a shows an alternative method to form an edge portion 20 in a DPL flooring. A floorboard 1 is produced with an edge groove 19 under the surface layer 31. The upper part of the edge grove 19 consist of the surface layer 31 and a part of the core 30. This upper part of the edge grove 19 is folded against the lover part of the edge grove 19 and both parts are pressed and glued together. FIG. 6 b shows that this method could be used to form an edge portion of a floor panel which is than machined to a floorboard. Both these methods are more complicated than the press forming since glue and separate machining is required. This method could be partly combined with the press forming and the core could be compressed in connection with the gluing.
  • FIG. 7 shows a dilatation profile 4 with press formed edge portions 20, 20′, according to the invention.
  • FIG. 8 shows a floorboard with edge portions 20 at opposite edges which are curved and where the outer adjacent parts of the edge surfaces 50 are essential parallel with the horizontal plane HP.
  • The invention is especially suitable to produce laminate floorings which look like solid wood floor strips with a width of about 5-10 cm and where compressed edge portions are only formed on the long sides. Such floorboards could also easily be made in random lengths since long press formed floor panels could be produced which are thereafter machined and cut to floorboards in different lengths.
  • A floor which consists of such floorboards will have many curved edge portions 20 and only very cost efficient production methods such as press forming could be used in order to obtain production costs which are competitive and lower than similar solid wood floors.
  • Press forming is very efficient and can easily meet the speed of modern profiling lines.
  • The method to compress the core with a surface layer of a laminate floor element, floor panel or floorboard or a similar building element panel according to the invention could be used to form embossed portions on other parts than the edges.
  • It will be apparent to those skilled in the art that various modifications and variations of the present invention can be made without departing from the spirit and scope of the invention. Thus, it is intended that the present invention include the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (17)

1-20. (canceled)
21. A floorboard comprising:
a locking system,
a wood fiber based core, and
a surface layer arranged on an upper side of the core, outer flat parts of the surface layer constituting a floor surface in a horizontal plane, a plane perpendicular to the horizontal plane and at the outer edge of the surface layer constituting a vertical plane, the floorboard has an edge portion with a curved edge profile defining a convex curved edge surface which is located under the horizontal plane, the curved edge surface at the vertical plane is at a distance from the horizontal plane which distance constitutes an edge depth exceeding the thickness of the surface layer,
wherein the curved edge surface is an upper surface of the edge portion,
wherein the floor surface and the edge surface are made in one piece of the same material,
wherein the edge portion includes at least a compressed portion of the core defining the curved edge profile such that a part of the core in the edge portion under the curved edge surface adjacent to the vertical plane and at a vertical distance from the curved edge surface, has a higher density than a part of the core under the floor surface adjacent to the edge portion and at the same vertical distance from the floor surface,
wherein the density of the core beneath the curved edge surface is greatest adjacent the curved edge surface and progressively decreases along a distance in a downward direction away from the curved edge surface,
wherein the edge comprises a horizontally extending groove and a strip protruding from the vertical plane having a locking element,
wherein the curved edge portion has an edge width measured parallel with the horizontal plane and an edge depth measured vertically from the horizontal plane, wherein a tangent line of the curved edge portion has a larger angle to the horizontal plane at the vertical plane than at a distance from the vertical plane, wherein the distance is 0.5 times the edge width.
22. The floorboard as claimed in claim 21, wherein said surface layer comprises a thermosetting resin.
23. The floorboard as claimed in claim 22, wherein the core is made of HDF.
24. The floorboard as claimed in claim 21, wherein the edge depth is at least 2 times the surface layer thickness.
25. The floorboard as claimed in claim 21, wherein the locking system is configured for joining the floorboard with a previously installed floorboard by inward angling and/or snapping-in to a locked position.
26. The floorboard as claimed in claim 21, the curved edge surface being disposed on an upper edge surface of an outwardly extending projection of the core, the projection forming part of the locking system and including a lower edge surface disposed beneath the upper edge surface, a portion of the projection disposed at the lower edge surface having less density than a portion of the projection disposed at the upper edge surface as measured in a vertical direction extending through the projection.
27. The floorboard as claimed in claim 21, wherein the surface layer is a paper laminate that extends to the outer edge of the curved edge surface.
28. The floorboard as claimed in claim 21, wherein the outer edge of the curved edge surface is a vertical, planar surface.
29. A floorboard comprising:
a locking system,
a wood fiber based core, and
a surface layer arranged on an upper side of the core, outer flat parts of the surface layer constituting a floor surface in a horizontal plane, a plane perpendicular to the horizontal plane and at the outer edge of the surface layer constituting a vertical plane, the floorboard has an edge portion with a curved edge profile defining a convex curved edge surface which is located under the horizontal plane, the curved edge surface at the vertical plane is at a distance from the horizontal plane which distance constitutes an edge depth exceeding the thickness of the surface layer,
wherein the curved edge surface is an upper surface of the edge portion,
wherein the floor surface and the edge surface are made in one piece of the same material,
wherein the edge portion includes at least a compressed portion of the core defining the curved edge profile such that a part of the core in the edge portion under the curved edge surface adjacent to the vertical plane and at a vertical distance from the curved edge surface, has a higher density than a part of the core under the floor surface adjacent to the edge portion and at the same vertical distance from the floor surface,
wherein the density of the core beneath the curved edge surface is greatest adjacent the curved edge surface and progressively decreases along a distance in a downward direction away from the curved edge surface,
wherein the edge comprises a horizontally extending groove and a strip protruding from the vertical plane having a locking element,
wherein the curved edge portion has an edge width measured parallel with the horizontal plane and an edge depth measured vertically from the horizontal plane, wherein a tangent line of the curved edge portion has a larger angle to the horizontal plane at the vertical plane than at a distance from the vertical plane, wherein the angle is at least 10 degrees.
30. The floorboard as claimed in claim 29, wherein said layer surface comprises a thermosetting resin.
31. The floorboard as claimed in claim 30, wherein the core is made of HDF.
32. The floorboard as claimed in claim 29, wherein the edge depth is at least 2 times the surface layer thickness.
33. The floorboard as claimed in claim 29, wherein the locking system is configured for joining the floorboard with a previously installed floorboard by inward angling and/or snapping-in to a locked position.
34. The floorboard as claimed in claim 29, the curved edge surface being disposed on an upper edge surface of an outwardly extending projection of the core, the projection forming part of the locking system and including a lower edge surface disposed beneath the upper edge surface, a portion of the projection disposed at the lower edge surface having less density than a portion of the projection disposed at the upper edge surface as measured in a vertical direction extending through the projection.
35. The floorboard as claimed in claim 29, wherein the surface layer is a paper laminate that extends to the outer edge of the curved edge surface.
36. The floorboard as claimed in claim 29, wherein the outer edge of the curved edge surface is a vertical, planar surface.
US13/853,722 2005-02-15 2013-03-29 Building panel with compressed edges and method of making same Abandoned US20130263546A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/853,722 US20130263546A1 (en) 2005-02-15 2013-03-29 Building panel with compressed edges and method of making same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/906,356 US8215078B2 (en) 2005-02-15 2005-02-15 Building panel with compressed edges and method of making same
US11/822,692 US8429872B2 (en) 2005-02-15 2007-07-09 Building panel with compressed edges and method of making same
US13/853,722 US20130263546A1 (en) 2005-02-15 2013-03-29 Building panel with compressed edges and method of making same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/822,692 Continuation US8429872B2 (en) 2005-02-15 2007-07-09 Building panel with compressed edges and method of making same

Publications (1)

Publication Number Publication Date
US20130263546A1 true US20130263546A1 (en) 2013-10-10

Family

ID=36814212

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/906,356 Active 2027-05-21 US8215078B2 (en) 2005-02-15 2005-02-15 Building panel with compressed edges and method of making same
US11/822,692 Active US8429872B2 (en) 2005-02-15 2007-07-09 Building panel with compressed edges and method of making same
US13/853,722 Abandoned US20130263546A1 (en) 2005-02-15 2013-03-29 Building panel with compressed edges and method of making same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/906,356 Active 2027-05-21 US8215078B2 (en) 2005-02-15 2005-02-15 Building panel with compressed edges and method of making same
US11/822,692 Active US8429872B2 (en) 2005-02-15 2007-07-09 Building panel with compressed edges and method of making same

Country Status (1)

Country Link
US (3) US8215078B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130025216A1 (en) * 2011-07-26 2013-01-31 Gip International, Ltd Laminate flooring product with enhanced visual and tribological properties
US8683698B2 (en) 2002-03-20 2014-04-01 Valinge Innovation Ab Method for making floorboards with decorative grooves
US8940216B2 (en) 2006-09-15 2015-01-27 Valinge Innovation Ab Device and method for compressing an edge of a building panel and a building panel with compressed edges
US9169654B2 (en) 2009-12-17 2015-10-27 Valinge Innovation Ab Methods and arrangements relating to surface forming of building panels
US9623433B2 (en) 2004-10-05 2017-04-18 Valinge Innovation Ab Appliance and method for surface treatment of a board shaped material and floorboard

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0001325L (en) * 2000-04-10 2001-06-25 Valinge Aluminium Ab Locking systems for joining floorboards and floorboards provided with such locking systems and floors formed from such floorboards
US7086205B2 (en) 1993-05-10 2006-08-08 Valinge Aluminium Ab System for joining building panels
SE512290C2 (en) 1998-06-03 2000-02-28 Valinge Aluminium Ab Locking system for mechanical joining of floorboards and floorboard provided with the locking system
SE517478C2 (en) 1999-04-30 2002-06-11 Valinge Aluminium Ab Locking system for mechanical hoisting of floorboards, floorboard provided with the locking system and method for producing mechanically foldable floorboards
SE517183C2 (en) 2000-01-24 2002-04-23 Valinge Aluminium Ab Locking system for mechanical joining of floorboards, floorboard provided with the locking system and method for making such floorboards
US8028486B2 (en) 2001-07-27 2011-10-04 Valinge Innovation Ab Floor panel with sealing means
US8250825B2 (en) 2001-09-20 2012-08-28 Välinge Innovation AB Flooring and method for laying and manufacturing the same
EP2281978B1 (en) 2002-04-03 2016-10-12 Välinge Innovation AB Method of attaching a strip to a floorboard
SE525657C2 (en) 2002-04-08 2005-03-29 Vaelinge Innovation Ab Flooring boards for floating floors made of at least two different layers of material and semi-finished products for the manufacture of floorboards
US8850769B2 (en) 2002-04-15 2014-10-07 Valinge Innovation Ab Floorboards for floating floors
US7739849B2 (en) * 2002-04-22 2010-06-22 Valinge Innovation Ab Floorboards, flooring systems and methods for manufacturing and installation thereof
US20040206036A1 (en) 2003-02-24 2004-10-21 Valinge Aluminium Ab Floorboard and method for manufacturing thereof
US7845140B2 (en) * 2003-03-06 2010-12-07 Valinge Innovation Ab Flooring and method for installation and manufacturing thereof
US7886497B2 (en) 2003-12-02 2011-02-15 Valinge Innovation Ab Floorboard, system and method for forming a flooring, and a flooring formed thereof
US20050166516A1 (en) 2004-01-13 2005-08-04 Valinge Aluminium Ab Floor covering and locking systems
US7841144B2 (en) 2005-03-30 2010-11-30 Valinge Innovation Ab Mechanical locking system for panels and method of installing same
DK1936068T3 (en) 2004-10-22 2012-03-19 Vaelinge Innovation Ab Method of providing floor panels with a mechanical locking system
DK1711353T3 (en) * 2004-12-23 2010-03-15 Flooring Ind Ltd Laminate floor panel
US8215078B2 (en) * 2005-02-15 2012-07-10 Välinge Innovation Belgium BVBA Building panel with compressed edges and method of making same
US20130139478A1 (en) 2005-03-31 2013-06-06 Flooring Industries Limited, Sarl Methods for packaging floor panels, as well as packed set of floor panels
BE1016938A6 (en) 2005-03-31 2007-10-02 Flooring Ind Ltd Floor panel manufacturing method, involves providing panels at lower side with guiding groove and providing two opposite sides with profiled edge regions that comprise coupling parts
US8061104B2 (en) 2005-05-20 2011-11-22 Valinge Innovation Ab Mechanical locking system for floor panels
US8082717B2 (en) * 2005-06-06 2011-12-27 Dirk Dammers Panel, in particular floor panel
BE1016846A3 (en) 2005-11-09 2007-08-07 Flooring Ind Ltd Floor covering has hard floor panels having at least one chamfer having surface covered with separate decorative covering by transfer printing technique
US20070175144A1 (en) * 2006-01-11 2007-08-02 Valinge Innovation Ab V-groove
SE530653C2 (en) 2006-01-12 2008-07-29 Vaelinge Innovation Ab Moisture-proof floor board and floor with an elastic surface layer including a decorative groove
BE1017049A6 (en) * 2006-04-06 2007-12-04 Flooring Ind Ltd METHOD FOR MANUFACTURING FLOOR PANELS AND FLOOR PANEL.
BE1017157A3 (en) 2006-06-02 2008-03-04 Flooring Ind Ltd FLOOR COVERING, FLOOR ELEMENT AND METHOD FOR MANUFACTURING FLOOR ELEMENTS.
US7918062B2 (en) * 2006-06-08 2011-04-05 Mannington Mills, Inc. Methods and systems for decorating bevel and other surfaces of laminated floorings
US7861482B2 (en) 2006-07-14 2011-01-04 Valinge Innovation Ab Locking system comprising a combination lock for panels
DE102006052555C5 (en) * 2006-11-06 2010-02-04 Guido Schulte Method for producing a panel with a structured surface
EP2036713A1 (en) * 2007-09-11 2009-03-18 Quadrant Plastic Composites AG Composite board based on HPL coatings
DE102008034828B4 (en) 2008-07-22 2010-05-12 Flooring Technologies Ltd. Coated decorative backing plate (DPL) with bending edge and method of making the coated backing plate
DE202008011589U1 (en) * 2008-09-01 2008-11-27 Akzenta Paneele + Profile Gmbh Plastic floor panel with mechanical locking edges
BE1018382A3 (en) * 2008-12-22 2010-09-07 Wybo Carlos UPHOLSTERY PANEL.
KR100958396B1 (en) * 2009-03-31 2010-05-18 오광석 Floorboard
BE1018728A3 (en) * 2009-04-22 2011-07-05 Flooring Ind Ltd Sarl FLOOR PANEL.
NL2003019C2 (en) 2009-06-12 2010-12-15 4Sight Innovation Bv FLOOR PANEL AND FLOOR COVERAGE CONSISING OF MULTIPLE OF SUCH FLOOR PANELS.
US8365499B2 (en) 2009-09-04 2013-02-05 Valinge Innovation Ab Resilient floor
US11725395B2 (en) 2009-09-04 2023-08-15 Välinge Innovation AB Resilient floor
DE102009060103A1 (en) * 2009-12-21 2011-06-22 Fritz Egger Gmbh & Co. Og Method for producing a group of panels for imitation of a long plank
SI2339092T1 (en) 2009-12-22 2019-08-30 Flooring Industries Limited, Sarl Method for producing covering panels
WO2011085306A1 (en) 2010-01-11 2011-07-14 Mannington Mills, Inc. Floor covering with interlocking design
BE1019501A5 (en) 2010-05-10 2012-08-07 Flooring Ind Ltd Sarl FLOOR PANEL AND METHOD FOR MANUFACTURING FLOOR PANELS.
US8925275B2 (en) 2010-05-10 2015-01-06 Flooring Industries Limited, Sarl Floor panel
BE1019331A5 (en) 2010-05-10 2012-06-05 Flooring Ind Ltd Sarl FLOOR PANEL AND METHODS FOR MANUFACTURING FLOOR PANELS.
HUE047989T2 (en) 2011-08-29 2020-05-28 Ceraloc Innovation Ab Mechanical locking system for floor panels
US8935899B2 (en) 2012-02-02 2015-01-20 Valinge Innovation Ab Lamella core and a method for producing it
US9140010B2 (en) 2012-07-02 2015-09-22 Valinge Flooring Technology Ab Panel forming
US10035358B2 (en) * 2012-07-17 2018-07-31 Ceraloc Innovation Ab Panels with digital embossed in register surface
US9446602B2 (en) 2012-07-26 2016-09-20 Ceraloc Innovation Ab Digital binder printing
WO2014033628A1 (en) 2012-08-27 2014-03-06 Pergo (Europe) Ab Panel
US9528011B2 (en) 2013-01-11 2016-12-27 Ceraloc Innovation Ab Digital binder and powder print
GB2538492A (en) 2015-05-11 2016-11-23 Cook Medical Technologies Llc Aneurysm treatment assembly
US10041212B2 (en) 2013-02-04 2018-08-07 Ceraloc Innovation Ab Digital overlay
PL2978909T3 (en) 2013-03-25 2018-08-31 Vaelinge Innovation Ab Floorboards provided with a mechanical locking system and a method to produce such a locking system
EA033676B1 (en) 2013-08-27 2019-11-15 Vaelinge Innovation Ab Method of producing a semi-product for a building panel
CA2924510A1 (en) * 2013-09-16 2015-03-19 Connor Sports Flooring, Llc Flooring surface integrated with interlocking plastic base
CN105636787B (en) 2013-10-23 2020-07-10 塞拉洛克创新股份有限公司 Method for forming decorative wear-resistant layer
EP3096961B1 (en) 2014-01-24 2022-03-02 Ceraloc Innovation AB Digital print with water-based ink on panel surfaces
EP3099499A4 (en) 2014-01-31 2017-10-11 Ceraloc Innovation AB A method of printing a digital image on a substrate attached to a panel and a water-based ink for digital printing on a substrate
LT3219870T (en) 2014-02-26 2020-08-10 I4F Licensing Nv Panel interconnectable with similar panels for forming a covering
USD928988S1 (en) 2014-02-26 2021-08-24 I4F Licensing Nv Panel interconnectable with similar panels for forming a covering
CH709448A1 (en) * 2014-03-31 2015-10-15 Proverum Ag A method for processing a useful surface of a floor covering.
US10030394B2 (en) * 2014-04-10 2018-07-24 Berryalloc Nv Floor board with universal connection system
EP3169533B1 (en) 2014-07-16 2023-04-26 Välinge Innovation AB Method to produce a thermoplastic wear resistant foil
HRP20230136T1 (en) 2014-08-29 2023-03-31 Välinge Innovation AB Vertical joint system for a surface covering panel
US9809982B2 (en) 2014-09-15 2017-11-07 Connor Sport Court International, Llc Suspended modular flooring panel
NL2013486B1 (en) * 2014-09-18 2016-09-28 Champion Link Int Corp Panel suitable for assembling a waterproof floor or wall covering, method of producing a panel.
US9249582B1 (en) 2014-11-14 2016-02-02 Awi Licensing Company Interlocking floor panels with high performance locking profiles
RS56653B1 (en) 2014-12-08 2018-03-30 Innovations4Flooring Holding N V Panel with a hook-like locking system
DE102015206713A1 (en) * 2015-04-15 2016-10-20 Airbus Operations Gmbh Kit and method for housing construction of a vehicle cabin monument
DE102015005864A1 (en) * 2015-05-11 2016-11-17 Fritz Egger Gmbh & Co. Og Process for the production of wells having panels
DE102015111929A1 (en) * 2015-07-22 2017-01-26 Akzenta Paneele + Profile Gmbh paneling
DE102015111930A1 (en) 2015-07-22 2017-01-26 Akzenta Paneele + Profile Gmbh paneling
EA035583B1 (en) * 2015-12-17 2020-07-10 Велинге Инновейшн Аб Method for producing a mechanical locking system for panels
DK3192935T3 (en) * 2016-01-15 2020-06-15 Windmoeller Gmbh FLOORING ELEMENT WITH SLIDED BACKGROUND
NL2016223B1 (en) 2016-02-04 2017-08-14 Champion Link Int Corp Panel suitable for constructing a waterproof floor or wall covering, process for producing a panel, panel obtainable by said process.
US11186997B2 (en) 2016-03-24 2021-11-30 Valinge Innovation Ab Method for forming a décor on a substrate
EP3519650A4 (en) 2016-09-30 2020-07-08 Välinge Innovation AB Set of panels assembled by vertical displacement and locked together in the vertical and horizontal direction
NL2018781B1 (en) 2017-04-26 2018-11-05 Innovations4Flooring Holding N V Panel and covering
EP3737802B1 (en) 2018-01-09 2023-05-10 Välinge Innovation AB Set of panels
EP3737803A4 (en) 2018-01-10 2021-10-20 Välinge Innovation AB Subfloor joint
US11149446B2 (en) * 2018-09-10 2021-10-19 Champion Link International Corporation Floor panel comprising a ceramic material or a natural stone
CN109322461A (en) * 2018-10-17 2019-02-12 上海菲林格尔木业股份有限公司 It is a kind of realize nature transition mat formation effect consolidated floor preparation method
US11578495B2 (en) 2018-12-05 2023-02-14 Valinge Innovation Ab Subfloor joint
CN113840699B (en) 2019-03-05 2023-10-24 塞拉洛克创新股份有限公司 Method for forming grooves in a panel element and related panel
CA3134101A1 (en) 2019-03-25 2020-10-01 Ceraloc Innovation Ab A mineral-based panel comprising grooves and a method for forming grooves
EP4081395A4 (en) 2019-12-27 2024-01-10 Ceraloc Innovation Ab A thermoplastic-based building panel comprising a balancing layer
NL2025115B1 (en) * 2020-03-12 2021-10-19 Northann Building Solutions LLC Decorative surface covering element, surface covering element covering, and method of producing such a decorative surface covering element
US20240076880A1 (en) * 2022-09-07 2024-03-07 Välinge Innovation AB Method to manufacture a bevel on a building panel and such a building panel
WO2024054150A1 (en) * 2022-09-07 2024-03-14 Välinge Innovation AB Method to manufacture a bevel on a building panel and such building panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216409B1 (en) * 1998-11-09 2001-04-17 Valerie Roy Cladding panel for floors, walls or the like
US7763143B2 (en) * 2004-12-01 2010-07-27 Berry Finance, N.V. Method of manufacturing a floor panel
US7874118B2 (en) * 2003-09-05 2011-01-25 Kaindl Flooring Gmbh Panel with protected v-joint
US7926234B2 (en) * 2002-03-20 2011-04-19 Valinge Innovation Ab Floorboards with decorative grooves

Family Cites Families (470)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1194636A (en) 1916-08-15 Silent door latch
US213740A (en) 1879-04-01 Improvement in wooden roofs
GB599793A (en) 1944-03-07 1948-03-22 Henry Wynmalen Improvements in or relating to walls, roofs, floors, and ceilings
DE7102476U (en) 1971-06-24 Hunter Douglas Panel for wall or ceiling cladding.
DE7402354U (en) 1974-05-30 Vaw Leichtmetall Gmbh Securing device for panels
US3125138A (en) * 1964-03-17 Gang saw for improved tongue and groove
US714987A (en) 1902-02-17 1902-12-02 Martin Wilford Wolfe Interlocking board.
US753791A (en) * 1903-08-25 1904-03-01 Elisha J Fulghum Method of making floor-boards.
US1124228A (en) * 1913-02-28 1915-01-05 Ross Houston Matched flooring or board.
US1371856A (en) * 1919-04-15 1921-03-15 Robert S Cade Concrete paving-slab
US1468288A (en) 1920-07-01 1923-09-18 Een Johannes Benjamin Wooden-floor section
US1407679A (en) * 1921-05-31 1922-02-21 William E Ruthrauff Flooring construction
US1454250A (en) 1921-11-17 1923-05-08 William A Parsons Parquet flooring
US1540128A (en) 1922-12-28 1925-06-02 Houston Ross Composite unit for flooring and the like and method for making same
SE57493C1 (en) 1923-10-01 1924-09-16
US1477813A (en) 1923-10-16 1923-12-18 Daniels Ernest Stuart Parquet flooring and wall paneling
US1510924A (en) 1924-03-27 1924-10-07 Daniels Ernest Stuart Parquet flooring and wall paneling
US1568605A (en) * 1924-11-14 1926-01-05 Hough Shade Corp Method of and means for color striping wood strips
US1602267A (en) 1925-02-28 1926-10-05 John M Karwisch Parquet-flooring unit
US1575821A (en) * 1925-03-13 1926-03-09 John Alexander Hugh Cameron Parquet-floor composite sections
US1660480A (en) * 1925-03-13 1928-02-28 Daniels Ernest Stuart Parquet-floor panels
US1615096A (en) * 1925-09-21 1927-01-18 Joseph J R Meyers Floor and ceiling construction
US1602256A (en) 1925-11-09 1926-10-05 Sellin Otto Interlocked sheathing board
US1644710A (en) 1925-12-31 1927-10-11 Cromar Company Prefinished flooring
US1622103A (en) * 1926-09-02 1927-03-22 John C King Lumber Company Hardwood block flooring
US1622104A (en) * 1926-11-06 1927-03-22 John C King Lumber Company Block flooring and process of making the same
US1637634A (en) 1927-02-28 1927-08-02 Charles J Carter Flooring
US1778069A (en) 1928-03-07 1930-10-14 Bruce E L Co Wood-block flooring
US1718702A (en) 1928-03-30 1929-06-25 M B Farrin Lumber Company Composite panel and attaching device therefor
US1714738A (en) 1928-06-11 1929-05-28 Arthur R Smith Flooring and the like
US1790178A (en) * 1928-08-06 1931-01-27 Jr Daniel Manson Sutherland Fibre board and its manufacture
US1787027A (en) 1929-02-20 1930-12-30 Wasleff Alex Herringbone flooring
US1764331A (en) 1929-02-23 1930-06-17 Paul O Moratz Matched hardwood flooring
US1809393A (en) 1929-05-09 1931-06-09 Byrd C Rockwell Inlay floor construction
US1734826A (en) 1929-10-09 1929-11-05 Pick Israel Manufacture of partition and like building blocks
US1823039A (en) 1930-02-12 1931-09-15 J K Gruner Lumber Company Jointed lumber
US1898364A (en) * 1930-02-24 1933-02-21 George S Gynn Flooring construction
US1859667A (en) 1930-05-14 1932-05-24 J K Gruner Lumber Company Jointed lumber
US1940377A (en) 1930-12-09 1933-12-19 Raymond W Storm Flooring
US1906411A (en) 1930-12-29 1933-05-02 Potvin Frederick Peter Wood flooring
US1988201A (en) * 1931-04-15 1935-01-15 Julius R Hall Reenforced flooring and method
US1953306A (en) 1931-07-13 1934-04-03 Paul O Moratz Flooring strip and joint
US1929871A (en) 1931-08-20 1933-10-10 Berton W Jones Parquet flooring
US2082186A (en) 1933-10-30 1937-06-01 Edwin G Staude Adhesive applying mechanism for paper package making machines
US2044216A (en) 1934-01-11 1936-06-16 Edward A Klages Wall structure
US1986739A (en) * 1934-02-06 1935-01-01 Walter F Mitte Nail-on brick
US2026511A (en) 1934-05-14 1935-12-31 Storm George Freeman Floor and process of laying the same
GB424057A (en) 1934-07-24 1935-02-14 Smith Joseph Improvements appertaining to the production of parquetry floors
CH200949A (en) 1937-12-03 1938-11-15 Ferdinand Baechi Process for the production of floors and soil produced by this method.
US2269926A (en) * 1939-01-06 1942-01-13 Kenneth E Crooks Composite board flooring
US2276071A (en) * 1939-01-25 1942-03-10 Johns Manville Panel construction
US2266464A (en) 1939-02-14 1941-12-16 Gen Tire & Rubber Co Yieldingly joined flooring
CH211877A (en) 1939-05-26 1940-10-31 Wyrsch Durrer Martin Exposed parquet floor.
US2324628A (en) 1941-02-07 1943-07-20 Kahr Gustaf Composite board structure
US2398632A (en) 1944-05-08 1946-04-16 United States Gypsum Co Building element
US2430200A (en) 1944-11-18 1947-11-04 Nina Mae Wilson Lock joint
GB585205A (en) 1944-12-22 1947-01-31 David Augustine Harper Curing of polymeric materials
US2495862A (en) * 1945-03-10 1950-01-31 Emery S Osborn Building construction of predetermined characteristics
GB636423A (en) 1947-09-17 1950-04-26 Bernard James Balfe Improvements in or relating to adhesive compositions
US2497837A (en) * 1947-09-27 1950-02-14 Non Skid Surfacing Corp Board for flooring and the like
US2780253A (en) * 1950-06-02 1957-02-05 Curt G Joa Self-centering feed rolls for a dowel machine or the like
US2679231A (en) 1951-09-07 1954-05-25 John Waldron Corp Web coating apparatus
US2740167A (en) 1952-09-05 1956-04-03 John C Rowley Interlocking parquet block
US2851740A (en) 1953-04-15 1958-09-16 United States Gypsum Co Wall construction
US2791983A (en) 1953-11-13 1957-05-14 Deering Milliken Res Corp Apparatus for painting rings on the heads of bobbins
US2811133A (en) 1953-12-21 1957-10-29 Wood Conversion Co Panel board coating apparatus
US2865058A (en) 1955-04-12 1958-12-23 Gustaf Kahr Composite floors
US2893468A (en) * 1955-08-31 1959-07-07 William R Fieroh Plastic heat-sealing apparatus
US3045294A (en) 1956-03-22 1962-07-24 Jr William F Livezey Method and apparatus for laying floors
US2947040A (en) 1956-06-18 1960-08-02 Package Home Mfg Inc Wall construction
CH345451A (en) 1956-06-27 1960-03-31 Piodi Roberto Rubber floor or similar material
US2872712A (en) * 1956-09-17 1959-02-10 Potlatch Forests Inc Wall board construction
US2894292A (en) 1957-03-21 1959-07-14 Jasper Wood Crafters Inc Combination sub-floor and top floor
AT218725B (en) 1959-01-16 1961-12-27 Jakob Niederguenzl Machine for the production of small parquet boards
US3100556A (en) 1959-07-30 1963-08-13 Reynolds Metals Co Interlocking metallic structural members
US3203149A (en) 1960-03-16 1965-08-31 American Seal Kap Corp Interlocking panel structure
US3120083A (en) * 1960-04-04 1964-02-04 Bigelow Sanford Inc Carpet or floor tiles
US3050758A (en) 1960-09-06 1962-08-28 Lowell A Wilkins Machine for striping film
FR1293043A (en) 1961-03-27 1962-05-11 Piraud Plastiques Ets Flooring Tile
US3182769A (en) 1961-05-04 1965-05-11 Reynolds Metals Co Interlocking constructions and parts therefor or the like
US3282010A (en) 1962-12-18 1966-11-01 Jr Andrew J King Parquet flooring block
US3247638A (en) 1963-05-22 1966-04-26 James W Fair Interlocking tile carpet
US3301147A (en) * 1963-07-22 1967-01-31 Harvey Aluminum Inc Vehicle-supporting matting and plank therefor
US3341351A (en) 1963-08-12 1967-09-12 Beloit Corp Mist control on air knife coaters
US3200553A (en) 1963-09-06 1965-08-17 Forrest Ind Inc Composition board flooring strip
US3267630A (en) 1964-04-20 1966-08-23 Powerlock Floors Inc Flooring systems
US3310919A (en) * 1964-10-02 1967-03-28 Sico Inc Portable floor
GB1127915A (en) 1964-10-20 1968-09-18 Karosa Improvements in or relating to vehicle bodies
US3354867A (en) 1965-07-12 1967-11-28 Midland Ross Corp Means to vary effective width of projected coating material
US3385182A (en) 1965-09-27 1968-05-28 Harvey Aluminum Inc Interlocking device for load bearing surfaces such as aircraft landing mats
US3347048A (en) 1965-09-27 1967-10-17 Coastal Res Corp Revetment block
US3481810A (en) 1965-12-20 1969-12-02 John C Waite Method of manufacturing composite flooring material
US3339525A (en) 1966-04-28 1967-09-05 Frank D Roberts Apparatus for the application of stain
US3460304A (en) 1966-05-20 1969-08-12 Dow Chemical Co Structural panel with interlocking edges
US3387422A (en) 1966-10-28 1968-06-11 Bright Brooks Lumber Company O Floor construction
US3440790A (en) 1966-11-17 1969-04-29 Winnebago Ind Inc Corner assembly
GB1171337A (en) 1967-01-28 1969-11-19 Transitoria Trading Company Ab A Latching Means for Cupboard Doors, Locker Doors, Drawers and like Openable Members
US3508523A (en) 1967-05-15 1970-04-28 Plywood Research Foundation Apparatus for applying adhesive to wood stock
US3377931A (en) 1967-05-26 1968-04-16 Ralph W. Hilton Plank for modular load bearing surfaces such as aircraft landing mats
US3553919A (en) * 1968-01-31 1971-01-12 Omholt Ray Flooring systems
US3538665A (en) 1968-04-15 1970-11-10 Bauwerke Ag Parquet flooring
US3526420A (en) 1968-05-22 1970-09-01 Itt Self-locking seam
US4037377A (en) 1968-05-28 1977-07-26 H. H. Robertson Company Foamed-in-place double-skin building panel
GB1237744A (en) 1968-06-28 1971-06-30 Limstra Ab Improved building structure
US3555762A (en) * 1968-07-08 1971-01-19 Aluminum Plastic Products Corp False floor of interlocked metal sections
US3579941A (en) 1968-11-19 1971-05-25 Howard C Tibbals Wood parquet block flooring unit
US3825381A (en) 1971-05-20 1974-07-23 Kimberly Clark Co Apparatus for forming airlaid webs
DK118481B (en) 1969-02-07 1970-08-24 B Jeppesen Window.
SE0001325L (en) 2000-04-10 2001-06-25 Valinge Aluminium Ab Locking systems for joining floorboards and floorboards provided with such locking systems and floors formed from such floorboards
US3548559A (en) 1969-05-05 1970-12-22 Liskey Aluminum Floor panel
SE515324C2 (en) 2000-06-22 2001-07-16 Tarkett Sommer Ab Floor board with connecting means
US3627608A (en) 1969-06-16 1971-12-14 Woodall Industries Inc Method of forming a panel having a compound curvature
DE2021503A1 (en) 1970-05-02 1971-11-25 Freudenberg Carl Fa Floor panels and methods of joining them
US3694983A (en) 1970-05-19 1972-10-03 Pierre Jean Couquet Pile or plastic tiles for flooring and like applications
GB1385375A (en) 1971-02-26 1975-02-26 Sanwa Kako Co Floor covering unit
SU363795A1 (en) 1971-03-09 1972-12-25 Центральный научно исследовательский институт механической обработки древесины WOODEN FLOOR
USRE30233E (en) * 1971-05-28 1980-03-18 The Mead Corporation Multiple layer decorated paper, laminate prepared therefrom and process
US3768846A (en) 1971-06-03 1973-10-30 R Hensley Interlocking joint
US3714747A (en) * 1971-08-23 1973-02-06 Robertson Co H H Fastening means for double-skin foam core building panel
US3759007A (en) 1971-09-14 1973-09-18 Steel Corp Panel joint assembly with drainage cavity
SE372051B (en) 1971-11-22 1974-12-09 Ry Ab
DE2159042C3 (en) 1971-11-29 1974-04-18 Heinrich 6700 Ludwigshafen Hebgen Insulating board, in particular made of rigid plastic foam
DE2238660A1 (en) 1972-08-05 1974-02-07 Heinrich Hebgen FORMAL JOINT CONNECTION OF PANEL-SHAPED COMPONENTS WITHOUT SEPARATE CONNECTING ELEMENTS
DE2205232A1 (en) 1972-02-04 1973-08-16 Sen Fritz Krautkraemer Resilient flooring for gymnasiums and assembly halls - prefabricated load bearing upon elastic plates, is assembled easily and cheaply
US3859000A (en) * 1972-03-30 1975-01-07 Reynolds Metals Co Road construction and panel for making same
NO139933C (en) 1972-05-18 1979-06-06 Karl Hettich FINISHED PARQUET ELEMENT.
US3786608A (en) * 1972-06-12 1974-01-22 W Boettcher Flooring sleeper assembly
AU5637473A (en) 1972-06-14 1974-12-05 Johns-Manville Corporation A method of andan assembly utilized in strengthening the edge of sheet material
US3842562A (en) 1972-10-24 1974-10-22 Larsen V Co Interlocking precast concrete slabs
DE2252643A1 (en) 1972-10-26 1974-05-02 Franz Buchmayer DEVICE FOR SEAMLESS CONNECTION OF COMPONENTS
US3988187A (en) 1973-02-06 1976-10-26 Atlantic Richfield Company Method of laying floor tile
US3902293A (en) 1973-02-06 1975-09-02 Atlantic Richfield Co Dimensionally-stable, resilient floor tile
US3948708A (en) 1973-03-26 1976-04-06 Van Dresser Corporation Method of forming a panel
GB1430423A (en) 1973-05-09 1976-03-31 Gkn Sankey Ltd Joint structure
DE2329599A1 (en) * 1973-06-09 1975-01-02 Baehre & Greten EQUIPMENT FOR THE CONTINUOUS PRODUCTION OF CHIPBOARD
CA1048698A (en) * 1973-07-20 1979-02-13 Robert C. Geschwender Mastic composition and composite structural panels formed therefrom
DE2345157C2 (en) 1973-09-07 1975-09-18 August Thyssen-Huette Ag, 4100 Duisburg Device for stripping metal when hot-metallizing metal strips
US3936551A (en) * 1974-01-30 1976-02-03 Armin Elmendorf Flexible wood floor covering
US4084996A (en) 1974-07-15 1978-04-18 Wood Processes, Oregon Ltd. Method of making a grooved, fiber-clad plywood panel
AT341738B (en) 1974-12-24 1978-02-27 Hoesch Werke Ag CONNECTING ELEMENT WITH SLOT AND SPRING CONNECTION
US4290248A (en) 1975-01-06 1981-09-22 William James Kemerer Continuous process for forming products from thermoplastic polymeric material having three-dimensional patterns and surface textures
US4004774A (en) * 1975-01-08 1977-01-25 Du Pont Of Canada Limited Coated panel
DE2502992A1 (en) 1975-01-25 1976-07-29 Geb Jahn Helga Tritschler Interlocking tent or other temporary floor panels - flat-surfaced with opposite shaped and counter-shaped bent sections
FR2301648A1 (en) 1975-02-20 1976-09-17 Baeck En Jansen Pvba Wall units with profiled panels - have V and L shaped end profiles which connect to form clamped joint
US4099358A (en) 1975-08-18 1978-07-11 Intercontinental Truck Body - Montana, Inc. Interlocking panel sections
US4054477A (en) 1975-11-07 1977-10-18 The Boeing Company Method for forming a contoured insulated honeycomb core panel and panel produced
US4169688A (en) 1976-03-15 1979-10-02 Sato Toshio Artificial skating-rink floor
DE2616077A1 (en) 1976-04-13 1977-10-27 Hans Josef Hewener Connecting web with flange for parquet floor - has pliable connecting web with flange held in floor plates to accommodate expansion and shrinking stresses
US4090338A (en) 1976-12-13 1978-05-23 B 3 L Parquet floor elements and parquet floor composed of such elements
SE414067B (en) 1977-03-30 1980-07-07 Wicanders Korkfabriker Ab DISCOVERED FLOOR ELEMENT WITH NOTE AND SPONGE FIT
US4147448A (en) 1977-05-25 1979-04-03 The South African Inventions Development Corporation Method of operating a compaction roller assembly, and a compaction roller assembly
DE2828769A1 (en) 1978-06-30 1980-01-03 Oltmanns Heinrich Fa BOX-SHAPED BUILDING BOARD MADE OF EXTRUDED PLASTIC
SE407174B (en) 1978-06-30 1979-03-19 Bahco Verktyg Ab TURNING HAND TOOLS WITH SHAFT HALL ROOM FOR STORAGE OF TOOL ELEMENT
US4426820A (en) * 1979-04-24 1984-01-24 Heinz Terbrack Panel for a composite surface and a method of assembling same
DE2917025A1 (en) 1979-04-26 1980-11-27 Reynolds Aluminium France S A Detachable thin panel assembly - has overlapping bosses formed in edge strips and secured by clamping hook underneath
US4304083A (en) 1979-10-23 1981-12-08 H. H. Robertson Company Anchor element for panel joint
US4501102A (en) * 1980-01-18 1985-02-26 James Knowles Composite wood beam and method of making same
DE3041781A1 (en) 1980-11-05 1982-06-24 Terbrack Kunststoff GmbH & Co KG, 4426 Vreden Skating or bowling rink tongue and groove panels - have tongue kink fitting trapezoid or half trapezium groove recess
FI63100C (en) * 1981-03-19 1988-12-05 Isora Oy bUILDING UNIT
SE8102693L (en) 1981-04-29 1982-10-30 Waco Jonsereds Ab SET AND MACHINE FOR MILLING WOODS FOR SPONTED PANEL
GB2117813A (en) 1982-04-06 1983-10-19 Leonid Ostrovsky Pivotal assembly of insulated wall panels
US4471012A (en) 1982-05-19 1984-09-11 Masonite Corporation Square-edged laminated wood strip or plank materials
GB2126106A (en) 1982-07-14 1984-03-21 Sava Soc Alluminio Veneto Floor surface for fencing competitions
NO150850C (en) 1982-08-09 1985-01-09 Oskar Hovde TREE FLOOR FLOORS AND FLOOR PLANKS FOR PLANTS AT THE BASES OF SUCH A FLOOR
NO157871C (en) 1982-12-03 1988-06-01 Jan Carlsson COMBINATION OF BUILDING PLATES, EXAMPLE OF FLOORING PLATES.
SE450141B (en) 1982-12-03 1987-06-09 Jan Carlsson DEVICE FOR CONSTRUCTION OF BUILDING PLATES EXV FLOOR PLATES
DE3246376A1 (en) 1982-12-15 1984-06-20 Peter 7597 Rheinau Ballas Sheet-metal panels for covering walls or ceilings
US4489115A (en) 1983-02-16 1984-12-18 Superturf, Inc. Synthetic turf seam system
US4561233A (en) 1983-04-26 1985-12-31 Butler Manufacturing Company Wall panel
NZ208232A (en) 1983-05-30 1989-08-29 Ezijoin Pty Ltd Composite timber and channel steel reinforced beam including butt joint(s)
US4567706A (en) * 1983-08-03 1986-02-04 United States Gypsum Company Edge attachment clip for wall panels
US4612074A (en) 1983-08-24 1986-09-16 American Biltrite Inc. Method for manufacturing a printed and embossed floor covering
DE3343601A1 (en) 1983-12-02 1985-06-13 Bütec Gesellschaft für bühnentechnische Einrichtungen mbH, 4010 Hilden Joining arrangement for rectangular boards
FR2561161B1 (en) * 1984-03-14 1990-05-11 Rosa Sa Fermeture METHOD FOR MANUFACTURING GROOVED OR MOLDED BLADES SUCH AS SHUTTER BLADES, JOINERY OR BUILDING MOLDINGS AND DEVICE FOR CARRYING OUT SAID METHOD
FR2568295B1 (en) 1984-07-30 1986-10-17 Manon Gerard FLOOR TILE
DE3436239C1 (en) * 1984-10-03 1986-01-16 Jagenberg AG, 4000 Düsseldorf Method and device for blowing away glue particles
US4648165A (en) * 1984-11-09 1987-03-10 Whitehorne Gary R Metal frame (spring puller)
AU566257B2 (en) 1985-01-10 1987-10-15 Hockney Pty Ltd Table top for lorry
DE3512204A1 (en) 1985-04-03 1986-10-16 Herbert 7530 Pforzheim Heinemann Cladding of exterior walls of buildings
US4630420A (en) * 1985-05-13 1986-12-23 Rolscreen Company Door
EP0210285A1 (en) 1985-06-28 1987-02-04 Bengt Valdemar Eggemar Arena floor covering and element suited for composing the same
US4641469A (en) * 1985-07-18 1987-02-10 Wood Edward F Prefabricated insulating panels
US4751957A (en) 1986-03-11 1988-06-21 National Aluminum Corporation Method of and apparatus for continuous casting of metal strip
DE3538538A1 (en) 1985-10-30 1987-05-07 Peter Ballas PANEL FOR CLOTHING WALLS OR CEILINGS
DE3544845C2 (en) 1985-12-18 1996-12-12 Max Liebich Profile edge board for the production of wooden panels
SE8506018L (en) 1985-12-19 1987-06-20 Sunds Defibrator MANUFACTURING FIBER DISCS
DE3545399C1 (en) 1985-12-20 1987-02-26 Philipp Schaefer Device for dressing split leather or the like.
US4715162A (en) 1986-01-06 1987-12-29 Trus Joist Corporation Wooden joist with web members having cut tapered edges and vent slots
DE8604004U1 (en) 1986-02-14 1986-04-30 Balsam Sportstättenbau GmbH & Co. KG, 4803 Steinhagen Removable sports flooring membrane
US4819932A (en) 1986-02-28 1989-04-11 Trotter Jr Phil Aerobic exercise floor system
DE3631390A1 (en) 1986-05-27 1987-12-03 Edwin Kurz Tile
US4769963A (en) 1987-07-09 1988-09-13 Structural Panels, Inc. Bonded panel interlock device
US4822440A (en) 1987-11-04 1989-04-18 Nvf Company Crossband and crossbanding
US4845907A (en) 1987-12-28 1989-07-11 Meek John R Panel module
US4831806A (en) 1988-02-29 1989-05-23 Robbins, Inc. Free floating floor system
FR2630149B1 (en) 1988-04-18 1993-03-26 Placoplatre Sa INSTALLATION ACCESSORY FOR COVERING PANEL, PARTICULARLY FLOOR PANEL
SU1680359A1 (en) 1988-08-29 1991-09-30 Petro V Grigorchak Apparatus for applying lacquer to edges of wood panels
FR2637932A1 (en) 1988-10-19 1990-04-20 Placoplatre Sa Covering panel, in particular floor panel
US5029425A (en) 1989-03-13 1991-07-09 Ciril Bogataj Stone cladding system for walls
US4905442A (en) * 1989-03-17 1990-03-06 Wells Aluminum Corporation Latching joint coupling
US5148850A (en) 1989-06-28 1992-09-22 Paneltech Ltd. Weatherproof continuous hinge connector for articulated vehicular overhead doors
DK418389D0 (en) * 1989-08-24 1989-08-24 Teknologisk Inst PROCEDURE FOR USE BY CUTTING WOODEN COATS AND APPARATUS FOR USE IN EXERCISING THE PROCEDURE
US5111579A (en) 1989-12-14 1992-05-12 Steelcase Inc. Method for making a frameless acoustic cover panel
DE4002547A1 (en) 1990-01-29 1991-08-01 Thermodach Dachtechnik Gmbh Jointed overlapping heat insulating plate - has mating corrugated faces on overlapping shoulders and covering strips
US5086599A (en) 1990-02-15 1992-02-11 Structural Panels, Inc. Building panel and method
US5216861A (en) 1990-02-15 1993-06-08 Structural Panels, Inc. Building panel and method
US5213819A (en) 1990-03-30 1993-05-25 Maschinenfabrik, J. Dieffenbacher Gmbh & Co. Continuously operating press
CA2036755C (en) * 1990-03-30 1998-06-02 Friedrich Bernd Bielfeldt Continuously-operating press
NO169185C (en) 1990-05-02 1992-05-20 Boen Bruk As SPRING SPORTS FLOOR
US5113632A (en) 1990-11-07 1992-05-19 Woodline Manufacturing, Inc. Solid wood paneling system
SE469137B (en) * 1990-11-09 1993-05-17 Oliver Sjoelander DEVICE FOR INSTALLATION OF FRONT COVER PLATE
CN2095236U (en) 1990-11-23 1992-02-05 张学文 Wood colour patterned steel varnish combined floor
US5117603A (en) 1990-11-26 1992-06-02 Weintraub Fred I Floorboards having patterned joint spacing and method
DE9016158U1 (en) 1990-11-28 1991-03-21 Wasa Massivholzmoebel Gmbh, 6751 Geiselberg, De
CA2036029C (en) 1991-02-08 1994-06-21 Alexander V. Parasin Tongue and groove profile
US5271564A (en) 1991-04-04 1993-12-21 Smith William C Spray gun extension
FR2675174A1 (en) 1991-04-12 1992-10-16 Lemasson Paul Construction element
US5179812A (en) * 1991-05-13 1993-01-19 Flourlock (Uk) Limited Flooring product
GB2256023A (en) 1991-05-18 1992-11-25 Magnet Holdings Ltd Joint
DE4130115C2 (en) 1991-09-11 1996-09-19 Herbert Heinemann Facing element made of sheet metal
DE4134452A1 (en) 1991-10-18 1993-04-22 Helmut Sallinger Gmbh Sealing wooden floors - by applying filler compsn. of high solids content, then applying coating varnish contg. surface-active substance
US5286545A (en) * 1991-12-18 1994-02-15 Southern Resin, Inc. Laminated wooden board product
US5349796A (en) 1991-12-20 1994-09-27 Structural Panels, Inc. Building panel and method
DE4215273C2 (en) 1992-05-09 1996-01-25 Dietmar Groeger Covering for covering floor, wall and / or ceiling surfaces, in particular in the manner of a belt floor
FR2691491A1 (en) 1992-05-19 1993-11-26 Geraud Pierre Temporary timber floor panel, e.g. for sporting or cultural events - has two or more connections on one edge with end projections which engage with recesses in panel's undersides
SE9201982D0 (en) 1992-06-29 1992-06-29 Perstorp Flooring Ab CARTRIDGES, PROCEDURES FOR PREPARING THEM AND USING THEREOF
US5567497A (en) 1992-07-09 1996-10-22 Collins & Aikman Products Co. Skid-resistant floor covering and method of making same
US5295341A (en) * 1992-07-10 1994-03-22 Nikken Seattle, Inc. Snap-together flooring system
US5474831A (en) 1992-07-13 1995-12-12 Nystrom; Ron Board for use in constructing a flooring surface
IT1257601B (en) 1992-07-21 1996-02-01 PROCESS PERFECTED FOR THE PREPARATION OF EDGES OF CHIPBOARD PANELS SUBSEQUENTLY TO BE COATED, AND PANEL SO OBTAINED
FR2697275B1 (en) 1992-10-28 1994-12-16 Creabat Floor covering of the tiling type and method of manufacturing a covering slab.
DE4242530C2 (en) 1992-12-16 1996-09-12 Walter Friedl Building element for walls, ceilings or roofs of buildings
US5641553A (en) 1993-03-24 1997-06-24 Tingley; Daniel A. Cellulose surface material adhered to a reinforcement panel for structural wood members
DE4313037C2 (en) 1993-04-21 1997-06-05 Pegulan Tarkett Ag Multi-layer thermoplastic polyolefin-based floor covering and process for its production
NL9301551A (en) 1993-05-07 1994-12-01 Hendrikus Johannes Schijf Panel, as well as hinge profile, which is suitable for such a panel, among other things.
US7086205B2 (en) 1993-05-10 2006-08-08 Valinge Aluminium Ab System for joining building panels
SE509060C2 (en) 1996-12-05 1998-11-30 Valinge Aluminium Ab Method for manufacturing building board such as a floorboard
US7121059B2 (en) 1994-04-29 2006-10-17 Valinge Innovation Ab System for joining building panels
SE9301595L (en) 1993-05-10 1994-10-17 Tony Pervan Grout for thin liquid hard floors
GB9310312D0 (en) 1993-05-19 1993-06-30 Edinburgh Acoustical Co Ltd Floor construction (buildings)
US5540025A (en) 1993-05-29 1996-07-30 Daiken Trade & Industry Co., Ltd. Flooring material for building
NL9301469A (en) 1993-08-24 1995-03-16 Menno Van Gulik Floor element.
FR2712329B1 (en) 1993-11-08 1996-06-07 Pierre Geraud Removable parquet element.
DE9317191U1 (en) 1993-11-10 1995-03-16 Faist M Gmbh & Co Kg Insulation board made of thermally insulating insulation materials
IT1262263B (en) 1993-12-30 1996-06-19 Delle Vedove Levigatrici Spa SANDING PROCEDURE FOR CURVED AND SHAPED PROFILES AND SANDING MACHINE THAT REALIZES SUCH PROCEDURE
DE4402352A1 (en) 1994-01-27 1995-08-31 Dlw Ag Plate-shaped floor element and method for its production
US6679011B2 (en) * 1994-05-13 2004-01-20 Certainteed Corporation Building panel as a covering for building surfaces and method of applying
US5570554A (en) 1994-05-16 1996-11-05 Fas Industries, Inc. Interlocking stapled flooring
US5486256A (en) 1994-05-17 1996-01-23 Process Bonding, Inc. Method of making a headliner and the like
US5587218A (en) 1994-05-18 1996-12-24 Betz; Richard T. Surface covering
FR2721957B1 (en) 1994-06-29 1996-09-20 Geraud Pierre WOOD LATCH
US5497589A (en) * 1994-07-12 1996-03-12 Porter; William H. Structural insulated panels with metal edges
US5502939A (en) 1994-07-28 1996-04-02 Elite Panel Products Interlocking panels having flats for increased versatility
US5597024A (en) 1995-01-17 1997-01-28 Triangle Pacific Corporation Low profile hardwood flooring strip and method of manufacture
US6148884A (en) 1995-01-17 2000-11-21 Triangle Pacific Corp. Low profile hardwood flooring strip and method of manufacture
SE503917C2 (en) * 1995-01-30 1996-09-30 Golvabia Ab Device for joining by means of groove and chip of adjacent pieces of flooring material and a flooring material composed of a number of smaller pieces
SE502994E (en) 1995-03-07 1999-04-28 Perstorp Flooring Ab Floorboard with groove and springs and supplementary locking means
US7131242B2 (en) * 1995-03-07 2006-11-07 Pergo (Europe) Ab Flooring panel or wall panel and use thereof
SE9500810D0 (en) 1995-03-07 1995-03-07 Perstorp Flooring Ab Floor tile
US6421970B1 (en) 1995-03-07 2002-07-23 Perstorp Flooring Ab Flooring panel or wall panel and use thereof
US5618602A (en) 1995-03-22 1997-04-08 Wilsonart Int Inc Articles with tongue and groove joint and method of making such a joint
US5943239A (en) 1995-03-22 1999-08-24 Alpine Engineered Products, Inc. Methods and apparatus for orienting power saws in a sawing system
SE507235C2 (en) 1995-03-28 1998-04-27 Tarkett Ab Ways to prepare a building element for the manufacture of a laminated wooden floor
US5560569A (en) 1995-04-06 1996-10-01 Lockheed Corporation Aircraft thermal protection system
SE510236C2 (en) 1995-10-10 1999-05-03 Perstorp Flooring Ab Felling machining
US5830549A (en) 1995-11-03 1998-11-03 Triangle Pacific Corporation Glue-down prefinished flooring product
DE29517995U1 (en) 1995-11-14 1996-02-01 Witex Ag Floor element, in particular laminate panel or cassette made of a wood-based panel
US5755068A (en) 1995-11-17 1998-05-26 Ormiston; Fred I. Veneer panels and method of making
BR7502683U (en) 1995-11-24 1996-04-09 Jacob Abrahams Constructive arrangements in joints of strips for laminate floors or ceilings
CH690242A5 (en) 1995-12-19 2000-06-15 Schreinerei Anderegg Ag Structural component of compound material with elongated and surface extension is particularly for formation of width union, applying especially to boards and planks
US5630304A (en) 1995-12-28 1997-05-20 Austin; John Adjustable interlock floor tile
US6049987A (en) 1997-10-06 2000-04-18 Robell; Glenn Gridded measurement system for construction materials
IT1287271B1 (en) 1996-04-05 1998-08-04 Antonio Chemello ENDOMIDOLLAR NAIL FOR THE OSTEOSYNTHESIS OF LONG BONE FRACTURES
BE1010487A6 (en) 1996-06-11 1998-10-06 Unilin Beheer Bv FLOOR COATING CONSISTING OF HARD FLOOR PANELS AND METHOD FOR MANUFACTURING SUCH FLOOR PANELS.
BE1010339A3 (en) 1996-06-11 1998-06-02 Unilin Beheer Bv Floor covering comprising hard floor panels and method for producing them
US6203653B1 (en) * 1996-09-18 2001-03-20 Marc A. Seidner Method of making engineered mouldings
US5671575A (en) 1996-10-21 1997-09-30 Wu; Chang-Pen Flooring assembly
DE29618318U1 (en) 1996-10-22 1997-04-03 Mrochen Joachim Cladding panel
SE507737C2 (en) 1996-11-08 1998-07-06 Golvabia Ab Device for joining of flooring material
SE508165C2 (en) 1996-11-18 1998-09-07 Golvabia Ab Device for joining of flooring material
SE509059C2 (en) 1996-12-05 1998-11-30 Valinge Aluminium Ab Method and equipment for making a building board, such as a floorboard
DE19651149A1 (en) 1996-12-10 1998-06-18 Loba Gmbh & Co Kg Method of protecting edge of floor covering tiles
IT242498Y1 (en) 1996-12-19 2001-06-14 Margaritelli Italia Spa FLOORING LISTONE CONSTITUTED BY A LIST IN PRECIOUS WOOD AND A SPECIAL MULTILAYER SUPPORT IN WHICH THE LAYERS PREVAL
US5768850A (en) 1997-02-04 1998-06-23 Chen; Alen Method for erecting floor boards and a board assembly using the method
SE506254C2 (en) 1997-02-26 1997-11-24 Tarkett Ab Parquet flooring bar to form a floor with fishbone pattern
US5797237A (en) 1997-02-28 1998-08-25 Standard Plywoods, Incorporated Flooring system
DE19709641C2 (en) 1997-03-08 2002-05-02 Akzenta Paneele & Profile Gmbh Surface covering made of tabular panels
US5925211A (en) 1997-04-21 1999-07-20 International Paper Company Low pressure melamine/veneer panel and method of making the same
ES2225911T3 (en) 1997-04-22 2005-03-16 Mondo S.P.A. FLOORS AVAILABLE IN LAYERS, IN PARTICULAR FOR ATHLETIC FACILITIES.
DE19718319C2 (en) 1997-04-30 2000-06-21 Erich Manko Parquet element
DE19718812A1 (en) 1997-05-05 1998-11-12 Akzenta Paneele & Profile Gmbh Floor panel with bar pattern formed by wood veneer layer
US5987839A (en) 1997-05-20 1999-11-23 Hamar; Douglas J Multi-panel activity floor with fixed hinge connections
AT405560B (en) 1997-06-18 1999-09-27 Kaindl M ARRANGEMENT OF COMPONENTS AND COMPONENTS
US5935668A (en) 1997-08-04 1999-08-10 Triangle Pacific Corporation Wooden flooring strip with enhanced flexibility and straightness
BE1011466A6 (en) 1997-09-22 1999-10-05 Unilin Beheer Bv Floor part, method for manufacturing of such floor part and device used hereby.
DE29803708U1 (en) 1997-10-04 1998-05-28 Shen Technical Company Ltd Panel, in particular for floor coverings
EP0916460A1 (en) 1997-11-17 1999-05-19 Lindauer Dornier Gesellschaft M.B.H Method for cooling of hot pressed boards, especially particle boards and fibreboards, and plant for carrying out the process
US6324809B1 (en) 1997-11-25 2001-12-04 Premark Rwp Holdings, Inc. Article with interlocking edges and covering product prepared therefrom
US6345481B1 (en) * 1997-11-25 2002-02-12 Premark Rwp Holdings, Inc. Article with interlocking edges and covering product prepared therefrom
US5968625A (en) 1997-12-15 1999-10-19 Hudson; Dewey V. Laminated wood products
SE513151C2 (en) 1998-02-04 2000-07-17 Perstorp Flooring Ab Guide heel at the joint including groove and spring
US6314701B1 (en) 1998-02-09 2001-11-13 Steven C. Meyerson Construction panel and method
EP1559847B1 (en) 1998-02-09 2020-03-25 VSL International AG Tensioning element for the manufacturing of an anchoring
US6180211B1 (en) * 1998-04-03 2001-01-30 Russell K. Held Composite laminate and method therefor
US6173548B1 (en) * 1998-05-20 2001-01-16 Douglas J. Hamar Portable multi-section activity floor and method of manufacture and installation
SE512313C2 (en) * 1998-06-03 2000-02-28 Valinge Aluminium Ab Locking system and floorboard
SE512290C2 (en) 1998-06-03 2000-02-28 Valinge Aluminium Ab Locking system for mechanical joining of floorboards and floorboard provided with the locking system
US7386963B2 (en) 1998-06-03 2008-06-17 Valinge Innovation Ab Locking system and flooring board
FR2781513B1 (en) 1998-07-22 2004-07-30 Polystar TILE-TYPE SURFACE ELEMENT, FLOOR PANEL, WALL, ROOF FOR EXAMPLE
BE1012141A6 (en) 1998-07-24 2000-05-02 Unilin Beheer Bv FLOOR COVERING, FLOOR PANEL THEREFOR AND METHOD for the realization of such floor panel.
JP2000079602A (en) 1998-09-04 2000-03-21 Bridgestone Corp Wooden finishing material
US6119423A (en) 1998-09-14 2000-09-19 Costantino; John Apparatus and method for installing hardwood floors
SE515789C2 (en) * 1999-02-10 2001-10-08 Perstorp Flooring Ab Floor covering material comprising floor elements which are intended to be joined vertically
SE513189C2 (en) 1998-10-06 2000-07-24 Perstorp Flooring Ab Vertically mountable floor covering material comprising sheet-shaped floor elements which are joined together by means of separate joint profiles
SE514645C2 (en) 1998-10-06 2001-03-26 Perstorp Flooring Ab Floor covering material comprising disc-shaped floor elements intended to be joined by separate joint profiles
DE19851200C1 (en) 1998-11-06 2000-03-30 Kronotex Gmbh Holz Und Kunstha Floor panel has a tongue and groove joint between panels with additional projections and recesses at the underside of the tongue and the lower leg of the groove for a sealed joint with easy laying
JP3011930B1 (en) 1998-12-11 2000-02-21 積水化学工業株式会社 Construction method of floorboard
US6134854A (en) 1998-12-18 2000-10-24 Perstorp Ab Glider bar for flooring system
CA2289309A1 (en) 1999-01-18 2000-07-18 Premark Rwp Holdings, Inc. System and method for improving water resistance of laminate flooring
JP2000226932A (en) 1999-02-08 2000-08-15 Daiken Trade & Ind Co Ltd Ligneous decorative floor material and combination thereof
DE19907939C1 (en) 1999-02-24 2000-05-31 Homag Maschinenbau Ag Continuous application of a decorative strip onto the porous narrow edge of wood-based workpieces by applying a filling and bonding compound to the edge, then the strip
IT1307424B1 (en) 1999-04-29 2001-11-06 Costa S P A A METHOD FOR PROFILING STRIPS FOR PARQUET AND SQUARING MACHINE SUITABLE TO CREATE SUCH METHOD.
SE517478C2 (en) 1999-04-30 2002-06-11 Valinge Aluminium Ab Locking system for mechanical hoisting of floorboards, floorboard provided with the locking system and method for producing mechanically foldable floorboards
GB9910023D0 (en) * 1999-05-01 1999-06-30 Milliken Denmark Floor covering with borders and method of making same
DE19925248C2 (en) 1999-06-01 2002-11-14 Schulte Johannes floorboard
KR100409016B1 (en) 1999-06-26 2003-12-11 주식회사 엘지화학 Decorative flooring with polyester film as surface layer and method of preparing the same
US6245388B1 (en) 1999-06-30 2001-06-12 The Chinet Company Technology Wave coating of articles
EP2312087B1 (en) 1999-06-30 2018-03-28 Akzenta Paneele + Profile GmbH Panel fastening system and panel with fastening system
US6217976B1 (en) * 1999-10-22 2001-04-17 Weyerhaeuser Company Edge densified lumber product
ES2168045B2 (en) 1999-11-05 2004-01-01 Ind Aux Es Faus Sl NEW DIRECT LAMINATED FLOOR.
US6761008B2 (en) * 1999-12-14 2004-07-13 Mannington Mills, Inc. Connecting system for surface coverings
US6617009B1 (en) * 1999-12-14 2003-09-09 Mannington Mills, Inc. Thermoplastic planks and methods for making the same
JP4914532B2 (en) 1999-12-17 2012-04-11 大建工業株式会社 Decorative flooring
US6332733B1 (en) 1999-12-23 2001-12-25 Hamberger Industriewerke Gmbh Joint
US6722809B2 (en) 1999-12-23 2004-04-20 Hamberger Industriewerke Gmbh Joint
DE29922649U1 (en) 1999-12-27 2000-03-23 Kronospan Tech Co Ltd Panel with plug profile
JP3860373B2 (en) 1999-12-27 2006-12-20 大建工業株式会社 Production method of wooden flooring
EP1157176B1 (en) 1999-12-27 2003-10-22 Kronospan Technical Company Ltd. Panels with coupling means
DE19963203A1 (en) 1999-12-27 2001-09-20 Kunnemeyer Hornitex Plate section, especially a laminate floor plate, consists of a lignocellulose containing material with a coated surface and an edge impregnation agent
DE10001076C1 (en) 2000-01-13 2001-10-04 Huelsta Werke Huels Kg Panel element to construct floor covering; has groove and spring on opposite longitudinal sides and has groove and tongue on opposite end faces, to connect and secure adjacent panel elements
DE10001248A1 (en) 2000-01-14 2001-07-19 Kunnemeyer Hornitex Profile for releasable connection of floorboards has tongue and groove connection closing in horizontal and vertical directions
DE20001225U1 (en) 2000-01-14 2000-07-27 Kunnemeyer Hornitex Profile for the form-fitting, glue-free and removable connection of floorboards, panels or similar components
SE517183C2 (en) * 2000-01-24 2002-04-23 Valinge Aluminium Ab Locking system for mechanical joining of floorboards, floorboard provided with the locking system and method for making such floorboards
EP1120515A1 (en) 2000-01-27 2001-08-01 Triax N.V. A combined set comprising a locking member and at least two building panels
DE20017461U1 (en) 2000-02-23 2001-02-15 Kronotec Ag Floor panel
DE10008166C2 (en) 2000-02-23 2003-04-24 Kronotec Ag floor panel
CN1187507C (en) * 2000-03-07 2005-02-02 E·F·P·地板制品有限公司 Mechanical connection of panels
CZ294391B6 (en) 2000-03-07 2004-12-15 E. F. P. Floor Products Fussböden Gmbh Mechanical connection of panels
JP3497437B2 (en) 2000-03-09 2004-02-16 東洋テックス株式会社 Manufacturing method of building decorative flooring
SE522860C2 (en) 2000-03-10 2004-03-09 Pergo Europ Ab Vertically joined floor elements comprising a combination of different floor elements
JP2001260107A (en) 2000-03-21 2001-09-25 Uchiyama Mfg Corp Floor material and its manufacturing method
SE518184C2 (en) 2000-03-31 2002-09-03 Perstorp Flooring Ab Floor covering material comprising disc-shaped floor elements which are joined together by means of interconnecting means
US6363677B1 (en) 2000-04-10 2002-04-02 Mannington Mills, Inc. Surface covering system and methods of installing same
FR2810060A1 (en) 2000-06-08 2001-12-14 Ykk France Wooden floor paneling, for parquet floor, has elastic strip with lateral flanges forming stop faces for recessed surfaces on panels
PT1676720E (en) 2000-06-13 2011-02-28 Flooring Ind Ltd Floor covering
BE1013569A3 (en) 2000-06-20 2002-04-02 Unilin Beheer Bv Floor covering.
DE10031639C2 (en) 2000-06-29 2002-08-14 Hw Ind Gmbh & Co Kg Floor plate
DE10032204C1 (en) * 2000-07-01 2001-07-19 Hw Ind Gmbh & Co Kg Wooden or wood fiber edge-jointed floor tiles are protected by having their edges impregnated with composition containing e.g. fungicide, insecticide, bactericide, pesticide or disinfectant
DE10034407C1 (en) 2000-07-14 2001-10-31 Kronotec Ag A panel, for use as laminate flooring, comprises a core made from a wooden material having an insulating material on its inner side, fixed using glued strips running in the transverse direction
US6339908B1 (en) * 2000-07-21 2002-01-22 Fu-Ming Chuang Wood floor board assembly
DE20013380U1 (en) 2000-08-01 2000-11-16 Kunnemeyer Hornitex Laying aid
DE10044016C2 (en) 2000-09-06 2003-11-27 Kronotec Ag Device for connecting floor panels
FR2817106B1 (en) 2000-11-17 2003-03-07 Trixell Sas PHOTOSENSITIVE DEVICE AND METHOD FOR CONTROLLING THE PHOTOSENSITIVE DEVICE
DE10057901C2 (en) 2000-11-22 2002-11-14 Kronotec Ag Panel, especially floor panel
US6546691B2 (en) 2000-12-13 2003-04-15 Kronospan Technical Company Ltd. Method of laying panels
DE10101202B4 (en) * 2001-01-11 2007-11-15 Witex Ag parquet board
US6851241B2 (en) * 2001-01-12 2005-02-08 Valinge Aluminium Ab Floorboards and methods for production and installation thereof
CN1233914C (en) 2001-01-12 2005-12-28 凡林奇铝业有限公司 Floorboards and methods for production and installation thereof
US6769218B2 (en) 2001-01-12 2004-08-03 Valinge Aluminium Ab Floorboard and locking system therefor
DE10101704B4 (en) 2001-01-15 2012-11-08 Geze Gmbh drive
DE10101912C1 (en) * 2001-01-16 2002-03-14 Johannes Schulte Rectangular floor panel laying method uses fitting wedge for movement of floor panel in longitudinal and transverse directions for interlocking with adjacent floor panel and previous floor panel row
DE10103505B4 (en) 2001-01-26 2008-06-26 Pergo (Europe) Ab Floor or wall panel
US20020100231A1 (en) 2001-01-26 2002-08-01 Miller Robert J. Textured laminate flooring
SE520084C2 (en) 2001-01-31 2003-05-20 Pergo Europ Ab Procedure for making merge profiles
EP1228812A1 (en) 2001-01-31 2002-08-07 Rockwool International A/S A method and an apparatus for applying a surface coating on edges of a mineral fibre board
JP2002276139A (en) 2001-03-12 2002-09-25 Nippon Paper Industries Co Ltd Wooden decorative floor material having surface grooves formed therein
FR2825397B1 (en) 2001-06-01 2004-10-22 Tarkett Sommer Sa FLOOR COVERING ELEMENT (S)
JP2002371635A (en) 2001-06-11 2002-12-26 Sir Walter Lindal Waterproof joint between woods and its manufacturing method
US20020189183A1 (en) 2001-06-19 2002-12-19 Ricciardelli Thomas E. Decorative interlocking tile
US6823638B2 (en) * 2001-06-27 2004-11-30 Pergo (Europe) Ab High friction joint, and interlocking joints for forming a generally planar surface, and method of assembling the same
EP1251219A1 (en) 2001-07-11 2002-10-23 Kronotec Ag Method for laying and locking floor panels
SE519791C2 (en) 2001-07-27 2003-04-08 Valinge Aluminium Ab System for forming a joint between two floorboards, floorboards therefore provided with sealing means at the joint edges and ways of manufacturing a core which is processed into floorboards
US8028486B2 (en) * 2001-07-27 2011-10-04 Valinge Innovation Ab Floor panel with sealing means
DE20122778U1 (en) 2001-08-10 2007-10-25 Akzenta Paneele + Profile Gmbh Panel and fastening system for panels
US6684592B2 (en) * 2001-08-13 2004-02-03 Ron Martin Interlocking floor panels
BE1014345A3 (en) * 2001-08-14 2003-09-02 Unilin Beheer Bv Floor panel and method for manufacturing it.
JP4953182B2 (en) 2001-08-27 2012-06-13 大王製紙株式会社 SAP dispersion slurry coating apparatus and sheet absorbent manufacturing method
US8250825B2 (en) 2001-09-20 2012-08-28 Välinge Innovation AB Flooring and method for laying and manufacturing the same
SE525558C2 (en) 2001-09-20 2005-03-08 Vaelinge Innovation Ab System for forming a floor covering, set of floorboards and method for manufacturing two different types of floorboards
DE10152134A1 (en) 2001-10-23 2003-05-08 Hennecke Gmbh Press for hard foam sheets
JP3942860B2 (en) 2001-10-23 2007-07-11 クボタ松下電工外装株式会社 Finishing method for sealing the edge of inorganic building board
DE10159284B4 (en) 2001-12-04 2005-04-21 Kronotec Ag Building plate, in particular floor panel
DE10159581C1 (en) 2001-12-05 2003-06-26 Parkett Hinterseer Gmbh Device for the production of upright lamella parquet of small thickness
JP3900935B2 (en) 2002-01-10 2007-04-04 凸版印刷株式会社 Manufacturing method of cosmetic material
DE10206877B4 (en) 2002-02-18 2004-02-05 E.F.P. Floor Products Fussböden GmbH Panel, especially floor panel
EP1338334A1 (en) 2002-02-21 2003-08-27 Cognis Iberia, S.L. Microcapsules - XVI
ITUD20020045A1 (en) 2002-02-25 2003-08-25 Delle Vedove Levigatrici Spa VACUUM PAINTING HEAD AND RELATED PAINTING PROCEDURE
GB0204390D0 (en) 2002-02-26 2002-04-10 Eastman Kodak Co A method and system for coating
AU2002254932A1 (en) 2002-03-07 2003-09-16 Fritz Egger Gmbh And Co. Panels provided with a friction-based fixing
EP2281978B1 (en) 2002-04-03 2016-10-12 Välinge Innovation AB Method of attaching a strip to a floorboard
SE525657C2 (en) 2002-04-08 2005-03-29 Vaelinge Innovation Ab Flooring boards for floating floors made of at least two different layers of material and semi-finished products for the manufacture of floorboards
DE20205774U1 (en) 2002-04-13 2002-08-14 Kronospan Tech Co Ltd Panels with rubberized edging
US7051486B2 (en) * 2002-04-15 2006-05-30 Valinge Aluminium Ab Mechanical locking system for floating floor
US8850769B2 (en) 2002-04-15 2014-10-07 Valinge Innovation Ab Floorboards for floating floors
US7739849B2 (en) 2002-04-22 2010-06-22 Valinge Innovation Ab Floorboards, flooring systems and methods for manufacturing and installation thereof
DE20206460U1 (en) 2002-04-24 2002-07-11 Hw Ind Gmbh & Co Kg Parquet or plank flooring
ITUD20020110A1 (en) 2002-05-23 2003-11-24 Delle Vedove Levigatrici Spa APPARATUS AND PROCESS FOR PAINTING OBJECTS SUCH AS PROFILES, PANELS, OR SIMILAR
US20030221387A1 (en) 2002-05-28 2003-12-04 Kumud Shah Laminated indoor flooring board and method of making same
JP2004027626A (en) 2002-06-25 2004-01-29 Eidai Co Ltd Wall panel and wall structure with the same fitted thereto
DE10232508C1 (en) 2002-07-18 2003-12-18 Kronotec Ag Interlocking flooring panel has groove formed along or adjacent one side edge for preventing moisture penetrating joint between adjacent flooring panels
US20040023006A1 (en) 2002-08-05 2004-02-05 Bruce Mead Printed border
AT413228B (en) * 2002-08-19 2005-12-15 Kaindl M COVER PLATE
US8375673B2 (en) * 2002-08-26 2013-02-19 John M. Evjen Method and apparatus for interconnecting paneling
US20040062937A1 (en) * 2002-09-16 2004-04-01 Amorim Industrial Solutions, Inc. Flooring system underlayment
FR2846023B1 (en) 2002-10-18 2005-08-05 Alsapan CENTRAL OR PERIPHERAL LOW COATING PANELS OBTAINED BY COMPRESSION
US20040108625A1 (en) 2002-12-06 2004-06-10 Moder Jerry R. Pneumatically assisted contour bonding system and formed laminated products produced thereby
SE525622C2 (en) 2002-12-09 2005-03-22 Pergo Europ Ab Procedure for installation of panels with joints, encapsulated agent and glue
US20040206036A1 (en) 2003-02-24 2004-10-21 Valinge Aluminium Ab Floorboard and method for manufacturing thereof
US7845140B2 (en) 2003-03-06 2010-12-07 Valinge Innovation Ab Flooring and method for installation and manufacturing thereof
US7677001B2 (en) 2003-03-06 2010-03-16 Valinge Innovation Ab Flooring systems and methods for installation
SE0300642D0 (en) 2003-03-11 2003-03-11 Pergo Europ Ab Process for sealing a joint
SE526691C2 (en) 2003-03-18 2005-10-25 Pergo Europ Ab Panel joint with friction raising means at longitudinal side joint
DE20307580U1 (en) 2003-05-15 2003-07-10 Schulte Fuehres Josef Floorboard, has stone covering supported on layer provided with interlocking tongues, grooves, channels and beads on its length and width sides
BE1015550A5 (en) 2003-06-04 2005-06-07 Flooring Ind Ltd FLOOR PANEL AND METHOD FOR MANUFACTURING SUCH FLOOR PANEL.
BE1015760A6 (en) 2003-06-04 2005-08-02 Flooring Ind Ltd Laminated floorboard has a decorative overlay and color product components inserted into recesses which, together, give a variety of visual wood effects
KR100566083B1 (en) * 2003-08-07 2006-03-30 주식회사 한솔홈데코 Sectional floorings
DE10343441B3 (en) 2003-09-19 2005-05-04 Angelika Riepe Use of a liquid lubricant comprising an aqueous-alcoholic polyglycol solution in laminating the edges of board, especially furniture board
DE20314850U1 (en) 2003-09-25 2003-12-04 Riepe, Angelika Edge working unit, eg for furniture surfaces, comprises a storage container for a separating agent, and a spray head connected to it
JP4191001B2 (en) 2003-10-07 2008-12-03 本田技研工業株式会社 Power transmission system performance confirmation method for four-wheel drive vehicles
US20050108970A1 (en) 2003-11-25 2005-05-26 Mei-Ling Liu Parquet block with woodwork joints
US7047697B1 (en) 2003-11-25 2006-05-23 Homeland Vinyl Products, Inc. Modular decking planks
US7886497B2 (en) 2003-12-02 2011-02-15 Valinge Innovation Ab Floorboard, system and method for forming a flooring, and a flooring formed thereof
US20050166516A1 (en) 2004-01-13 2005-08-04 Valinge Aluminium Ab Floor covering and locking systems
SE526596C2 (en) 2004-01-13 2005-10-11 Vaelinge Innovation Ab Floating floor with mechanical locking system that allows movement between the floorboards
US7516588B2 (en) 2004-01-13 2009-04-14 Valinge Aluminium Ab Floor covering and locking systems
DE202004001037U1 (en) 2004-01-24 2004-04-29 Kronotec Ag Panel, in particular floor panel
DE202004001038U1 (en) 2004-01-24 2004-04-08 Delle Vedove Maschinenbau Gmbh Tandem piston Schmelzer
DE102004006569B4 (en) 2004-02-11 2006-01-19 Delle Vedove Maschinenbau Gmbh Device for wrapping profile material
DE102004011531C5 (en) 2004-03-08 2014-03-06 Kronotec Ag Wood-based panel, in particular floor panel
DE102004023157A1 (en) 2004-05-07 2005-11-24 Nordson Corp., Westlake Method and device for the production of sheet-like elements, use of a pasty mass for the formation of a lateral connecting means and flat element
ITUD20040101A1 (en) * 2004-05-17 2004-08-17 Delle Vedove Levigatrici Spa MACHINE TO FINISH AN OBJECT SUCH AS A PROFILE, A PANEL, OR SIMILAR
US20050281997A1 (en) * 2004-06-16 2005-12-22 Sealed Air Corporation (Us) Pitch modulating laminate
ITUD20040130A1 (en) 2004-06-22 2004-09-22 Delle Vedove Levigatrici Spa EQUIPMENT FOR COATING AN OBJECT SUCH AS A PROFILE, A PANEL, OR SIMILAR
WO2006031169A1 (en) 2004-09-14 2006-03-23 Pergo (Europe) Ab A decorative laminate board
SE527570C2 (en) * 2004-10-05 2006-04-11 Vaelinge Innovation Ab Device and method for surface treatment of sheet-shaped material and floor board
US7841144B2 (en) 2005-03-30 2010-11-30 Valinge Innovation Ab Mechanical locking system for panels and method of installing same
DK1936068T3 (en) 2004-10-22 2012-03-19 Vaelinge Innovation Ab Method of providing floor panels with a mechanical locking system
US7454875B2 (en) 2004-10-22 2008-11-25 Valinge Aluminium Ab Mechanical locking system for floor panels
DE102004054368A1 (en) 2004-11-10 2006-05-11 Kaindl Flooring Gmbh trim panel
TWM268167U (en) 2004-11-24 2005-06-21 Jerry Nien Forming mechanism for blade of window curtain
DK1711353T3 (en) 2004-12-23 2010-03-15 Flooring Ind Ltd Laminate floor panel
US20060144004A1 (en) 2005-01-06 2006-07-06 Oke Nollet Floor panel and method for manufacturing a floor panel
PL1691005T3 (en) 2005-02-15 2010-01-29 Vaelinge Innovation Ab Method to make a floorboard with compressed edges
US8215078B2 (en) * 2005-02-15 2012-07-10 Välinge Innovation Belgium BVBA Building panel with compressed edges and method of making same
DE202005006300U1 (en) 2005-04-19 2005-07-07 Delle Vedove Maschinenbau Gmbh Adhesive melter with slot jet applicator for applying adhesive has pump with filter and jet rod fitted compactly in heat conducting block
DE202005006368U1 (en) 2005-04-20 2005-06-30 Nordson Corporation, Westlake Applicator for applying fluid to contour of substrate, e.g. for floor covering panel manufacture, has transfer wheel with axially-tapered fluid-conveying surface
US8061104B2 (en) 2005-05-20 2011-11-22 Valinge Innovation Ab Mechanical locking system for floor panels
US20060260253A1 (en) 2005-05-23 2006-11-23 Quality Craft Ltd. Laminate flooring panel bevel and method of manufacturing same
JP2007170059A (en) 2005-12-22 2007-07-05 Matsushita Electric Works Ltd Floor material
SE0600041L (en) 2006-01-11 2007-07-12 Vaelinge Innovation Ab V-grooves
US20070175144A1 (en) * 2006-01-11 2007-08-02 Valinge Innovation Ab V-groove
US8464489B2 (en) 2006-01-12 2013-06-18 Valinge Innovation Ab Laminate floor panels
US7854100B2 (en) * 2006-01-12 2010-12-21 Valinge Innovation Ab Laminate floor panels
SE530653C2 (en) 2006-01-12 2008-07-29 Vaelinge Innovation Ab Moisture-proof floor board and floor with an elastic surface layer including a decorative groove
MX2009002928A (en) 2006-09-15 2009-03-31 Vaelinge Innovation Ab Device and method for compressing an edge of a building panel and a building panel with compressed edges.
US8323016B2 (en) 2006-09-15 2012-12-04 Valinge Innovation Belgium Bvba Device and method for compressing an edge of a building panel and a building panel with compressed edges
US7868090B2 (en) * 2006-12-28 2011-01-11 Sabic Innovative Plastics Ip B.V. Polyester molding compositions
CN104002357A (en) * 2007-11-19 2014-08-27 瓦林格创新股份有限公司 Fibre based panels with a wear resistance surface
US9783996B2 (en) * 2007-11-19 2017-10-10 Valinge Innovation Ab Fibre based panels with a wear resistance surface
US8419877B2 (en) * 2008-04-07 2013-04-16 Ceraloc Innovation Belgium Bvba Wood fibre based panels with a thin surface layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216409B1 (en) * 1998-11-09 2001-04-17 Valerie Roy Cladding panel for floors, walls or the like
US7926234B2 (en) * 2002-03-20 2011-04-19 Valinge Innovation Ab Floorboards with decorative grooves
US7874118B2 (en) * 2003-09-05 2011-01-25 Kaindl Flooring Gmbh Panel with protected v-joint
US7763143B2 (en) * 2004-12-01 2010-07-27 Berry Finance, N.V. Method of manufacturing a floor panel
US8261506B2 (en) * 2004-12-01 2012-09-11 Berry Finance, N.V. Method of manufacturing a floor panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8683698B2 (en) 2002-03-20 2014-04-01 Valinge Innovation Ab Method for making floorboards with decorative grooves
US10471678B2 (en) 2002-03-20 2019-11-12 Valinge Innovation Ab Floorboards with decorative grooves
US11498305B2 (en) 2002-03-20 2022-11-15 Valinge Innovation Ab Floorboards with decorative grooves
US9623433B2 (en) 2004-10-05 2017-04-18 Valinge Innovation Ab Appliance and method for surface treatment of a board shaped material and floorboard
US8940216B2 (en) 2006-09-15 2015-01-27 Valinge Innovation Ab Device and method for compressing an edge of a building panel and a building panel with compressed edges
US9169654B2 (en) 2009-12-17 2015-10-27 Valinge Innovation Ab Methods and arrangements relating to surface forming of building panels
US9447587B2 (en) 2009-12-17 2016-09-20 Valinge Innovation Ab Methods and arrangements relating to surface forming of building panels
US20130025216A1 (en) * 2011-07-26 2013-01-31 Gip International, Ltd Laminate flooring product with enhanced visual and tribological properties

Also Published As

Publication number Publication date
US20060179773A1 (en) 2006-08-17
US8429872B2 (en) 2013-04-30
US20080034701A1 (en) 2008-02-14
US8215078B2 (en) 2012-07-10

Similar Documents

Publication Publication Date Title
US8215078B2 (en) Building panel with compressed edges and method of making same
EP1691005B1 (en) Method to make a floorboard with compressed edges
US11498305B2 (en) Floorboards with decorative grooves
US8720151B2 (en) Floorboards for flooring
US8850769B2 (en) Floorboards for floating floors
DK3091141T3 (en) FLOOR PANELS WITH REDUCED WEIGHT AND MATERIAL CONTENT
US20040016196A1 (en) Mechanical locking system for floating floor

Legal Events

Date Code Title Description
AS Assignment

Owner name: VALINGE INNOVATION BELGIUM BVBA, BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CERALOC INNOVATION BELGIUM BVBA;REEL/FRAME:030208/0874

Effective date: 20120511

Owner name: VALINGE ALUMINIUM AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PERVAN, DARKO;REEL/FRAME:030208/0079

Effective date: 20050216

Owner name: VALINGE INNOVATION BELGIUM BVBA, BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VALINGE INNOVATION AB;REEL/FRAME:030208/0587

Effective date: 20080609

Owner name: CERALOC INNOVATION BELGIUM BVBA, BELGIUM

Free format text: CHANGE OF NAME;ASSIGNOR:VALINGE INNOVATION BELGIUM BVBA;REEL/FRAME:030209/0070

Effective date: 20110301

Owner name: VALINGE INNOVATION AB, SWEDEN

Free format text: CHANGE OF NAME;ASSIGNOR:VALINGE ALUMINIUM AB;REEL/FRAME:030209/0053

Effective date: 20030610

AS Assignment

Owner name: VALINGE INNOVATION AB, SWEDEN

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:VALINGE INNOVATION BELGIUM BVBA;REEL/FRAME:030596/0428

Effective date: 20130610

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION