US3723322A - Detergent compositions containing carboxylated polysaccharide builders - Google Patents

Detergent compositions containing carboxylated polysaccharide builders Download PDF

Info

Publication number
US3723322A
US3723322A US00802256A US3723322DA US3723322A US 3723322 A US3723322 A US 3723322A US 00802256 A US00802256 A US 00802256A US 3723322D A US3723322D A US 3723322DA US 3723322 A US3723322 A US 3723322A
Authority
US
United States
Prior art keywords
builder
degree
sodium
carboxylated
builders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00802256A
Inventor
F Diehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Application granted granted Critical
Publication of US3723322A publication Critical patent/US3723322A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin

Definitions

  • This invention relates to detergent and laundering compositions which contain a water-soluble synthetic detergent and a so-called builder material. Such compositions are referred to in the art as built detergent and laundering compositions.
  • a surface active detergent in cleaning and soil removal from substrates such as soiled fabrics is well known.
  • detergency aids are called builders.
  • the role of builders is described in detail in U.S. Pat. 3,159,- 581, issued on Dec. 1, 1964 to Francis L. Diehl and assigned to the Proctor & Gamble Company. This patent is incorporated herein by reference and the specific discussion found in column 1, lines 13-72, and column 2, lines 1-3, provides background on the role and function of builders.
  • carboxylated polysaccharides of the character described below provide useful builder properties when used in conjunction with organic synthetic detergents selected from anionic, nonionic, zwitterionic, ampholytic synthetic detergents and mixtures of such detergents.
  • the carboxylated polysaccharides builders useful in the present invention have the following formula and properties:
  • X is selected from 0 COOH CH2OH, -CH OCH COOH Y is selected from --H, and CH COOH n is a whole integer in a range, the lower limit of which is 20 and the upper limit of which is determined primarily by the solubility characteristics in an aqueous system; the degree of substitution is 1.3 to 3.0; and the equivalent weight is from 97 to 185, calculated as the acid form.
  • the builder compounds of the present invention are 3,723,322 Patented Mar. 27, 1973 derivatives of natural polymers of which the preferred embodiments are carboxylated starches, celluloses and alginates.
  • Such polymer materials are well known and are readily available commercial materials having widely different chemical and physical properties.
  • the upper limit on the degree of polymerization (D.P.) or n in the formula above is necessarily determined by the solubility characteristics of a specific builder polymer. As a general rule however the value for n is from 20 to 30,000. A preferred minimum value for n is 30.
  • the molcecular weight of these builder compounds range from 4,000 to 5,000,000 and preferably 25,000 to 2,000,000.
  • degree of substitution is meant the number of carboxyl groups in the glucose or alginic acid monomer given above.
  • alpha and beta forms relate, as is well known in the art, to different stereochemical configurations. While both starch and cellulose are comprised of such building blocks, it is also known that starch has both 1,4- and 1,6-links, while cellulose contains only 1,4-links. These different linkages do not appear to interfere substantially with the builder properties discovered and described herein.
  • the starch polymers can be straight chain, or branch chain. Amylose is illustrative of a straight chain starch; amylopectin is an example of branched (1.6 links) starches. All are useful as builder embodiments according to the present invention.
  • alginic acid is a preferred embodiment and has the following formulae:
  • carboxylated polysaccharide builder compounds described and illustrated above are used in conjunction with organic synthetic detergents to provide laundering and detergent compositions.
  • the organic water-soluble synthetic detergents useful in the present invention include the anionic, nonionic, zwitterionic and ampholytic detergents which are illustrated and exemplified in great detail in U .8. Pat. 3,159,581 previously incorporated herein by reference. All of the compounds mentioned in that patent, beginning at column 3, line 74, and extending to column 5, line 59, are incorporated herein. There are other examples which fall within the named classes of detergents and they are also useful herein. Olefin sulfonate detergents are an example of very useful detergents such as those described in US. Pat. 3,332,880, incorporated herein by reference.
  • a useful property associated with effective builder compounds is a capability of sequestering hardness ions. This same property is provided by water softener compounds employed as detergency aids in conjunction with synthetic detergents.
  • the test used to discover these properties is called a Swatch-Dip test which measures the relative sequestering ability of a builder by employing a fabricswatch impregnated with soap and an aqueous solution containing a predetermined level of calcium hardness minerals. Briefly, the procedure calls for preparing the aqueous solution containing the hardness ions, at pH 10, and dipping into it or immersing in it a fabric-swatch which has been impregnated with a measured amount of soap. The swatch remains in the solution for a predetermined amount of time.
  • the identical procedure is then repeated but with a predetermined concentration of a sequestrant compound added to the aqueous solution containing the calcium ions.
  • Measurements of absorbed calcium are again made and comparisons drawn. Dilferences between the amounts of calcium absorbed in tests with and without sequestrants, is attributed to the ability of the sequestrant to tie-up or sequester the calcium and thereby decrease the level of free calcium ion concentration available for absorption by the immersed fabric swatch. A percentage is obtained in this manner called hardness retained by sequestrant.
  • Several demonstrations were conducted in this manner using sodium tripolyphosphate; sodium pyrophosphate; and sodium citrate.
  • a carboxymethylcellulose polymer (Hercules) was evaluated having a degree of substitution of .67, an equivalent weight of 300, a degree of polymerization of 1200, a molecular weight of about 240,000, and a specific viscocity at .06% solution of sodium salt, 60 C. of .622.
  • the carboxylated polysaccharide builder representative of the present invention used in this demonstation was a sodium carboxymethylcellulose having a degree of substitution of 1.5, an average degree of polymerization of 1500-2000, an average molecular weight of about 300,000 to 400,000, and an equivalent weight of 162.5.
  • a detergency test referred to as a facial swatch test.
  • This test involves a procedure of soiling a cloth swatch with natural soil by attaching a swatch (about 5 inches by 5 inches) to the plunger cup of an electric vibrator massager. Two swatches are soiled from an individual subject by massaging the right and left halves of the face respectively for one minute each. The resulting soiled swatches are randomized into different groups to statistically provide equal numbers of left and right samples. The swatches are then washed, rinsed and graded and the cycle is repeated nine times.
  • the washing step consists of laundering the soiled swatches in an aqueous solution having a temperature of F., a pH of 10, and containing 7 grains hardness.
  • a mechanical washer is used which is equipped with an agitator and otherwise simulates an ordinary home washing machine.
  • the detergent compositions tested consisted of an active synthetic detergent at a concentration of .03% in the wash water and a builder ingredient at a concentration of 0.5%.
  • the builders tested were compared with sodium tripolyphosphate, an excellent and widely used commercial builder. Following the washing of the soiled swatches, they were rinsed and dried and then whiteness measurements were made with a commercially available photoelectric refiectometer, i.e., a Hunter Color and Color Difference meter manufactured by Henry A. Gardner Laboratory, Inc. This instrument is designed to distinguish color differences and operates on the tristimulus colorimeter principle.
  • a 45 degree diffuse reflectance of an incident light beam on a test specimen is measured through a combination of green, blue and amber filters.
  • the electrical circuitry of the instrument is so designed that lightness and chromaticity values for the test specimen are read directly.
  • the departure from white (TiO being taken as a standard white) of the test specimen is calculated by introducing the lightness and chromaticity values so obtained into a complex formula supplied by the manufacturer.
  • An evaluation of relative whiteness performance compared to a standard detergent composition is thus obtained for the test formulations.
  • a more comprehensive description of this device and its mode of operation appears in Color in Business, Science and Industry by Deanne B. Judd, pages 260-262; published by John Wiley & Sons, New York (1952).
  • the sodium carboxymethyl cellulose had an equivalent weight of 139 as the acid form, a molecular weight of about 300,000, a degree of substitution of 2.0, and an average degree of polymerization of 930.
  • the sodium carboxymethylstarch derivative had an equivalent weight of 120, a molecular weight of 17,000 to 200,000, an average degree of substitution of 2.7, and an average degree of polymerization of about 53 to 620.
  • the carboxymethylstarch derivative gave cleaning results substantially equal to the STP.
  • the carboxymethylcellulose derivative while less effective than the starch derivative and the STP, still demonstrated highly useful and desirable builder properties.
  • a detergent and laundering composition comprises an organic watersoluble synthetic detergent and a water-soluble carboxylated polysacharide builder in a proportion by weight respectively, of 10:1 to 1:20, and preferably :1 to 1:10.
  • the compositions can be prepared as liquid or solid formulations. Built liquid compositions having a liquid aqueous or alcoholic base are especially useful. Solid formulations such as tablets, granules, powders, flakes and the like find widespread application. In a finished detergent formulation of this invention there will often be added in minor amounts materials which make the product more effective or more attractive. The following are mentioned by way of example.
  • a soluble sodium carboxymethylcellulose may be added in minor amounts to inhibit soil redeposition.
  • a tarnish inhibitor such as benzotriazole or ethylenethiourea may also be added in amounts up to about 2%.
  • Fluorescers, perfume and color while not essential in the compositions of the invention, may be added in amounts up to about 1%.
  • An alkaline material or alkali such as sodium hydroxide or potassium hydroxide can be added in minor amounts as supplementary pH adjusters. There might also be mentioned as suitable additives moisture, brightening agents, enzymes, sodium sulfate, and sodium carbonate.
  • Corrosion inhibitors generally are also added.
  • Soluble silicates are highly effective inhibitors and can be added to certain formulas of this invention at levels of from about 3% to about 8%.
  • Alkali metal, preferably potassium or sodium, silicates having a weight ratio of SiO M O of from 1.011 to 2.8:1 will be used. M is this ratio refers to sodium and potassium.
  • a sodium silicate having a ratio of SiO :Na O of about 1.6:1 to 2.45:1 is especially preferred for economy and effectiveness.
  • a hydrotropic agent may at times be found desirable.
  • Suitable hydrotropes are watersoluble alkali metal salts of toluene sulfonate, benzenesulfonate, and xylenesulfonate.
  • the preferred hydrotropes are the potassium or sodium toluenesulfonates.
  • the hydro trope salt may be added, if desired, at levels of 0% to about 12%. While a hydrotrope' will not ordinarily be found necessary, it can be added if so desired for any reason such as to produce a product which retains its homogeneity at a low temperature.
  • the detergent and laundering compositions of this invention provide best cleaning results when used in aqueous solutions having a pH of 9 to 12, preferably 9.5 to 11.5.
  • compositions of this invention provide best cleaning results when used at a suificient level to provide in solution a concentration of builder in the range of .02% to .5 by weight.
  • carboxylated polysaccharide builders which represent preferred embodiments are the carboxylated starch derivatives, the carboxylated cellulose derivatives and the carboxylated alginate derivatives having the equivalent weights, the degrees of substitution, the molecular weights and the degrees of polymerization (11) described above.
  • compositions illustrate this invention:
  • CMC carboxymethylcellulose
  • the CMC derivative can be replaced with an equal weight of sodium carboxymethylstarch having a degree of substitution of 2.7, an equivalent Weight of 150, an average molecular weight of 1,000,000 and a degree of polymerization of 10,000. The result is a useful and highly effective built detergent composition.
  • one-half of the sodium carboxymethylcellulose can be replaced with sodium tripolyphosphate and an excellent built laundering composition is provided.
  • the present invention contemplates built detergent compositions in which a portion of the more traditional and widely used builders such as the polyphosphates, pyrophosphates, nitrilotriacetates, and phosphonates are replaced with the carboxylated polysaccharides (starches, celluloses, alginates, etc. having a high degree of substitution) described herein.
  • a portion of the more traditional and widely used builders such as the polyphosphates, pyrophosphates, nitrilotriacetates, and phosphonates are replaced with the carboxylated polysaccharides (starches, celluloses, alginates, etc. having a high degree of substitution) described herein.
  • each treatment is carried out for two or three days, and 5 or 6 treatments are required in order to obtain degrees of substitution (D.S.) of greater than 2. Lesser D.'S.'s can be obtained in fewer treatments. From time to time during the preparation of the products enough water is added to the reaction mixture to maintain a pasty consistency.
  • degrees of substitution D.S.
  • the mixture is dissolved in a minimal amount of water and the product is then precipitated by the addition of an excess of methanol.
  • the product is collected by filtration or by decantation of the aqueous phase, redissolved in water, and then the precipitation-isolation procedures are repeated. Further purification, if desired, can be accomplished by trituration with hot methanol, and/or dialysis, and/or Sephadex gel filtration.
  • Analysis can be carried out by dissolving a weighed amount of the product in water, passing this solution over a column of a strongly acidic ion exchange resin, and then titrating the resulting eluant with standardized sodium hydroxide solution.
  • a detergent composition consisting essentially of an organic water-soluble detergent selected from the group consisting of anionic, nonionic, zwitterionic, ampholytic detergents and mixtures of such detergents, and a watersoluble carboxylated alginic acid derivative builder salt, the ratio by weight of said detergent to said builder salt being :1 to 1:20, said builder having the formula and properties as follows:
  • Y is selected from H and "CH COOH; n is a whole integer in a range, the lower limit of which is 20 and the upper limit of which is determined primarily by the solubility characteristics in an aqueous system; the degree of substitution is 1.3 to 2.0; and the equivalent weight is from 97 to 185, calculated as the acid form.

Abstract

DETERGENT AND LAUNDERING COMPOSITIONS COMPRISING AN ORGANIC WATER-SOLUBLE SYNTHETIC DETERGENT AND A WATERSOLUBLE CARBOXYLATED ALIGINIC ACID BUILDER IN A PROPOTION BY WEIGHT OF 10:1 TO ABOUT 1:20; THE CARBOXYLATED BUILDER HAVING A DEGREE OF SUBSTITUTION OF 1.3 TO 2.0, AN EQUIVALENT WEIGHT OF 97 TO 185, A DEGREE OF POLYMERIZATION OF 20 TO 30.000 AND A MOLECULAR WEIGHT OF 4,000 TO 5,000,000

Description

United States Patent M DETERGENT COMPOSITIONS CONTAINING CAR- BOXYLATED POLYSACCHARIDE BUILDERS Francis L. Diehl, Wyoming, Ohio, assignor to The Procter & Gamble Company, Cincinnati, Ohio No Drawing. Filed Feb. 25, 1969. Ser. No. 802,256
Int. Cl. Clld 3/04, 1/12 U5. Cl. 25289 1 (Ilaim ABSTRACT OF THE DISCLOSURE Deteregnt and laundering compositions comprising an organic water-soluble synthetic detergent and a watersoluble carboxylated alginic acid builder in a proportion by weight of 10:1 to about 1:20; the carboxylated builder having a degree of substitution of 1.3 to 2.0, an equivalent weight of 97 to 185, a degree of polymerization of 20 to 30,000 and a molecular weight of 4,000 to 5,000,000.
This invention relates to detergent and laundering compositions which contain a water-soluble synthetic detergent and a so-called builder material. Such compositions are referred to in the art as built detergent and laundering compositions. The role of a surface active detergent in cleaning and soil removal from substrates such as soiled fabrics is well known. It is also well known that materials exist which when used in conjunction with detergents in a detergency system serve to provide improved cleaning results. Such detergency aids are called builders. The role of builders is described in detail in U.S. Pat. 3,159,- 581, issued on Dec. 1, 1964 to Francis L. Diehl and assigned to the Proctor & Gamble Company. This patent is incorporated herein by reference and the specific discussion found in column 1, lines 13-72, and column 2, lines 1-3, provides background on the role and function of builders.
It has now been found that carboxylated polysaccharides of the character described below provide useful builder properties when used in conjunction with organic synthetic detergents selected from anionic, nonionic, zwitterionic, ampholytic synthetic detergents and mixtures of such detergents.
The carboxylated polysaccharides builders useful in the present invention have the following formula and properties:
X (Lo C H 11 0-0 H H at r) i i I.
in which X is selected from 0 COOH CH2OH, -CH OCH COOH Y is selected from --H, and CH COOH n is a whole integer in a range, the lower limit of which is 20 and the upper limit of which is determined primarily by the solubility characteristics in an aqueous system; the degree of substitution is 1.3 to 3.0; and the equivalent weight is from 97 to 185, calculated as the acid form.
The builder compounds of the present invention are 3,723,322 Patented Mar. 27, 1973 derivatives of natural polymers of which the preferred embodiments are carboxylated starches, celluloses and alginates. Such polymer materials are well known and are readily available commercial materials having widely different chemical and physical properties.
Inasmuch as the present invention applies to the area of detergent compositions and contemplates the use of aqueous detergency systems, the upper limit on the degree of polymerization (D.P.) or n in the formula above is necessarily determined by the solubility characteristics of a specific builder polymer. As a general rule however the value for n is from 20 to 30,000. A preferred minimum value for n is 30.
The molcecular weight of these builder compounds range from 4,000 to 5,000,000 and preferably 25,000 to 2,000,000.
While the degree of substitution (D.S.) can be from 1.3 to 3.0, it is preferred that the degree of substitution exceed about 1.5. The maximum, in any event, is three for the monomeric glucose structure given above.
In practice, the builder compounds are employed as water-soluble salts in which the cation is any water-soluble cation which does not interfere with the cleaning process. Preferred cations are alkali metals such as sodium, potassium and lithium; ammonium; substituted ammonium such as mono-, di-, and tri-methylol, ethanol, and propanol ammonium cations; as well as amine and similar alkanol derivatives.
By degree of substitution is meant the number of carboxyl groups in the glucose or alginic acid monomer given above.
Glucose occurs in both alpha and beta forms and has the general formula:
CHzOH (in 0H The designations of alpha and beta forms relate, as is well known in the art, to different stereochemical configurations. While both starch and cellulose are comprised of such building blocks, it is also known that starch has both 1,4- and 1,6-links, while cellulose contains only 1,4-links. These different linkages do not appear to interfere substantially with the builder properties discovered and described herein. Moreover, the starch polymers can be straight chain, or branch chain. Amylose is illustrative of a straight chain starch; amylopectin is an example of branched (1.6 links) starches. All are useful as builder embodiments according to the present invention.
Besides carboXylated starches and celluloses, other polysaccharides are also useful such as alginic acid and pectic acid. These structurally similar acids are derived respectively from seaweed and fruits. Alginic acid is a preferred embodiment and has the following formulae:
These are readily available commercially in several forms including carboxylated acid and salt forms. The value of 11 (degree of polymerization) is known to vary depending on well known preparative methods (extraction processes) and the source thereof. It is obvious from the structural formula above that the maximum degree of substitution of alginic acid is 2.
In practice the carboxylated polysaccharide builder compounds described and illustrated above are used in conjunction with organic synthetic detergents to provide laundering and detergent compositions.
The organic water-soluble synthetic detergents useful in the present invention include the anionic, nonionic, zwitterionic and ampholytic detergents which are illustrated and exemplified in great detail in U .8. Pat. 3,159,581 previously incorporated herein by reference. All of the compounds mentioned in that patent, beginning at column 3, line 74, and extending to column 5, line 59, are incorporated herein. There are other examples which fall within the named classes of detergents and they are also useful herein. Olefin sulfonate detergents are an example of very useful detergents such as those described in US. Pat. 3,332,880, incorporated herein by reference.
A useful property associated with effective builder compounds is a capability of sequestering hardness ions. This same property is provided by water softener compounds employed as detergency aids in conjunction with synthetic detergents. The test used to discover these properties is called a Swatch-Dip test which measures the relative sequestering ability of a builder by employing a fabricswatch impregnated with soap and an aqueous solution containing a predetermined level of calcium hardness minerals. Briefly, the procedure calls for preparing the aqueous solution containing the hardness ions, at pH 10, and dipping into it or immersing in it a fabric-swatch which has been impregnated with a measured amount of soap. The swatch remains in the solution for a predetermined amount of time. A measurement is then made to determine the amount of free calcium which has been absorbed by the fabric-swatch. The identical procedure is then repeated but with a predetermined concentration of a sequestrant compound added to the aqueous solution containing the calcium ions. Measurements of absorbed calcium are again made and comparisons drawn. Dilferences between the amounts of calcium absorbed in tests with and without sequestrants, is attributed to the ability of the sequestrant to tie-up or sequester the calcium and thereby decrease the level of free calcium ion concentration available for absorption by the immersed fabric swatch. A percentage is obtained in this manner called hardness retained by sequestrant. Several demonstrations were conducted in this manner using sodium tripolyphosphate; sodium pyrophosphate; and sodium citrate. In addition, a carboxymethylcellulose polymer (Hercules) was evaluated having a degree of substitution of .67, an equivalent weight of 300, a degree of polymerization of 1200, a molecular weight of about 240,000, and a specific viscocity at .06% solution of sodium salt, 60 C. of .622. The carboxylated polysaccharide builder representative of the present invention used in this demonstation was a sodium carboxymethylcellulose having a degree of substitution of 1.5, an average degree of polymerization of 1500-2000, an average molecular weight of about 300,000 to 400,000, and an equivalent weight of 162.5.
This demonstration showed that the carboxylated polysaccharide builders of this invention had very useful sequestering properties. At a concentration of .06% it was substantially equal to the STP, pyro and citric acid. Moreover, it was shown to be far superior to the CMC sample tested which had a D.S. of only .67. The sequestering properties of all of the samples demonstrated were less at a concentration of .03%. Nevertheless, the builder of the present invention remained superior to the CMC having the .67 DS. The results of this demonstration are given in Table I below:
The sequestering properties of numerous carboxylated derivatives of starch, cellulose, destrin, crystallized cellulose forms, corn starch, amylosc, and alginic acid were demonstrated. The tests demonstrated conclusively the usefulness of these carboxylated polysaccharides as sequestering agents and builder compounds.
The effectiveness of the builder compounds of this invention is demonstrated by a detergency test referred to as a facial swatch test. This test involves a procedure of soiling a cloth swatch with natural soil by attaching a swatch (about 5 inches by 5 inches) to the plunger cup of an electric vibrator massager. Two swatches are soiled from an individual subject by massaging the right and left halves of the face respectively for one minute each. The resulting soiled swatches are randomized into different groups to statistically provide equal numbers of left and right samples. The swatches are then washed, rinsed and graded and the cycle is repeated nine times. The washing step consists of laundering the soiled swatches in an aqueous solution having a temperature of F., a pH of 10, and containing 7 grains hardness.
A mechanical washer is used which is equipped with an agitator and otherwise simulates an ordinary home washing machine. The detergent compositions tested consisted of an active synthetic detergent at a concentration of .03% in the wash water and a builder ingredient at a concentration of 0.5%. The builders tested were compared with sodium tripolyphosphate, an excellent and widely used commercial builder. Following the washing of the soiled swatches, they were rinsed and dried and then whiteness measurements were made with a commercially available photoelectric refiectometer, i.e., a Hunter Color and Color Difference meter manufactured by Henry A. Gardner Laboratory, Inc. This instrument is designed to distinguish color differences and operates on the tristimulus colorimeter principle. According to this principle, a 45 degree diffuse reflectance of an incident light beam on a test specimen is measured through a combination of green, blue and amber filters. The electrical circuitry of the instrument is so designed that lightness and chromaticity values for the test specimen are read directly. The departure from white (TiO being taken as a standard white) of the test specimen is calculated by introducing the lightness and chromaticity values so obtained into a complex formula supplied by the manufacturer. An evaluation of relative whiteness performance compared to a standard detergent composition is thus obtained for the test formulations. A more comprehensive description of this device and its mode of operation appears in Color in Business, Science and Industry by Deanne B. Judd, pages 260-262; published by John Wiley & Sons, New York (1952).
Two carboxylated polysaccharides representative of the cellulose and starch derivatives of this invention were compared to STP. The sodium carboxymethyl cellulose had an equivalent weight of 139 as the acid form, a molecular weight of about 300,000, a degree of substitution of 2.0, and an average degree of polymerization of 930. The sodium carboxymethylstarch derivative had an equivalent weight of 120, a molecular weight of 17,000 to 200,000, an average degree of substitution of 2.7, and an average degree of polymerization of about 53 to 620. The carboxymethylstarch derivative gave cleaning results substantially equal to the STP. The carboxymethylcellulose derivative, while less effective than the starch derivative and the STP, still demonstrated highly useful and desirable builder properties.
While chemicals containing carboxylate groups have been known to be efficient builders such as sodium nitrilotriacetate (NTA) and ethylenediaminetetraacetates (EDTA), no natural polymers such as carboxylated starches, celluloses, and alginates have been used as detergency builders. One possible reason for this may be the fact that the cellulose derivatives which are conven tional soil suspending agents have been shown to be ineffective builders when used at usual builder concentrations. Carboxymethylcellulose used as a soil suspending agent has a degree of substitution in the range of .5 to about .9, typically .6. It has not heretofore been realized that an effective class of builder compounds could be provided by increasing the degree of substitution to above 1.3 and especially about 1.5. Moreover the essential corollary aspects of equivalent weights, molecular Weights and degree of polymerization as described above have not been fully appreciated.
In practicing the pre'snt invention, a detergent and laundering composition comprises an organic watersoluble synthetic detergent and a water-soluble carboxylated polysacharide builder in a proportion by weight respectively, of 10:1 to 1:20, and preferably :1 to 1:10. The compositions can be prepared as liquid or solid formulations. Built liquid compositions having a liquid aqueous or alcoholic base are especially useful. Solid formulations such as tablets, granules, powders, flakes and the like find widespread application. In a finished detergent formulation of this invention there will often be added in minor amounts materials which make the product more effective or more attractive. The following are mentioned by way of example. A soluble sodium carboxymethylcellulose may be added in minor amounts to inhibit soil redeposition. A tarnish inhibitor such as benzotriazole or ethylenethiourea may also be added in amounts up to about 2%. Fluorescers, perfume and color while not essential in the compositions of the invention, may be added in amounts up to about 1%. An alkaline material or alkali such as sodium hydroxide or potassium hydroxide can be added in minor amounts as supplementary pH adjusters. There might also be mentioned as suitable additives moisture, brightening agents, enzymes, sodium sulfate, and sodium carbonate.
Corrosion inhibitors generally are also added. Soluble silicates are highly effective inhibitors and can be added to certain formulas of this invention at levels of from about 3% to about 8%. Alkali metal, preferably potassium or sodium, silicates having a weight ratio of SiO M O of from 1.011 to 2.8:1 will be used. M is this ratio refers to sodium and potassium. A sodium silicate having a ratio of SiO :Na O of about 1.6:1 to 2.45:1 is especially preferred for economy and effectiveness.
In the embodiment of this invention which provides for a built liquid detergent, a hydrotropic agent may at times be found desirable. Suitable hydrotropes are watersoluble alkali metal salts of toluene sulfonate, benzenesulfonate, and xylenesulfonate. The preferred hydrotropes are the potassium or sodium toluenesulfonates. The hydro trope salt may be added, if desired, at levels of 0% to about 12%. While a hydrotrope' will not ordinarily be found necessary, it can be added if so desired for any reason such as to produce a product which retains its homogeneity at a low temperature.
The detergent and laundering compositions of this invention provide best cleaning results when used in aqueous solutions having a pH of 9 to 12, preferably 9.5 to 11.5.
The compositions of this invention provide best cleaning results when used at a suificient level to provide in solution a concentration of builder in the range of .02% to .5 by weight.
The carboxylated polysaccharide builders which represent preferred embodiments are the carboxylated starch derivatives, the carboxylated cellulose derivatives and the carboxylated alginate derivatives having the equivalent weights, the degrees of substitution, the molecular weights and the degrees of polymerization (11) described above.
The following compositions illustrate this invention:
17.5% sodium dodecyl benzene sulfonate 47.5% sodium carboxymethylcellulose (CMC) having a degree of substitution of 2.0, an equivalent wieght of 120, an average molecular weight of 400,000, and a degree of polymerization of 1500.
14.0% sodium sulfate 8.0% sodium silicate 13.0% water The CMC derivative can be replaced with an equal weight of sodium carboxymethylstarch having a degree of substitution of 2.7, an equivalent Weight of 150, an average molecular weight of 1,000,000 and a degree of polymerization of 10,000. The result is a useful and highly effective built detergent composition.
In the preceding composition, one-half of the sodium carboxymethylcellulose can be replaced with sodium tripolyphosphate and an excellent built laundering composition is provided.
The present invention contemplates built detergent compositions in which a portion of the more traditional and widely used builders such as the polyphosphates, pyrophosphates, nitrilotriacetates, and phosphonates are replaced with the carboxylated polysaccharides (starches, celluloses, alginates, etc. having a high degree of substitution) described herein.
The carboxylated polysaccharides described herein are known compounds and readily available commercially. Moreover, ordinary chemical texts describe suitable tech niques for synthesizing the desired compounds. A good description is given in Methods in Carbohydrate Chemistry, R. L. Whistler, Academic Press, New York, 1963, vol. III, pp. 322-327.
An equation for these carboxylating reactions is given:
CHzOH CHzOX o l o CICHZCOQNa on -o OX -o L J NaOH OH OH In the initial stage, 10.0 g. (0.06 mole) of the polysaccharide (e.g., starch) and 14.2 ml. of water are shredded in a blender for approximately 10 minutes. To this is added 8.2 g. (0.206 mole) of ground sodium hydroxide and blended for 10 min. Then 24.8 g. (0.212 mole) of sodium chloroacetate is added, the mixture is shredded for another 10 min., and is then allowed to stand, with occasional blending, until all of the sodium chloroacetate is reacted. This constitutes one treatment. Usually, each treatment is carried out for two or three days, and 5 or 6 treatments are required in order to obtain degrees of substitution (D.S.) of greater than 2. Lesser D.'S.'s can be obtained in fewer treatments. From time to time during the preparation of the products enough water is added to the reaction mixture to maintain a pasty consistency.
After completion of the reaction, the mixture is dissolved in a minimal amount of water and the product is then precipitated by the addition of an excess of methanol. The product is collected by filtration or by decantation of the aqueous phase, redissolved in water, and then the precipitation-isolation procedures are repeated. Further purification, if desired, can be accomplished by trituration with hot methanol, and/or dialysis, and/or Sephadex gel filtration.
Analysis can be carried out by dissolving a weighed amount of the product in water, passing this solution over a column of a strongly acidic ion exchange resin, and then titrating the resulting eluant with standardized sodium hydroxide solution.
The foregoing description of the invention has been presented describing certain operable and preferred embodiments. It is not intended that the invention should be so limited since variations and modifications thereof will be obvious to those skilled in the art, all of which are within the spirit and scope of this invention.
What is claimed is:
1. A detergent composition consisting essentially of an organic water-soluble detergent selected from the group consisting of anionic, nonionic, zwitterionic, ampholytic detergents and mixtures of such detergents, and a watersoluble carboxylated alginic acid derivative builder salt, the ratio by weight of said detergent to said builder salt being :1 to 1:20, said builder having the formula and properties as follows:
wherein Y is selected from H and "CH COOH; n is a whole integer in a range, the lower limit of which is 20 and the upper limit of which is determined primarily by the solubility characteristics in an aqueous system; the degree of substitution is 1.3 to 2.0; and the equivalent weight is from 97 to 185, calculated as the acid form.
References Cited UNITED STATES PATENTS OTHER REFERENCES Vaughn et al.: Sodium CMC in Synthetic Detergents, Soap & Sant. Chem., March 1948.
Vaughn et al.: Detergency and Foaming Properties of The System Alkylarylsulfonate-Soap-Sodium CMC, J. Oil Chemist Society, vol. 30, January 1953, pp. 1-5.
Hackhs Chemical Dictionary, 3rd, ed., McGraw-Hill Book Co., Inc., New York, N.Y., 1965, p. 167.
The Condensed Chemical Dictionary, 7th ed., Rheinhold Publishing Corp., New York, 1966, p. 29.
LEON D. ROSDOL, Primary Examiner P. E. WILLIS, Assistant Examiner US. Cl. X.R.
US00802256A 1969-02-25 1969-02-25 Detergent compositions containing carboxylated polysaccharide builders Expired - Lifetime US3723322A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80225669A 1969-02-25 1969-02-25

Publications (1)

Publication Number Publication Date
US3723322A true US3723322A (en) 1973-03-27

Family

ID=25183223

Family Applications (1)

Application Number Title Priority Date Filing Date
US00802256A Expired - Lifetime US3723322A (en) 1969-02-25 1969-02-25 Detergent compositions containing carboxylated polysaccharide builders

Country Status (1)

Country Link
US (1) US3723322A (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000127A (en) * 1971-02-25 1976-12-28 Akzo N.V. Carboxymethylated derivatives of polysaccharide and detergent compositions containing same
US4029590A (en) * 1973-08-22 1977-06-14 Fmc Corporation Dextrin carboxylates and their use as detergent builders
EP0150532A1 (en) 1983-12-22 1985-08-07 The Procter & Gamble Company Peroxygen bleach activators and bleaching compositions
US4627931A (en) * 1985-01-29 1986-12-09 A. E. Staley Manufacturing Company Method and compositions for hard surface cleaning
USH269H (en) 1985-03-11 1987-05-05 A. E. Staley Manufacturing Company Disinfectant and/or sanitizing cleaner compositions
EP0280223A2 (en) * 1987-02-25 1988-08-31 BASF Aktiengesellschaft Polyacetals, process for their fabrication from dialdehydes and polyolacids, and use of polyacetals
US4891148A (en) * 1985-08-05 1990-01-02 Colgate-Palmolive Company Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent comopsition and method of use
EP0679714A2 (en) 1994-04-28 1995-11-02 The Procter & Gamble Company Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability
EP0693549A1 (en) 1994-07-19 1996-01-24 The Procter & Gamble Company Solid bleach activator compositions
US5534198A (en) * 1994-08-02 1996-07-09 The Procter & Gamble Company Glass cleaner compositions having good filming/streaking characteristics and substantive modifier to provide long lasting hydrophilicity
WO1996025478A1 (en) 1995-02-15 1996-08-22 The Procter & Gamble Company Detergent composition comprising an amylase enzyme and a nonionic polysaccharide ether
EP0748864A1 (en) 1995-06-12 1996-12-18 The Procter & Gamble Company Cleaning composition and method for the cleaning of delicate surfaces
EP0753571A1 (en) 1995-07-10 1997-01-15 The Procter & Gamble Company Process for making granular detergent composition
EP0771785A1 (en) 1995-11-02 1997-05-07 The Procter & Gamble Company Beta-amino ester compounds of perfume alcohols and their use in cleaning or laundry compositions
EP0778342A1 (en) 1995-12-06 1997-06-11 The Procter & Gamble Company Detergent compositions
WO1997042282A1 (en) 1996-05-03 1997-11-13 The Procter & Gamble Company Detergent compositions comprising polyamine polymers with improved soil dispersancy
US5932532A (en) * 1993-10-14 1999-08-03 Procter & Gamble Company Bleach compositions comprising protease enzyme
US5968893A (en) * 1996-05-03 1999-10-19 The Procter & Gamble Company Laundry detergent compositions and methods for providing soil release to cotton fabric
US5968886A (en) * 1995-03-04 1999-10-19 Sudzucker Aktiengesellschaft Peracetylated or acylated carbohydrates as bleaching agent activators or complexing agents in detergent formulations
US6040288A (en) * 1997-02-21 2000-03-21 Rhodia Inc. Fabric color protection compositions and methods
US20030203035A1 (en) * 2000-09-29 2003-10-30 The Procter & Gamble Company Allergen neutralization compositions
US20030206965A1 (en) * 2000-09-29 2003-11-06 The Procter & Gamble Company Allergen neutralization compositions
US20030216485A1 (en) * 2000-09-13 2003-11-20 The Procter & Gamble Co. Process for making a water-soluble foam component
US6660711B1 (en) 1999-07-16 2003-12-09 The Procter & Gamble Company Laundry detergent compositions comprising zwitterionic polyamines and mid-chain branched surfactants
US6790814B1 (en) 1999-12-03 2004-09-14 Procter & Gamble Company Delivery system having encapsulated porous carrier loaded with additives, particularly detergent additives such as perfumes
US20050233937A1 (en) * 2004-04-08 2005-10-20 Akzo Nobel N.V. Detergent composition
US20060063691A1 (en) * 2004-09-17 2006-03-23 The Procter & Gamble Company Water-soluble, liquid-containing pouch
WO2007111892A2 (en) 2006-03-22 2007-10-04 The Procter & Gamble Company Liquid treatment composition
EP1854869A1 (en) 2006-05-09 2007-11-14 The Procter and Gamble Company Water-soluble, liquid-containing pouch
US20080020961A1 (en) * 2006-07-21 2008-01-24 Rodrigues Klin A Low Molecular Weight Graft Copolymers
US20080020948A1 (en) * 2006-07-21 2008-01-24 Rodrigues Klin A Sulfonated Graft Copolymers
US20080028986A1 (en) * 2006-06-12 2008-02-07 Rhodia, Inc. Hydrophilized substrate and method for hydrophilizing a hydrophobic surface of a substrate
US20080229519A1 (en) * 2007-03-20 2008-09-25 Karel Jozef Maria Depoot Liquid treatment composition
EP1975225A1 (en) 2007-03-20 2008-10-01 The Procter and Gamble Company Detergent composition
US20080311055A1 (en) * 2007-06-12 2008-12-18 Rhodia Inc. Mono-, di- and polyol alkoxylate phosphate esters in oral care formulations and methods for using same
US20080312118A1 (en) * 2007-06-12 2008-12-18 Rhodia Inc. Hard surface cleaning composition with hydrophilizing agent and method for cleaning hard surfaces
US20080312120A1 (en) * 2007-06-12 2008-12-18 Rhodia Inc. Detergent composition with hydrophilizing soil-release agent and methods for using same
US20090023618A1 (en) * 2007-07-20 2009-01-22 Rhodia Inc. Method for recovering crude oil from a subterranean formation
US7524800B2 (en) 2007-06-12 2009-04-28 Rhodia Inc. Mono-, di- and polyol phosphate esters in personal care formulations
US7638475B2 (en) 2006-03-24 2009-12-29 Georgia-Pacific Consumer Products Lp Space saving toilet cleaning system
US20100022434A1 (en) * 2001-02-28 2010-01-28 Chandrika Kasturi Liquid detergent composition exhibiting enhanced alpha-amylase enzyme stability
US20100069280A1 (en) * 2005-07-21 2010-03-18 Akzo Nobel N.V. Hybrid copolymers
EP2169042A1 (en) 2008-09-30 2010-03-31 The Procter and Gamble Company Composition comprising microcapsules
WO2010080326A1 (en) 2008-12-18 2010-07-15 The Procter & Gamble Company Pearlescent agent slurry for liquid treatment composition
US20110136721A1 (en) * 2008-12-18 2011-06-09 Omer Erbezci Pearlescent Agent Slurry for Liquid Treatment Composition
WO2011100667A1 (en) 2010-02-14 2011-08-18 Ls9, Inc. Surfactant and cleaning compositions comprising microbially produced branched fatty alcohols
US8636918B2 (en) 2011-08-05 2014-01-28 Ecolab Usa Inc. Cleaning composition containing a polysaccharide hybrid polymer composition and methods of controlling hard water scale
US8679366B2 (en) 2011-08-05 2014-03-25 Ecolab Usa Inc. Cleaning composition containing a polysaccharide graft polymer composition and methods of controlling hard water scale
US8841246B2 (en) 2011-08-05 2014-09-23 Ecolab Usa Inc. Cleaning composition containing a polysaccharide hybrid polymer composition and methods of improving drainage
US8853144B2 (en) 2011-08-05 2014-10-07 Ecolab Usa Inc. Cleaning composition containing a polysaccharide graft polymer composition and methods of improving drainage
US8945314B2 (en) 2012-07-30 2015-02-03 Ecolab Usa Inc. Biodegradable stability binding agent for a solid detergent
US9051406B2 (en) 2011-11-04 2015-06-09 Akzo Nobel Chemicals International B.V. Graft dendrite copolymers, and methods for producing the same
US9109068B2 (en) 2005-07-21 2015-08-18 Akzo Nobel N.V. Hybrid copolymer compositions
US9365805B2 (en) 2014-05-15 2016-06-14 Ecolab Usa Inc. Bio-based pot and pan pre-soak
EP3034589A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Detergent composition
EP3034592A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Method of automatic dishwashing
EP3034597A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Detergent composition
EP3034596A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Detergent composition
EP3034588A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Detergent composition
EP3034591A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Method of automatic dishwashing
EP3034590A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Method of automatic dishwashing
US9464261B2 (en) 2010-05-14 2016-10-11 The Sun Products Corporation Polymer-containing cleaning compositions and methods of production and use thereof
EP3184622A1 (en) 2015-12-22 2017-06-28 The Procter and Gamble Company Automatic dishwashing composition
US9976072B2 (en) 2014-03-26 2018-05-22 Chevron U.S.A. Inc. Multicarboxylate compositions and method of making the same
US9988526B2 (en) 2011-11-04 2018-06-05 Akzo Nobel Chemicals International B.V. Hybrid dendrite copolymers, compositions thereof and methods for producing the same
WO2022167655A1 (en) 2021-02-08 2022-08-11 Rhodia Operations Biodegradable soil release polyester polymer and the cleaning composition comprising the same
WO2022243367A1 (en) 2021-05-18 2022-11-24 Nouryon Chemicals International B.V. Polyester polyquats in cleaning applications
WO2022243533A1 (en) 2021-05-20 2022-11-24 Nouryon Chemicals International B.V. Manufactured polymers having altered oligosaccharide or polysaccharide functionality or narrowed oligosaccharide distribution, processes for preparing them, compositions containing them, and methods of using them
WO2023275269A1 (en) 2021-06-30 2023-01-05 Nouryon Chemicals International B.V. Chelate-amphoteric surfactant liquid concentrates and use thereof in cleaning applications

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000127A (en) * 1971-02-25 1976-12-28 Akzo N.V. Carboxymethylated derivatives of polysaccharide and detergent compositions containing same
US4029590A (en) * 1973-08-22 1977-06-14 Fmc Corporation Dextrin carboxylates and their use as detergent builders
EP0150532A1 (en) 1983-12-22 1985-08-07 The Procter & Gamble Company Peroxygen bleach activators and bleaching compositions
US4627931A (en) * 1985-01-29 1986-12-09 A. E. Staley Manufacturing Company Method and compositions for hard surface cleaning
USH269H (en) 1985-03-11 1987-05-05 A. E. Staley Manufacturing Company Disinfectant and/or sanitizing cleaner compositions
US4891148A (en) * 1985-08-05 1990-01-02 Colgate-Palmolive Company Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent comopsition and method of use
EP0280223A3 (en) * 1987-02-25 1989-02-01 Basf Aktiengesellschaft Polyacetals, process for their fabrication from dialdehydes and polyolacids, and use of polyacetals
EP0280223A2 (en) * 1987-02-25 1988-08-31 BASF Aktiengesellschaft Polyacetals, process for their fabrication from dialdehydes and polyolacids, and use of polyacetals
US5932532A (en) * 1993-10-14 1999-08-03 Procter & Gamble Company Bleach compositions comprising protease enzyme
EP0679714A2 (en) 1994-04-28 1995-11-02 The Procter & Gamble Company Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability
EP0693549A1 (en) 1994-07-19 1996-01-24 The Procter & Gamble Company Solid bleach activator compositions
US5534198A (en) * 1994-08-02 1996-07-09 The Procter & Gamble Company Glass cleaner compositions having good filming/streaking characteristics and substantive modifier to provide long lasting hydrophilicity
WO1996025478A1 (en) 1995-02-15 1996-08-22 The Procter & Gamble Company Detergent composition comprising an amylase enzyme and a nonionic polysaccharide ether
US5968886A (en) * 1995-03-04 1999-10-19 Sudzucker Aktiengesellschaft Peracetylated or acylated carbohydrates as bleaching agent activators or complexing agents in detergent formulations
EP0748864A1 (en) 1995-06-12 1996-12-18 The Procter & Gamble Company Cleaning composition and method for the cleaning of delicate surfaces
EP0753571A1 (en) 1995-07-10 1997-01-15 The Procter & Gamble Company Process for making granular detergent composition
EP0771785A1 (en) 1995-11-02 1997-05-07 The Procter & Gamble Company Beta-amino ester compounds of perfume alcohols and their use in cleaning or laundry compositions
EP0778342A1 (en) 1995-12-06 1997-06-11 The Procter & Gamble Company Detergent compositions
WO1997042282A1 (en) 1996-05-03 1997-11-13 The Procter & Gamble Company Detergent compositions comprising polyamine polymers with improved soil dispersancy
US5968893A (en) * 1996-05-03 1999-10-19 The Procter & Gamble Company Laundry detergent compositions and methods for providing soil release to cotton fabric
US6066612A (en) * 1996-05-03 2000-05-23 The Procter & Gamble Company Detergent compositions comprising polyamine polymers with improved soil dispersancy
US6040288A (en) * 1997-02-21 2000-03-21 Rhodia Inc. Fabric color protection compositions and methods
US6660711B1 (en) 1999-07-16 2003-12-09 The Procter & Gamble Company Laundry detergent compositions comprising zwitterionic polyamines and mid-chain branched surfactants
US6790814B1 (en) 1999-12-03 2004-09-14 Procter & Gamble Company Delivery system having encapsulated porous carrier loaded with additives, particularly detergent additives such as perfumes
US6953587B2 (en) 2000-09-13 2005-10-11 Proacter & Gamble Company Process for making a water-soluble foam component
US20030216485A1 (en) * 2000-09-13 2003-11-20 The Procter & Gamble Co. Process for making a water-soluble foam component
US20030203035A1 (en) * 2000-09-29 2003-10-30 The Procter & Gamble Company Allergen neutralization compositions
US20030206965A1 (en) * 2000-09-29 2003-11-06 The Procter & Gamble Company Allergen neutralization compositions
US20100022434A1 (en) * 2001-02-28 2010-01-28 Chandrika Kasturi Liquid detergent composition exhibiting enhanced alpha-amylase enzyme stability
US20110053824A1 (en) * 2001-02-28 2011-03-03 Chandrika Kasturi Liquid detergent composition exhibiting enhanced alpha-amylase enzyme stability
US20050233937A1 (en) * 2004-04-08 2005-10-20 Akzo Nobel N.V. Detergent composition
US8361946B2 (en) 2004-04-08 2013-01-29 Akzo Nobel N.V. Detergent composition
US20060063691A1 (en) * 2004-09-17 2006-03-23 The Procter & Gamble Company Water-soluble, liquid-containing pouch
US8058374B2 (en) 2005-07-21 2011-11-15 Akzo Nobel N.V. Hybrid copolymers
US20100069280A1 (en) * 2005-07-21 2010-03-18 Akzo Nobel N.V. Hybrid copolymers
US9321873B2 (en) 2005-07-21 2016-04-26 Akzo Nobel N.V. Hybrid copolymer compositions for personal care applications
US9109068B2 (en) 2005-07-21 2015-08-18 Akzo Nobel N.V. Hybrid copolymer compositions
US20110136718A1 (en) * 2005-07-21 2011-06-09 Akzo Nobel N.V. Hybrid copolymers
WO2007111898A2 (en) 2006-03-22 2007-10-04 The Procter & Gamble Company Liquid treatment composition
EP2426192A1 (en) 2006-03-22 2012-03-07 The Procter & Gamble Company Liquid treatment composition
WO2007111892A2 (en) 2006-03-22 2007-10-04 The Procter & Gamble Company Liquid treatment composition
US7638475B2 (en) 2006-03-24 2009-12-29 Georgia-Pacific Consumer Products Lp Space saving toilet cleaning system
EP1854869A1 (en) 2006-05-09 2007-11-14 The Procter and Gamble Company Water-soluble, liquid-containing pouch
US8993506B2 (en) 2006-06-12 2015-03-31 Rhodia Operations Hydrophilized substrate and method for hydrophilizing a hydrophobic surface of a substrate
US20080028986A1 (en) * 2006-06-12 2008-02-07 Rhodia, Inc. Hydrophilized substrate and method for hydrophilizing a hydrophobic surface of a substrate
US20110046025A1 (en) * 2006-07-21 2011-02-24 Akzo Nobel N.V. Low Molecular Weight Graft Copolymers
US20080020961A1 (en) * 2006-07-21 2008-01-24 Rodrigues Klin A Low Molecular Weight Graft Copolymers
US20080020948A1 (en) * 2006-07-21 2008-01-24 Rodrigues Klin A Sulfonated Graft Copolymers
US8227381B2 (en) 2006-07-21 2012-07-24 Akzo Nobel N.V. Low molecular weight graft copolymers for scale control
US8674021B2 (en) 2006-07-21 2014-03-18 Akzo Nobel N.V. Sulfonated graft copolymers
US20080229519A1 (en) * 2007-03-20 2008-09-25 Karel Jozef Maria Depoot Liquid treatment composition
EP1975225A1 (en) 2007-03-20 2008-10-01 The Procter and Gamble Company Detergent composition
US20080311055A1 (en) * 2007-06-12 2008-12-18 Rhodia Inc. Mono-, di- and polyol alkoxylate phosphate esters in oral care formulations and methods for using same
US20090124525A1 (en) * 2007-06-12 2009-05-14 Rhodia Inc. Hard surface cleaning composition with hydrophilizing agent and method for cleaning hard surfaces
US20090233837A1 (en) * 2007-06-12 2009-09-17 Rhodia Inc. Detergent composition with hydrophilizing soil-release agent and methods for using same
US7867963B2 (en) 2007-06-12 2011-01-11 Rhodia Inc. Mono-, di- and polyol phosphate esters in personal care formulations
US7524800B2 (en) 2007-06-12 2009-04-28 Rhodia Inc. Mono-, di- and polyol phosphate esters in personal care formulations
US7550419B2 (en) 2007-06-12 2009-06-23 Rhodia Inc. Mono-, di- and polyol alkoxylate phosphate esters in oral care formulations and methods for using same
US7919449B2 (en) 2007-06-12 2011-04-05 Rhodia Operations Detergent composition with hydrophilizing soil-release agent and methods for using same
US7919073B2 (en) 2007-06-12 2011-04-05 Rhodia Operations Mono-, di- and polyol alkoxylate phosphate esters in oral care formulations and methods for using same
US20080312120A1 (en) * 2007-06-12 2008-12-18 Rhodia Inc. Detergent composition with hydrophilizing soil-release agent and methods for using same
US7557072B2 (en) 2007-06-12 2009-07-07 Rhodia Inc. Detergent composition with hydrophilizing soil-release agent and methods for using same
US8293699B2 (en) 2007-06-12 2012-10-23 Rhodia Operations Hard surface cleaning composition with hydrophilizing agent and method for cleaning hard surfaces
US20080312118A1 (en) * 2007-06-12 2008-12-18 Rhodia Inc. Hard surface cleaning composition with hydrophilizing agent and method for cleaning hard surfaces
US7524808B2 (en) 2007-06-12 2009-04-28 Rhodia Inc. Hard surface cleaning composition with hydrophilizing agent and method for cleaning hard surfaces
US8268765B2 (en) 2007-06-12 2012-09-18 Rhodia Operations Mono-, di- and polyol phosphate esters in personal care formulations
US20090023618A1 (en) * 2007-07-20 2009-01-22 Rhodia Inc. Method for recovering crude oil from a subterranean formation
US7608571B2 (en) 2007-07-20 2009-10-27 Rhodia Inc. Method for recovering crude oil from a subterranean formation utilizing a polyphosphate ester
US20100080831A1 (en) * 2008-09-30 2010-04-01 Karl Ghislain Braeckman Composition Comprising Microcapsules
EP2169042A1 (en) 2008-09-30 2010-03-31 The Procter and Gamble Company Composition comprising microcapsules
US9580673B2 (en) 2008-09-30 2017-02-28 The Procter & Gamble Company Composition comprising microcapsules
US8664174B2 (en) 2008-09-30 2014-03-04 The Procter & Gamble Company Composition comprising microcapsules
US20110136721A1 (en) * 2008-12-18 2011-06-09 Omer Erbezci Pearlescent Agent Slurry for Liquid Treatment Composition
US8394752B2 (en) 2008-12-18 2013-03-12 The Procter & Gamble Company Pearlescent agent slurry for liquid treatment composition
WO2010080326A1 (en) 2008-12-18 2010-07-15 The Procter & Gamble Company Pearlescent agent slurry for liquid treatment composition
WO2011100667A1 (en) 2010-02-14 2011-08-18 Ls9, Inc. Surfactant and cleaning compositions comprising microbially produced branched fatty alcohols
US9464261B2 (en) 2010-05-14 2016-10-11 The Sun Products Corporation Polymer-containing cleaning compositions and methods of production and use thereof
US9309490B2 (en) 2011-08-05 2016-04-12 Ecolab Usa Inc. Cleaning composition containing a polysaccharide graft polymer compositon and methods of improving drainage
US8636918B2 (en) 2011-08-05 2014-01-28 Ecolab Usa Inc. Cleaning composition containing a polysaccharide hybrid polymer composition and methods of controlling hard water scale
US9309489B2 (en) 2011-08-05 2016-04-12 Ecolab Usa Inc Cleaning composition containing a polysaccharide hybrid polymer composition and methods of improving drainage
US8853144B2 (en) 2011-08-05 2014-10-07 Ecolab Usa Inc. Cleaning composition containing a polysaccharide graft polymer composition and methods of improving drainage
US8679366B2 (en) 2011-08-05 2014-03-25 Ecolab Usa Inc. Cleaning composition containing a polysaccharide graft polymer composition and methods of controlling hard water scale
US8841246B2 (en) 2011-08-05 2014-09-23 Ecolab Usa Inc. Cleaning composition containing a polysaccharide hybrid polymer composition and methods of improving drainage
US9051406B2 (en) 2011-11-04 2015-06-09 Akzo Nobel Chemicals International B.V. Graft dendrite copolymers, and methods for producing the same
US9988526B2 (en) 2011-11-04 2018-06-05 Akzo Nobel Chemicals International B.V. Hybrid dendrite copolymers, compositions thereof and methods for producing the same
US8945314B2 (en) 2012-07-30 2015-02-03 Ecolab Usa Inc. Biodegradable stability binding agent for a solid detergent
US11248159B2 (en) 2014-03-26 2022-02-15 Chevron U.S.A. Inc. Method of using multicarboxylate compositions in enhanced oil recovery
US10233382B2 (en) 2014-03-26 2019-03-19 Chevron U.S.A. Inc. Method of using multicarboxylate compositions in enhanced oil recovery
US9976072B2 (en) 2014-03-26 2018-05-22 Chevron U.S.A. Inc. Multicarboxylate compositions and method of making the same
US10053652B2 (en) 2014-05-15 2018-08-21 Ecolab Usa Inc. Bio-based pot and pan pre-soak
US9365805B2 (en) 2014-05-15 2016-06-14 Ecolab Usa Inc. Bio-based pot and pan pre-soak
EP3034589A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Detergent composition
WO2016100320A1 (en) 2014-12-17 2016-06-23 The Procter & Gamble Company Detergent composition
EP3034597A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Detergent composition
WO2016099858A1 (en) 2014-12-17 2016-06-23 The Procter & Gamble Company Detergent composition
WO2016100324A1 (en) 2014-12-17 2016-06-23 The Procter & Gamble Company Method of automatic dishwashing
WO2016099861A1 (en) 2014-12-17 2016-06-23 The Procter & Gamble Company Method of automatic dishwashing
WO2016100323A1 (en) 2014-12-17 2016-06-23 The Procter & Gamble Company Detergent composition
EP3034591A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Method of automatic dishwashing
EP3034592A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Method of automatic dishwashing
EP3034596A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Detergent composition
WO2016099859A1 (en) 2014-12-17 2016-06-23 The Procter & Gamble Company Detergent composition
WO2016099860A1 (en) 2014-12-17 2016-06-23 The Procter & Gamble Company Method of automatic dishwashing
EP3034588A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Detergent composition
US10081782B2 (en) 2014-12-17 2018-09-25 The Procter & Gamble Company Detergent composition
EP3034590A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Method of automatic dishwashing
US10266796B2 (en) 2014-12-17 2019-04-23 The Procter & Gamble Company Detergent composition
US10662398B2 (en) 2014-12-17 2020-05-26 The Procter & Gamble Company Detergent composition
EP3184622A1 (en) 2015-12-22 2017-06-28 The Procter and Gamble Company Automatic dishwashing composition
WO2022167655A1 (en) 2021-02-08 2022-08-11 Rhodia Operations Biodegradable soil release polyester polymer and the cleaning composition comprising the same
WO2022243367A1 (en) 2021-05-18 2022-11-24 Nouryon Chemicals International B.V. Polyester polyquats in cleaning applications
WO2022243533A1 (en) 2021-05-20 2022-11-24 Nouryon Chemicals International B.V. Manufactured polymers having altered oligosaccharide or polysaccharide functionality or narrowed oligosaccharide distribution, processes for preparing them, compositions containing them, and methods of using them
WO2023275269A1 (en) 2021-06-30 2023-01-05 Nouryon Chemicals International B.V. Chelate-amphoteric surfactant liquid concentrates and use thereof in cleaning applications

Similar Documents

Publication Publication Date Title
US3723322A (en) Detergent compositions containing carboxylated polysaccharide builders
US3523088A (en) Novel antiredeposition agent and built detergent compositions containing said antiredeposition agent
US3629121A (en) Carboxylated starches as detergent builders
US4441881A (en) Detergent compositions containing ethoxylated fatty alcohols with narrow ethylene oxide distributions
EP2272941B1 (en) Laundry composition
US3213030A (en) Cleansing and laundering compositions
US3849341A (en) Ester-linked derivatives of carbohydrates as builders for detergent compositions
US3958928A (en) Reduced-staining colorant system for liquid laundry detergents
US3920564A (en) Softener-detergent composition
US3619115A (en) Cool water laundering process
US3637511A (en) Detergent formulations
CN103695187A (en) Method for improving detergency of detergent composition under high-hardness water quality environment and detergent composition
US3784475A (en) Detergent compositions containing oxidized polysaccharide builders
US3893930A (en) Detergent-softener compositions containing esters of dicarboxylic acids and polyhydroxy tertiary amines
US3686124A (en) Carboxymethylated derivatives of diand tri-saccharide compounds and detergent compositions containing them
US3665000A (en) Tricarboxystarch derivatives
US3756966A (en) Compositions sulfosuccinate derivatives of carbohydrates as builders for detergent
US3819538A (en) Environmentally compatible laundry detergent
US3798183A (en) Detergent builder composition
US3776851A (en) Detergents containing tetrahydroxysuccinic acid and salts thereof
US4144024A (en) Reduced-staining colorant system
US4000127A (en) Carboxymethylated derivatives of polysaccharide and detergent compositions containing same
US3966649A (en) Liquid detergents containing chelidamic acids and salts thereof
US5035838A (en) Nonionic surfactant based liquid detergent formulation containing an alkenyl or alkyl carboxysulfonate component
US3580852A (en) Detergent formulations containing tetrahydrofuran 2,3,4,5 - tetracarboxylic acid salts as builders