US3061473A - Process of and composition for producing improved textile materials having oil and water repellent and antistatic properties - Google Patents

Process of and composition for producing improved textile materials having oil and water repellent and antistatic properties Download PDF

Info

Publication number
US3061473A
US3061473A US38124A US3812460A US3061473A US 3061473 A US3061473 A US 3061473A US 38124 A US38124 A US 38124A US 3812460 A US3812460 A US 3812460A US 3061473 A US3061473 A US 3061473A
Authority
US
United States
Prior art keywords
oil
water repellent
repellent
textile materials
antistatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US38124A
Inventor
Giuliana C Tesoro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JP Stevens and Co Inc
Original Assignee
JP Stevens and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JP Stevens and Co Inc filed Critical JP Stevens and Co Inc
Priority to US38124A priority Critical patent/US3061473A/en
Application granted granted Critical
Publication of US3061473A publication Critical patent/US3061473A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/207Substituted carboxylic acids, e.g. by hydroxy or keto groups; Anhydrides, halides or salts thereof
    • D06M13/21Halogenated carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/213Perfluoroalkyl carboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/11Compounds containing epoxy groups or precursors thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/207Substituted carboxylic acids, e.g. by hydroxy or keto groups; Anhydrides, halides or salts thereof
    • D06M13/21Halogenated carboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/372Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen containing etherified or esterified hydroxy groups ; Polyethers of low molecular weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/277Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S524/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S524/91Antistatic compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2164Coating or impregnation specified as water repellent
    • Y10T442/2172Also specified as oil repellent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2418Coating or impregnation increases electrical conductivity or anti-static quality
    • Y10T442/2459Nitrogen containing

Definitions

  • the present invention relates to a novel process for imparting durable water repellent and antistatic properties in a single operation to textile materials manufactured from hydrophobic fibers. More specifically the present invention relates to a novel process for imparting water repellent, oil repellent, and antistatic properties to textile materials and fabrics manufactured wholly or in part from hydrophobic synthetic fibers.
  • hydrophobic fibers are defined as synthetic fibers such as polyamide fibers, poly.- vinyl chloride fibers, triacetate fibers, acrylic fibers, polyester fibers and the like, which have a comparatively low capacity to retain moisture in comparison with such fibers as cotton, wool and rayon.
  • Textile materials PIG p'aredfrom these hydrophobic fibers accumulate electrostatic charges when exposed to rubbing during processing or in use, and the use of suitable antistatic finishes is necessary in order to reduce or overcome the objectionable tendency to static accumulation.
  • water repellent properties are essential when synthetic fibers are employed in the manufacture of fabrics which are to be exposed to rain and snow.
  • novel process of the present invention comprise impregnating hydrophobic synthetic fibers with an aquer ous solution, dispersion or emulsion containing:
  • the fluorochemical compounds which are used to im-. part water and oil repelleutproperties, can have chemical structures that vary widely. For example, acrylates and methacrylate of hydroxyl compounds containing'a highly fiuorinated residue and their polymers and copolymers can be used. Fluorochemical compounds of this typeare defined with greater particularity in U.S. Patents 2,642,416; 2,826,564; 2,839,513; 2,803,615.
  • fluoro chemical compounds which can be employed as oil-and water repellent agents include the chromium cordination complexes of saturated perfluoromonocarboxylic acids of which the chromium complexes of perfluorobutyric-acid and perfluorooctanoic acid are presentative.
  • -Fluorochemical compounds suitable for the process of our invention are available commercially, for example, those marketed under the trade name of Scotchgard by the Minnesota Mining and Manufacturing Company.
  • the cationic polyelectrolytes which serve as antistatic agents, can be crosslinked and rendered insoluble (thermoset) by heating in the presence of a suitable curing agent. Their chemical structure can also vary widely. These compounds can be further described as Water soluble polymers containing reactive amino groups. Some examples of these polyelectrolytes are described in recent publications and patents. Cationic polyelectr'olytes suitable for the process of our invention are available commercially, for example those marketed under the trade name Aston by the Onyx Chemical Co. of Jersey City, NJ.
  • the curing agents contemplated are polyfunctional alkylating agents, capable of reacting with the polyamine antistatic agent, rendering it insoluble and thus resistant to washing and drycleaning.
  • the polyfunctional halides (ref. 3(a) supra) and polyfunctional epoxides are examples of curing agents which can be usefully employed 2,882,185, (0) US. Patent 2,914,427, a British Patent 797,175. v I
  • Polyepoxides are available commercially under various trade names, for example Eponite 100 (a product of the Shell Chemical Corp.), Kopoxite 159 (a product of Koppers Company, Inc.) and many others. Polyepoxides are generally prepared by the reaction of aliphatic or aromatic polyhydroxyl compounds with epichlorohydrin, followed by dehydrohalogenation of the resulting poly-chlorohydrin. Among polyfunctional halides, the polyethylene glycol diiodides are preferred because of their high reactivity and solubility properties. A representative of this group is, for example, the compound known as Aston Catalyst which is a product of the Onyx Chemical Co.
  • each material used in the impregnating solution may be varied within wide limits, depending on the type of fabric employed and on the end use requirements for water repellency, oil rcpellency, static propensity and durability. The following ranges are preferred, and give excellent results on many types of fabrics:
  • Example 1 A woven 100% nylon fabric which has been dyed but not finished is impregnated with an aqueous solution containing 20 parts of a polymeric, cationic antistatic agent known as Aston 123 (product of the Onyx Oil and Chemical Co.), 1.7 parts of a curing agent consisting of Eponite l00 (product of the Shell Chemical Co.) and 8.6 parts of a fluorocarbon polymer known as Scotchgard FX204 (product of the Minnesota Mining and Manufacturing Co.) per 100 parts of solution. Care must be taken to adjust the pH of the Aston 123 to 6.0 7.0 before mixing.
  • Aston 123 polymeric, cationic antistatic agent
  • Eponite l00 product of the Shell Chemical Co.
  • Scotchgard FX204 product of the Minnesota Mining and Manufacturing Co.
  • Example 2 The fabric is then passed through the squeeze rolls of Example 2
  • the procedure of Example 1 is repeated on the same fabric, using 20 parts Aston 108 (at pH 10.0) as the antistatic agent, 1.9 parts of Aston Catalyst as the curing agent, and 8.0 parts of Scotchgard FX-204 per 100 parts of solution as the water repellent agent. Excellent water repellent, oil repellent, and antistatic propperties are obtained.
  • Example 3 The procedure of Example 1 is repeated on the same fabric, using 20 parts Aston 108 (at pH 10.0), 1.9 parts of Aston Catalyst and 9.0 parts of Scotchgard FC-154 as the water repellent agent per 100 parts of solution. The same excellent properties noted in Example 1 above are obtained.
  • Example 4 A woven dyed 100% polyester fabric (Dacron, a trademark of the E. I. du Pont Corp), is treated according to the procedure of Example 1 with a solution containing 10 parts Aston 108 4 (pH 10.0), 1.0 part of Aston Catalyst 4 and 8.6 parts Scotchgard FX-208 5 as the water repellent agent per 100 parts of solution. Again excellent water repellent, oil repellent, and antistatic properties are obtained.
  • Example 5 In this formula R is a lower alkyl (C to C n has a value of 2 to 3, and y has a value of 3 to 30.
  • Eponite 100 is a bis-glycidyl ether of a polyethylene glycol and can be represented by the formula
  • the Scotchgards are aqueous emulsions of polymers of perfluoroalkyl acrylates. Typical perfluoroalkyl acrylate monomers would be for example CH CHCO0CH (CF CF 1 in which n has a value of 2 to 8.
  • an antistatic agent comprising a water soluble polymer containing amino groups and a curing agent selected from the group consisting of (1) polyfunctional halides and (2) polyfunctional epoxides, wherein said repellent, antistatic agent, and curing agent are all in an aqueous medium; removing the excess of solution, and thereafter heat curing the solution in the textile materials.
  • a process for simultaneously imparting water repellent, oil repellent and antistatic properties to hydrophobic textile materials comprising impregnating said materials with an oil and water repellent selected from the group consisting of (1) acrylates and methacrylates of hydroxyl compounds containing a highly fluorinated residue and their polymers and copolymers and (2) chromium coordination complexes of saturated perfluoromono- 9.
  • Water repellent, oil repellent and antistatic textile materials made by the process of claim 1.
  • a composition for imparting water repellent, oil repellent, and antistatic properties to textile materials consisting of an oil and Water repellent selected from the group consisting of 1) acrylates and methacrylates of hydroxyl compounds containing a highly fluorinated residue and their polymers and (2) chromium coordination complexes of saturated perfiuoromonocarboxylic acids, an antistatic agent comprising a water soluble polymer containing amino groups and a curing agent selected from the group consisting of (1) polyfunctional halides and (2) polyfunctional polyepoxides, wherein said repellent, antistatic agent, and curing agent are all in an aqueous medium.

Description

United States Patent'O Delaware Filed June 23, 1960, Ser. No. 38,124
No Drawing.
11 Claims. (Cl. 117-1395) The present invention relates to a novel process for imparting durable water repellent and antistatic properties in a single operation to textile materials manufactured from hydrophobic fibers. More specifically the present invention relates to a novel process for imparting water repellent, oil repellent, and antistatic properties to textile materials and fabrics manufactured wholly or in part from hydrophobic synthetic fibers.
Many products and processes are known which may be used to render textiles or fabrics water repellent, and some are known to impart properties which are resistant to laundering and dry cleaning. There are also many known products and processes which are claimed to impart antistatic properties to hydrophobic textile materials. Some of the known antistatic finishes also withstand repeated launderings and drycleaning. However, the combination of durable water repellent and durable antistatic properties for hydrophobic fibers has not been possible heretofore. In fact, even very recently, experiments conducted by simultaneously applying the-water repellent and certain antistatic finishes, which are compatible in the treating bath, have shown that :both the water repellency and the static propensity sufier in degree of effectiveness. Thus, even in those instances in which there appears to be compatability of antistatic finishes with other functional finishes, in the bath, each combination' represents a special study, and there appears to be no fixed rules to guide the experimenter.
In the foregoing connection hydrophobic fibers are defined as synthetic fibers such as polyamide fibers, poly.- vinyl chloride fibers, triacetate fibers, acrylic fibers, polyester fibers and the like, which have a comparatively low capacity to retain moisture in comparison with such fibers as cotton, wool and rayon. Textile materials PIG: p'aredfrom these hydrophobic fibers accumulate electrostatic charges when exposed to rubbing during processing or in use, and the use of suitable antistatic finishes is necessary in order to reduce or overcome the objectionable tendency to static accumulation. On the other hand, water repellent properties are essential when synthetic fibers are employed in the manufacture of fabrics which are to be exposed to rain and snow.
The imparting of water repellent and antistatic properties to a given fabric, however desirable, would appear to be unattainable since the eifectiveness of an antistatic finish depends in large measure on its aflinity for water while the effectiveness of a water repellent finish depends on its lack of alfinity for water. It is known, for example, that a water repellent finish can lose its eifectiveness completely when contaminated by ionic im purities, such as residual detergent particles from wash or drycleaning solutions. For this reason the combination of a water repellent finish with a hydroscopic, ionic, antistatic finishing agent would be expected to lead to the complete loss of the water repellent properties, or of the antistatic properties, or possibly both. The Army Quartermaster Report cited above lends support to this theory. Accordingly, it would be highly beneficial to Measui-ing and Predicting the Generation of Static Electrlcity in Military Clothing, Textile Series, Report No. 110, Hqtrs, Quartermaster Research and Engineering Center, U .S. Army, Natiek, Mass. (September 1959).
the textile industry to provide a process for imparting both water repellent and antistatic properties to hydrophobic fibers in a single treatment.
It is, therefore, an object of the present invention to provide a novel process whereby hydrophobic textile, materials are simultaneously provided with water repellent, oil repellent and antistatic properties.
It is a further object of this invention to provide a novel process whereby these desirable properties are imparted to the textile materials by a single treatment.
It is a further object of this invention to provide a novel composition which imparts water and oil repellent plus antistatic properties to hydrophobic textile materials.
It is a further object of this invention to provide a novel process whereby the aforementioned water repellent, oil repellent and antistatic properties imparted to the 1 textile materials are durable to repeated laundering and drycleaning cycles.
It is a further object of this invention to provide textile materials which exhibit satisfactory durable water repellency, oil repellency and antistatic properties without impairment of their appearance, hand, strengthor physical properties generally.
Other objects and advantages of the invention will be apparent from the description which follows.
The novel process of the present invention comprise impregnating hydrophobic synthetic fibers with an aquer ous solution, dispersion or emulsion containing:
(a) An oil and water repelling fluorochemical compound;
(b) A cationic polyelectrolyte; and
(c) A curing agent designed to crosslink and insolubilize the cationic polymer, thus rendering it durable to washing. v-.
The fluorochemical compounds, which are used to im-. part water and oil repelleutproperties, can have chemical structures that vary widely. For example, acrylates and methacrylate of hydroxyl compounds containing'a highly fiuorinated residue and their polymers and copolymers can be used. Fluorochemical compounds of this typeare defined with greater particularity in U.S. Patents 2,642,416; 2,826,564; 2,839,513; 2,803,615. Other fluoro chemical compounds which can be employed as oil-and water repellent agents include the chromium cordination complexes of saturated perfluoromonocarboxylic acids of which the chromium complexes of perfluorobutyric-acid and perfluorooctanoic acid are presentative. -Fluorochemical compounds suitable for the process of our invention are available commercially, for example, those marketed under the trade name of Scotchgard by the Minnesota Mining and Manufacturing Company.
The cationic polyelectrolytes, which serve as antistatic agents, can be crosslinked and rendered insoluble (thermoset) by heating in the presence of a suitable curing agent. Their chemical structure can also vary widely. These compounds can be further described as Water soluble polymers containing reactive amino groups. Some examples of these polyelectrolytes are described in recent publications and patents. Cationic polyelectr'olytes suitable for the process of our invention are available commercially, for example those marketed under the trade name Aston by the Onyx Chemical Co. of Jersey City, NJ.
The curing agents contemplated are polyfunctional alkylating agents, capable of reacting with the polyamine antistatic agent, rendering it insoluble and thus resistant to washing and drycleaning. The polyfunctional halides (ref. 3(a) supra) and polyfunctional epoxides are examples of curing agents which can be usefully employed 2,882,185, (0) US. Patent 2,914,427, a British Patent 797,175. v I
in the process of our invention. Polyepoxides are available commercially under various trade names, for example Eponite 100 (a product of the Shell Chemical Corp.), Kopoxite 159 (a product of Koppers Company, Inc.) and many others. Polyepoxides are generally prepared by the reaction of aliphatic or aromatic polyhydroxyl compounds with epichlorohydrin, followed by dehydrohalogenation of the resulting poly-chlorohydrin. Among polyfunctional halides, the polyethylene glycol diiodides are preferred because of their high reactivity and solubility properties. A representative of this group is, for example, the compound known as Aston Catalyst which is a product of the Onyx Chemical Co. of Jersey City, New Jersey, and which is a polyoxy alkylene glycol dihalide corresponding to the formula X(C,,H O) C H ,,X in which X is halogen, n has a value of 2 to 3, and y has a value of 3 to 30.
The amounts of each material used in the impregnating solution may be varied within wide limits, depending on the type of fabric employed and on the end use requirements for water repellency, oil rcpellency, static propensity and durability. The following ranges are preferred, and give excellent results on many types of fabrics:
(a) 1% to 5% of an aqueous dispersion of a fluorochemical compound (about 30% active ingredient);
(b) 2% to of a cationic polyelectrolyte product (containing about active ingredient); and
(c) 0.2 to 1.0% of a curing agent.
All percentages are given on the weight of fabric treated. The actual percentage deposited on the fabric in the course of treatment can be calculated from the percent concentration of each material in the treating solution and the percent wet pick-up of the fabric. After impregnation with the solution or emulsion, the textile is passed through the squeeze rolls of a padder or other similar device, dried and heated in a curing oven to bring about polymerization of the resins. The time and temperature of curing may be varied widely. Curing temperatures of 280 F. to 350 F. for 1 minute to 5 minutes give excellent results. After curing, the treated textile can be rinsed or subjected to a mild detergent wash in order to remove soluble residues.
The present invention will be more completely illustrated by the following examples, which are illustrative of the excellent results that can be obtained when fabrics manufactured from hydrophobic fibers are treated according to the process of the invention and which examples are not to be construed as being limitative. All parts are by weight unless otherwise specified.
Example 1 A woven 100% nylon fabric which has been dyed but not finished is impregnated with an aqueous solution containing 20 parts of a polymeric, cationic antistatic agent known as Aston 123 (product of the Onyx Oil and Chemical Co.), 1.7 parts of a curing agent consisting of Eponite l00 (product of the Shell Chemical Co.) and 8.6 parts of a fluorocarbon polymer known as Scotchgard FX204 (product of the Minnesota Mining and Manufacturing Co.) per 100 parts of solution. Care must be taken to adjust the pH of the Aston 123 to 6.0 7.0 before mixing.
The fabric is then passed through the squeeze rolls of Example 2 The procedure of Example 1 is repeated on the same fabric, using 20 parts Aston 108 (at pH 10.0) as the antistatic agent, 1.9 parts of Aston Catalyst as the curing agent, and 8.0 parts of Scotchgard FX-204 per 100 parts of solution as the water repellent agent. Excellent water repellent, oil repellent, and antistatic propperties are obtained.
Example 3 The procedure of Example 1 is repeated on the same fabric, using 20 parts Aston 108 (at pH 10.0), 1.9 parts of Aston Catalyst and 9.0 parts of Scotchgard FC-154 as the water repellent agent per 100 parts of solution. The same excellent properties noted in Example 1 above are obtained.
Example 4 A woven dyed 100% polyester fabric (Dacron, a trademark of the E. I. du Pont Corp), is treated according to the procedure of Example 1 with a solution containing 10 parts Aston 108 4 (pH 10.0), 1.0 part of Aston Catalyst 4 and 8.6 parts Scotchgard FX-208 5 as the water repellent agent per 100 parts of solution. Again excellent water repellent, oil repellent, and antistatic properties are obtained.
Example 5 In this formula R is a lower alkyl (C to C n has a value of 2 to 3, and y has a value of 3 to 30.
For a further description of these polyamines, see U.S. Patent No. 3,021,232. Eponite 100 is a bis-glycidyl ether of a polyethylene glycol and can be represented by the formula For a further discussion of these compounds see U.S. Patent No. 2,982,751. The Scotchgards are aqueous emulsions of polymers of perfluoroalkyl acrylates. Typical perfluoroalkyl acrylate monomers would be for example CH CHCO0CH (CF CF 1 in which n has a value of 2 to 8.
a padder. The wet pick-up of the fabric is 33%, indicat- Several tests can be employed to establish the effectiveness of the present process for imparting water repellent, oil repellent, and antistatic properties to synthetic fibers. Some of the accepted test procedures are as follows.
For water repellency:
(a) AATCC spray test, Test Method 22-1952. Manual of the American Association of Textile Chemists and Colorists (AATCC), 1959 edition, p. 164.
Product of the Onyx Chemical Co. 5 Product of Minnesota Mining and Manufacturing Co. 6 Product of the Shell Chemical Co.
(b) Water penetration test, Federal Specification CCC-T-191, Modification POD-112, p. 3. For static properties (electrical resistivity):
AATCC Test Method 7 61959 (adopted as tentative 76-1954, revised 195 8, approved as standard 1959). Manual of the AATCC, 1959 edition, p. 138.
For oil repellency:
Minnesota Mining and Manufacturing Scotchgard technical bulletin, Appendix A. Durability to laundering:
Test before and after laundering in ahome style automatic washer, agitator type, water temperature 140 F., with detergent.
Durability to drycleaning:
Commercial drycleaning, either perchloroethylene or Stoddard solvent.
Accepted standards of performance for treated fabrics by the test methods listed above are- For water repellency:
(a) Spray test80 or higher.
(b) Water penetration-60 minutes or longer. For electrical resistivity:
x ohms or lower. For oil repellency:
Spray ratings of 80 or higher.
carboxylic acids, an antistatic agent comprising a water soluble polymer containing amino groups and a curing agent selected from the group consisting of (1) polyfunctional halides and (2) polyfunctional epoxides, wherein said repellent, antistatic agent, and curing agent are all in an aqueous medium; removing the excess of solution, and thereafter heat curing the solution in the textile materials.
2. The process of claim 1 in which the oil and water repellent, the antistatic agent, and the curing agent are in an aqueous medium selected from the group consisting of an aqueous solution, an aqueous dispersion, and an emulsion.
3. The process of claim 1 in which the heat curing takes place at temperatures from about 280 F. to 350 F. for a period of about 1 to 5 minutes.
4. The process of claim 3 in which the curing agent is a polyfunctional halide.
5. The process of claim 3 in which the curing agent is a dihalide of a polyethylene glycol.
6. The process of claim 3 in which the curing agent is a polyfunctional polyepoxide.
7. The process of claim 17in which the oil and water repellent consists of the acrylates and methacrylates of hydroxyl compounds containing a highly fluorinated residue and their polymers and copolymers.
8. The process of claim 1 in which the oil and water The test results obtained on the fabrics treated as derepellent conslsts of chromium coordination complexes scribed in Examples 1-5 are summarized below. of perfluoromonocarboxylic acids.
Water Oil Resisrepel- Water penetration, repeltivity Fabric Treatment leney time lency ohms at;
spray spray RH 1 rating rating Woven nylon None (control) 0 0 (immediate) 0 10 Do Example 1 Over 120 1111115.... 100 1X10 Example 1 after 5L 90 1 l0 Example 2 mins 100 3X10 Example 2 after 5L 30 mins 90 3X10 Example 3 Over 120 mins 100 4 10 None (contro 0 0 10 Example 4 80 4X10 Example 4 after 5 dry cleanings 80 4X10 None (control) 0 10 Example 5 100 6X10" Example 5 after 5L 100 2 10 1 RH relative humidity. 2 L=laundering.
The foregoing experimental data demonstrate that certain water and oil repellent finishes plus antistatic finishes can be simultaneously applied to hydrophobic fibers so as to impart excellent water repellent, oil repellent, and antistatic properties to said fibers and which properties are durable to subsequent laundering and dry cleaning treat- While the illustrative embodiments of the invention have been described hereinbefore with particularity, it will be understood that various other modifications will be apparent to and can readily be made by those skilled in the art without departing from the scope and spirit of the invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the examples and description set forth herein but rather that the claims be construed as encompassing all the features of patentable novelty which reside in the present invention including all features which would be treated as patentable equivalents thereof by those skilled in the art to which the invention pertains.
What I claim is:
1. A process for simultaneously imparting water repellent, oil repellent and antistatic properties to hydrophobic textile materials comprising impregnating said materials with an oil and water repellent selected from the group consisting of (1) acrylates and methacrylates of hydroxyl compounds containing a highly fluorinated residue and their polymers and copolymers and (2) chromium coordination complexes of saturated perfluoromono- 9. Water repellent, oil repellent and antistatic textile materials made by the process of claim 1.
10. The process of claim 1 in which 1% to 5% of the oil and water repellent; 2% to 10% of a cationic polyelectrolyte product as the antistatic agent; and 0.2 to 1.0% of the curing agent are employed in the aqueous medium, said percentages being in terms of the weight of the textile materials'treated.
11. A composition for imparting water repellent, oil repellent, and antistatic properties to textile materials consisting of an oil and Water repellent selected from the group consisting of 1) acrylates and methacrylates of hydroxyl compounds containing a highly fluorinated residue and their polymers and (2) chromium coordination complexes of saturated perfiuoromonocarboxylic acids, an antistatic agent comprising a water soluble polymer containing amino groups and a curing agent selected from the group consisting of (1) polyfunctional halides and (2) polyfunctional polyepoxides, wherein said repellent, antistatic agent, and curing agent are all in an aqueous medium.
References Cited in the file of this patent UNITED STATES PATENTS 2,803,615 Ahlbrecht et al. Aug. 20, 1957 2,820,719 Trusler et a1. Jan. 21, 1958 2,965,517 Albrecht et a1. Dec. 20, 1960

Claims (1)

1. A PROCESS FOR SIMULTANEOUSLY IMPARTING WATER REPELLENT, OIL REPELLENT AND ANTISTIC PROPERTIES TO HYDROPHOBIC TEXTILE MATERIALS COMPRISING IMPREGNATING SAID MATERIALS WITH AN OIL AND WATER REPELLENT SELECTED FROM THE GROUP CONSISTING OF (1) ACRYLATES AND METHACRYLATES OF HYDROXYL COMPOUNDS CONTAINING A HIGHLY FLUORINATED RESIDUE AND THEIR POLYMERS AND COPOLYMERS AND (2) CHROMIUM COORDINATION COMPLEXES OF SATURATED PERFLUOROMONOCARBOXYLIC ACIDS, AN ANTISTATIC AGENT COMPRISING A WATER SOLUBLE POLYMER CONTAINING AMINO GROUPS AND A CURING AGENT SELECTED FROM THE GROUP CONSISTING OF (1) POLYFUNSTIONAL HALIDES AND (2) POLYFUNCTIONAL EPOXIDES, WHEREIN SAID REPELLENT, ANTISTATIC AGENT, AND CURING AGENT ARE ALL IN AN AQUEOUS MEDIUM; REMOVING THE EXCESS OF SOLUTION, AND THEREAFTER HEAT CURING THE SOLUTION IN THE TEXTILE MATERIALS.
US38124A 1960-06-23 1960-06-23 Process of and composition for producing improved textile materials having oil and water repellent and antistatic properties Expired - Lifetime US3061473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US38124A US3061473A (en) 1960-06-23 1960-06-23 Process of and composition for producing improved textile materials having oil and water repellent and antistatic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US38124A US3061473A (en) 1960-06-23 1960-06-23 Process of and composition for producing improved textile materials having oil and water repellent and antistatic properties

Publications (1)

Publication Number Publication Date
US3061473A true US3061473A (en) 1962-10-30

Family

ID=21898210

Family Applications (1)

Application Number Title Priority Date Filing Date
US38124A Expired - Lifetime US3061473A (en) 1960-06-23 1960-06-23 Process of and composition for producing improved textile materials having oil and water repellent and antistatic properties

Country Status (1)

Country Link
US (1) US3061473A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212931A (en) * 1961-05-31 1965-10-19 Nippon Telegraph & Telephone Electrostatographic recording medium and a method of making the same
US3236672A (en) * 1962-02-12 1966-02-22 Arkansas Company Inc Durable water and oil repellency
US3385812A (en) * 1965-06-25 1968-05-28 Du Pont Finishing composition comprising a fluorochemical and a polyorganosiloxane
US3502537A (en) * 1966-01-04 1970-03-24 Bondina Ltd Air-permeable protective materials
US3903330A (en) * 1973-12-03 1975-09-02 Gisen Co Process of treating polyester fibers with resins
US3968066A (en) * 1974-04-18 1976-07-06 Ciba-Geigy Corporation Oil and water repellent textile composition containing a fluorochemical polyurethane resin and a quaternary ammonium salt
US4115605A (en) * 1975-08-04 1978-09-19 Kimberly-Clark Corporation Anti-static compositions comprising a copolymer or perfluoroalkyl acrylate and polyoxyalkylene acrylate, wetting agent, and a salt selected from the group consisting of potassium acetate and lithium chloride in aqueous medium
JPS5538385B1 (en) * 1971-05-18 1980-10-03
US4565717A (en) * 1983-10-20 1986-01-21 E. I. Dupont De Nemours And Company Antisoiling treatment of synthetic filaments
EP0737773A1 (en) * 1993-12-28 1996-10-16 Daikin Industries, Ltd. Method of treating textile products and textile products thus treated
US20040123853A1 (en) * 2001-06-06 2004-07-01 Ralf Forster Ignition system for an internal combustion engine
US20050112969A1 (en) * 2003-11-25 2005-05-26 Kimberly-Clark Worldwide, Inc. Method of treating substrates with ionic fluoropolymers
US20050112970A1 (en) * 2003-11-25 2005-05-26 Kimberly-Clark Worldwide, Inc. Method of treating nonwoven fabrics with non-ionic fluoropolymers
US20060110997A1 (en) * 2004-11-24 2006-05-25 Snowden Hue S Treated nonwoven fabrics and method of treating nonwoven fabrics
USD922350S1 (en) 2018-06-06 2021-06-15 Gn Audio A/S Headset for telephone and communication equipment
USD986216S1 (en) 2021-03-22 2023-05-16 Plantronics, Inc. Communications headset

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2803615A (en) * 1956-01-23 1957-08-20 Minnesota Mining & Mfg Fluorocarbon acrylate and methacrylate esters and polymers
US2820719A (en) * 1952-08-27 1958-01-21 Davies Young Soap Company Process for rendering fabrics water repellent
US2965517A (en) * 1958-01-21 1960-12-20 Ciba Ltd Process for producing antistatic dressings on synthetic fibers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820719A (en) * 1952-08-27 1958-01-21 Davies Young Soap Company Process for rendering fabrics water repellent
US2803615A (en) * 1956-01-23 1957-08-20 Minnesota Mining & Mfg Fluorocarbon acrylate and methacrylate esters and polymers
US2965517A (en) * 1958-01-21 1960-12-20 Ciba Ltd Process for producing antistatic dressings on synthetic fibers

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212931A (en) * 1961-05-31 1965-10-19 Nippon Telegraph & Telephone Electrostatographic recording medium and a method of making the same
US3236672A (en) * 1962-02-12 1966-02-22 Arkansas Company Inc Durable water and oil repellency
US3385812A (en) * 1965-06-25 1968-05-28 Du Pont Finishing composition comprising a fluorochemical and a polyorganosiloxane
US3502537A (en) * 1966-01-04 1970-03-24 Bondina Ltd Air-permeable protective materials
JPS5538385B1 (en) * 1971-05-18 1980-10-03
US3903330A (en) * 1973-12-03 1975-09-02 Gisen Co Process of treating polyester fibers with resins
US3968066A (en) * 1974-04-18 1976-07-06 Ciba-Geigy Corporation Oil and water repellent textile composition containing a fluorochemical polyurethane resin and a quaternary ammonium salt
US4115605A (en) * 1975-08-04 1978-09-19 Kimberly-Clark Corporation Anti-static compositions comprising a copolymer or perfluoroalkyl acrylate and polyoxyalkylene acrylate, wetting agent, and a salt selected from the group consisting of potassium acetate and lithium chloride in aqueous medium
US4565717A (en) * 1983-10-20 1986-01-21 E. I. Dupont De Nemours And Company Antisoiling treatment of synthetic filaments
EP0737773A4 (en) * 1993-12-28 1998-06-10 Daikin Ind Ltd Method of treating textile products and textile products thus treated
EP0737773A1 (en) * 1993-12-28 1996-10-16 Daikin Industries, Ltd. Method of treating textile products and textile products thus treated
EP1039018A1 (en) * 1993-12-28 2000-09-27 Daikin Industries, Ltd. Method of treating textile products and textiles products thus treated
US20040123853A1 (en) * 2001-06-06 2004-07-01 Ralf Forster Ignition system for an internal combustion engine
US7931944B2 (en) 2003-11-25 2011-04-26 Kimberly-Clark Worldwide, Inc. Method of treating substrates with ionic fluoropolymers
US20050112970A1 (en) * 2003-11-25 2005-05-26 Kimberly-Clark Worldwide, Inc. Method of treating nonwoven fabrics with non-ionic fluoropolymers
US7811949B2 (en) 2003-11-25 2010-10-12 Kimberly-Clark Worldwide, Inc. Method of treating nonwoven fabrics with non-ionic fluoropolymers
US20050112969A1 (en) * 2003-11-25 2005-05-26 Kimberly-Clark Worldwide, Inc. Method of treating substrates with ionic fluoropolymers
US20060110997A1 (en) * 2004-11-24 2006-05-25 Snowden Hue S Treated nonwoven fabrics and method of treating nonwoven fabrics
WO2006057681A1 (en) * 2004-11-24 2006-06-01 Kimberly-Clark Worldwide, Inc. Treated nonwoven fabrics and method of treating nonwoven fabrics
AU2005310043B2 (en) * 2004-11-24 2010-08-26 Kimberly-Clark Worldwide, Inc. Treated nonwoven fabrics and method of treating nonwoven fabrics
USD922350S1 (en) 2018-06-06 2021-06-15 Gn Audio A/S Headset for telephone and communication equipment
USD924840S1 (en) 2018-06-06 2021-07-13 Gn Audio A/S Headband bracket for a headset for telephone and communication equipment
USD986216S1 (en) 2021-03-22 2023-05-16 Plantronics, Inc. Communications headset

Similar Documents

Publication Publication Date Title
US3061473A (en) Process of and composition for producing improved textile materials having oil and water repellent and antistatic properties
US3491169A (en) Oil and water repellent
US3896251A (en) Outerwear fabric treatment
US3383162A (en) Treatment of textile materials
US4614519A (en) Soil release agent for textiles
US3645989A (en) Fluorinated oil- and water-repellent and dry soil resistant polymers
US3546187A (en) Oil- and water-repellent polymeric compositions
US3137668A (en) Anti-static coating composition comprising styrene sulfonate-glycidyl methacrylate polymer and sodium bisulfite
US3769307A (en) Fluoroamide-amino polymers and process for imparting oleophobic yet hydrophilic properties to fibrous materials
US3547856A (en) Fluorinated oil and water repellents
US3528849A (en) Method for imparting oil and water repellency to textile materials
US3510247A (en) Modification of cellulosic materials with tertiary bis-acrylamides
US4689159A (en) Textile processing agent and treatment of textile with the same
US3213053A (en) Antistatic composition and treatment of synthetic linear polymer texiles therewith
CN112079957A (en) Three-proofing finishing agent and preparation method thereof
US2537064A (en) Treatment of organic textile materials and products thereof
US3366507A (en) Textile coated with antistatic composition
US3351622A (en) Polymers and textile materials treated therewith
JP3615827B2 (en) Fiber fabric having antistatic property and water repellency and method for producing the same
US7186273B2 (en) Treatment of textiles with fluorinated polyethers
US3372978A (en) Fibrous material carrying a deposit of a cross-linked polymer
US3242117A (en) Composition and process for producing polyester textile materials having water repellent and antistatic properties
US3698856A (en) Treatment of textile fibers
KR100322937B1 (en) Textile product treatment method
US3708327A (en) Durable press rainwear