US6197404B1 - Creped nonwoven materials - Google Patents

Creped nonwoven materials Download PDF

Info

Publication number
US6197404B1
US6197404B1 US08/962,992 US96299297A US6197404B1 US 6197404 B1 US6197404 B1 US 6197404B1 US 96299297 A US96299297 A US 96299297A US 6197404 B1 US6197404 B1 US 6197404B1
Authority
US
United States
Prior art keywords
web
nonwoven web
creped
nonwoven
creping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/962,992
Inventor
Eugenio Go Varona
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Worldwide Inc
Original Assignee
Kimberly Clark Worldwide Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Worldwide Inc filed Critical Kimberly Clark Worldwide Inc
Priority to US08/962,992 priority Critical patent/US6197404B1/en
Priority to US09/040,707 priority patent/US6150002A/en
Assigned to KIMBERLY-CLARK WORLDWIDE, INC. reassignment KIMBERLY-CLARK WORLDWIDE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GO VARONA, EUGENIO
Priority to KR10-2000-7004692A priority patent/KR100491289B1/en
Priority to CNB98812873XA priority patent/CN1198527C/en
Priority to EP19980953988 priority patent/EP1024721B1/en
Priority to ES98953988T priority patent/ES2229545T3/en
Priority to BR9813315A priority patent/BR9813315A/en
Priority to DE1998626306 priority patent/DE69826306T2/en
Priority to AU11219/99A priority patent/AU742034B2/en
Priority to PCT/US1998/022654 priority patent/WO1999022619A1/en
Priority to CA 2307844 priority patent/CA2307844C/en
Priority to TW087117827A priority patent/TW410147B/en
Priority to ZA989937A priority patent/ZA989937B/en
Priority to CO98064085A priority patent/CO5050279A1/en
Priority to ARP980105486 priority patent/AR014002A1/en
Priority to US09/209,044 priority patent/US6838154B1/en
Publication of US6197404B1 publication Critical patent/US6197404B1/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B18/00Fasteners of the touch-and-close type; Making such fasteners
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B18/00Fasteners of the touch-and-close type; Making such fasteners
    • A44B18/0003Fastener constructions
    • A44B18/0011Female or loop elements
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B18/00Fasteners of the touch-and-close type; Making such fasteners
    • A44B18/0046Fasteners made integrally of plastics
    • A44B18/0057Female or loop elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/56Supporting or fastening means
    • A61F13/62Mechanical fastening means, ; Fabric strip fastener elements, e.g. hook and loop
    • A61F13/622Fabric strip fastener elements, e.g. hook and loop
    • A61F13/627Fabric strip fastener elements, e.g. hook and loop characterised by the loop
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H11/00Non-woven pile fabrics
    • D04H11/08Non-woven pile fabrics formed by creation of a pile on at least one surface of a non-woven fabric without addition of pile-forming material, e.g. by needling, by differential shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/12Crêping
    • B31F1/14Crêping by doctor blades arranged crosswise to the web
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24008Structurally defined web or sheet [e.g., overall dimension, etc.] including fastener for attaching to external surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24446Wrinkled, creased, crinkled or creped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24826Spot bonds connect components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/601Nonwoven fabric has an elastic quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • Y10T442/678Olefin polymer or copolymer sheet or film [e.g., polypropylene, polyethylene, ethylene-butylene copolymer, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric

Definitions

  • This invention relates to permanently creped nonwoven materials having low density, high permeability, improved loft and softness, looping, and out-of-plane fiber orientation.
  • Creped thermoplastic nonwoven materials are known from U.S. Pat. No. 4,810,556, issued to Kobayashi et al.
  • a raw nonwoven fabric is coated with a lubricant and then pressed between a drive roll and a plate having a rough sandpaper-like surface.
  • the plate is positioned near the drum and is substantially parallel or tangential to the outer surface of the drum.
  • the raw nonwoven fabric is crinkled in a wavelike fashion in the direction of movement of the fabric by the frictional force caused by the pressing.
  • the resulting creped fabric has wavelike crepes which contribute to softness.
  • the creping accomplished by this process is not believed to be permanent. It is believed that the creping accomplished by this process can be removed or reduced significantly by subjecting the nonwoven web to mechanical stretching sufficient to flatten out the wavelike crepes. Also, the creping is naturally reduced over time during use of the fabric.
  • the present invention is a permanently creped thermoplastic nonwoven web having interfilament bonded areas which are bent or oriented permanently out of plane, unbonded areas between the bonded areas, and substantial filament looping in the unbonded areas.
  • the permanently creped web has low density, high permeability and excellent softness, and is useful as a loop material for a hook and loop fastener.
  • the web also has a crinkled, puckered texture, and is useful for liners, transfer and surge layers, outercovers, wipes, and other fluid handling products.
  • the starting material used to make the invention is an uncreped thermoplastic nonwoven web which can, for instance, be a thermoplastic spunbonded web or a thermoplastic meltblown web.
  • the nonwoven web is at least partially coated on one side with an adhesive, so that about 5-100% (preferably 10-70%) of the total surface area on one side is coated, and about 0-95% (preferably 30-90%) of the area is uncoated.
  • the nonwoven web also possesses interfilament bonding, in the form of a pattern called the “nonwoven web bond pattern,” which is imparted during manufacture of the nonwoven web.
  • the adhesive penetrates the nonwoven web to some extent in the coated areas, causing increased interfilament bonding in those areas.
  • the at least partially coated side of the thermoplastic nonwoven web is then placed against a creping surface, such as a creping drum, and is peelably bonded to the creping surface.
  • the creping surface is preferably heated, and is moved (e.g. rotated) in a machine direction. As the creping surface moves, the leading edge of the nonwoven web bonded to the surface is creped off using a doctor blade.
  • the doctor blade penetrates the adhesive coating underneath the web and lifts the nonwoven web off the drum, resulting in permanent filament bending in the bonded areas corresponding to the nonwoven web bond pattern, and permanent looping of the filaments in the unbonded areas.
  • Only one side of the web need be creped in this fashion to form a loop material suitable for use as the female component in a hook and loop fastener.
  • both sides of the web may be creped by applying the adhesive on the second surface of the web as well as the first, adhering the second surface of the web to the same or a different creping surface, and creping the second side of the web from the creping surface using a doctor blade.
  • FIG. 1 is a schematic side view of one type of an apparatus for producing a permanently creped nonwoven web of the invention.
  • FIG. 2 is a greatly enlarged sectional view photograph of an uncreped nonwoven web.
  • FIG. 3 is a greatly enlarged sectional view photograph of a permanently creped nonwoven web of the invention, creped on one side to a 25% crepe level.
  • FIG. 4 is a greatly enlarged sectional view photograph of a permanently creped nonwoven web of the invention, creped on one side to a 50% crepe level.
  • FIGS. 5-7 illustrate three nonwoven web bonding patterns used during preparation of the creped nonwoven web of the invention.
  • “Permanently creped” refers to a creped nonwoven web having bonded and unbonded areas, in which the bonded areas are permanently bent out-of-plane and the unbonded portions are permanently looped, such that the nonwoven web cannot be returned to its original uncreped state by applying a mechanical stress.
  • “Bent out-of-plane” refers to a bonding or orientation of portions of the nonwoven web in a direction away from the plane in which the nonwoven web substantially lies before being subjected to the creping process.
  • the phrase “bent out-of-plane” generally refers to nonwoven webs having creped portions bent at least about 15 degrees away from the plane of the uncreped nonwoven web, preferably at least about 30 degrees.
  • Looped refers to unbonded filaments or portions of filaments in a creped nonwoven web which define an arch, semi-circle or similar configuration extending above the plane of the uncreped nonwoven web, and terminating at both ends in the nonwoven web (e.g. in the bonded areas of the creped nonwoven web).
  • Nonwoven web means a web having a structure of individual fibers or threads which are interlaid, but not in an identifiable, repeating manner. Nonwoven webs have been, in the past, formed by a variety of processes such as, for example, melt-blowing processes, spunbonding processes and bonded carded web processes.
  • Nonwoven web bond pattern is a pattern of interfilament bonding in the nonwoven web which is imparted during manufacture of the nonwoven web.
  • Meltblown fibers means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into a high velocity gas (e.g. air) stream which attenuates the filaments of molten thermoplastic material to reduce their diameter, possibly to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly disbursed meltblown fibers.
  • a high velocity gas e.g. air
  • Microfibers means small diameter fibers having an average diameter not greater than about 100 microns, for example, having an average diameter of from about 0.5 microns to about 50 microns, or more particularly, an average diameter of from about 4 microns to about 40 microns.
  • spunbonded fibers refers to small diameter fibers which are formed by extruding a molten thermoplastic material as filaments from a plurality of fine, usually circular, capillaries of a spinnerette with the diameter of the extruded filaments then being rapidly reduced as by, for example, eductive drawing or other well-known spunbonding mechanisms.
  • the production of spunbonded nonwoven webs is illustrated in patents such as, for example, in U.S. Pat. No. 3,802,817 to Matsuki et al. and U.S. Pat. No. 5,382,400 to Pike et al. The disclosures of these patents are hereby incorporated by reference.
  • Polymer generally includes, but is not limited to, homopolymers, copolymers, such as, for example, block, graft, random and alternating copolymers, terpolymers, etc. and blends and modifications thereof. Furthermore, the term “polymer” shall include all possible geometrical configurations of the material. These configurations include, but are not limited to, isotactic, syndiotactic and random symmetries.
  • Bicomponent fibers refers to fibers which have been formed from at least two polymers extruded from separate extruders but spun together to form one fiber.
  • the polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the bicomponent fibers and extend continuously along the length of the bicomponent fibers.
  • the configuration of such a bicomponent fiber may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another or may be a side-by-side arrangement or an “islands-in-the-sea” arrangement.
  • Bicomponent fibers are taught in U.S. Pat. No. 5,108,820 to Kaneko et al., U.S. Pat. No. 5,336,552 to Strack et al., and European Patent 0586924.
  • the polymers may be present in ratios of 75/25, 50/50, 25/75 or any other desired ratios.
  • Biconstituent fibers refers to fibers which have been formed from at least two polymers extruded from the same extruder as a blend.
  • blend is defined below. Biconstituent fibers do not have the various polymer components arranged in relatively constantly positioned distinct zones across the cross-sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils which start and end at random. Biconstituent fibers are sometimes also referred to as multiconstituent fibers. Fibers of this general type are discussed in, for example, U.S. Pat. No. 5,108,827 to Gessner.
  • “Blend” means a mixture of two or more polymers while the term “alloy” means a sub-class of blends wherein the components are immiscible but have been compatibilized. “Miscibility” and “immiscibility” are defined as blends having negative and positive values, respectively, for the free energy of mixing. Further, “compatibilization” is defined as the process of modifying the interfacial properties of an immiscible polymer blend in order to make an alloy.
  • Consisting essentially of does not exclude the presence of additional materials which do not significantly affect the desired characteristics of a given composition or product.
  • Exemplary materials of this sort would include, without limitation, pigments, antioxidants, stabilizers, surfactants, waxes, flow promoters, particulates and materials added to enhance processability of the composition.
  • FIG. 1 illustrates a process for preparing a creped nonwoven web of the invention, which can be a creped spunbonded web, and which can be creped on one or both sides.
  • a nonwoven web 12 which can be a spunbonded web, is unwound from a supply roll 10 .
  • the nonwoven web 12 may be passed through a first creping station 20 , a second creping station 30 , or both. If it is desired to crepe the nonwoven web 12 on only one side, it may be passed through either the first creping station 20 or the second creping station 30 , with one creping station or the other being bypassed. If it is desired to crepe the nonwoven web 12 on both sides, it may be passed through both creping stations.
  • a first side 14 of the web 12 may be creped using the first creping station 20 .
  • the creping station 20 includes first a printing station including a lower patterned or smooth printing roller 22 , an upper smooth anvil roller 24 , and a printing bath 25 , and also includes a dryer roller 26 and associated creping blade 28 .
  • the rollers 22 and 24 nip the web 12 and guide it forward.
  • the patterned or smooth printing roller 22 dips into bath 25 containing an adhesive material, and applies the adhesive material to the first side 14 of the web 12 in a partial coverage at a plurality of spaced apart locations, or in a total coverage.
  • the adhesive-coated web 12 is then passed around drying drum 26 whereupon the adhesive-coated surface 14 becomes adhered to the roller 26 .
  • the first side 14 of the web 12 is then creped (i.e. lifted off the drum and bent) using doctor blade 28 .
  • a second side 16 of the web 12 may be creped using the second creping station 30 , regardless of whether or not the first creping station 20 has been bypassed.
  • the second creping station 30 includes a second printing station including a lower patterned or smooth printing roller 32 , an upper smooth anvil roller 34 , and a printing bath 35 , and also includes a dryer drum 36 and associated creping blade 38 .
  • the rollers 32 and 34 nip the web 12 and guide it forward. As the rollers 32 and 34 turn, the printing roller 32 dips into bath 35 containing adhesive material, and applies the adhesive to the second side 16 of the web 12 in a partial or total coverage.
  • the adhesive-coated web 12 is then passed around drying roller 36 whereupon the adhesive-coated surface 16 becomes adhered to the roller 36 .
  • the second side 16 of the web 12 is then creped (i.e. lifted off the drum surface and bent) using doctor blade 38 .
  • the nonwoven web 12 may be passed through a chilling station 40 and wound onto a storage roll 42 .
  • the level of creping is affected by the surface speed of the windup roll 42 relative to the surface speed of the creping drum 36 , according to the equation presented above.
  • the surface speed of the windup roll 42 is slower than the surface speed of the creping drum 36 , and the difference between the two speeds affects the level of creping.
  • the level of creping should generally be about 5-75%, preferably about 15-60%, most preferably about 25-50%.
  • the nonwoven web 12 may be any type of thermoplastic nonwoven web.
  • web 12 may be a spunbonded web, a meltblown web, a bonded carded web, or a combination including any of the following.
  • the web 12 is a spunbonded web.
  • thermoplastic polymer materials can be used to make the nonwoven web 12 .
  • Exemplary polymer materials include without limitation, polypropylene, polyethylene (high and low density), ethylene copolymers with C 3 -C 20 ⁇ -olefins, propylene copolymers with ethylene or C 4 -C 20 ⁇ -olefins, butene copolymers with ethylene, propylene, or C 5 -C 20 ⁇ -olefins, polyvinyl chloride, polyesters, polyamides, polyfluorocarbons, polyurethane, polystyrene, polyvinyl alcohol, caprolactams, and cellulosic and acrylic resins.
  • thermoplastic webs may also be utilized, as well as webs containing blends of one or more of the above-listed thermoplastic polymers.
  • the web 12 may have a basis weight of about 0.2-2.0 ounces per square yard (osy) before creping, desirably about 0.3-1.5 osy.
  • a wide variety of adhesive bonding materials may be utilized to reinforce the fibers of the web 12 at the locations of adhesive application, and to temporarily adhere the web 12 to the surface of the drum 26 and/or 36 .
  • Elastomeric adhesives i.e. materials capable of at least 75% elongation without rupture
  • Suitable materials include without limitation aqueous-based styrene butadiene adhesives, neoprene, polyvinyl chloride, vinyl copolymers, polyamides, ethylene vinyl terpolymers and combinations thereof.
  • the presently preferred adhesive material is an acrylic polymer emulsion sold by the B. F. Goodrich Company under the trade name HYCAR®.
  • the adhesive may be applied using the printing technique described above or may, alternatively, be applied by meltblowing, melt spraying, dripping, splattering, or any technique capable of forming a partial or total adhesive coverage on the thermoplastic nonwoven web 12 .
  • the percent adhesive coverage of the web 12 generally affects the level of creping obtained.
  • the adhesive should cover about 5-100% of the web surface, preferably about 10-70% of the web surface, more preferably about 25-50% of the web surface.
  • the web 12 is coated with adhesive and creped on only one side.
  • the web 12 may be coated with adhesive and creped on both sides, however.
  • the adhesive should also penetrate the nonwoven web 12 in the locations where the adhesive is applied. Generally, the adhesive should penetrate through about 10-50% of the nonwoven web thickness, although there may be greater or less adhesive penetration at some locations.
  • the resulting creped nonwoven web product has a controlled pattern creping which corresponds generally to the nonwoven web interfilament bond pattern and, to a lesser degree, the applied adhesive material.
  • a presently preferred nonwoven web bonding pattern is a regular point bond pattern referred to as the Hansen Pennings or “HP” pattern, shown in FIG. 5 .
  • the HP pattern has a bond area of 19-32%, a bond density of 204 points/in 2 , and a point height or depth of 0.030 in. This bond pattern results in the formation of regular fiber loops and excellent bulk.
  • the rib knit pattern is designed for a knitted fabric appearance.
  • the pattern has a bond area of 10-20%, a bond density of 212 bond points/in 2 , and a bond point height or depth of 0.044 in. This pattern provides creped nonwoven fabrics with excellent softness.
  • the wire weave pattern has a bond area of 15-21%, a bond density of 302 point/in 2 , and a bond point height or depth of 0.038 in. This pattern is designed to provide a nonwoven fabric with a woven look, and results in creped nonwoven fabrics having good softness, bulk, and fiber looping.
  • the creping of the nonwoven web is primarily manifested in the bonded areas of the base (“raw”) nonwoven web, corresponding to the nonwoven web bond pattern.
  • the bonded regions are bent out of plane so as to cause permanent creping of the web, and the formation of filament looped regions in the unbonded regions alternating with (in between) the creped bonded regions.
  • FIG. 2 illustrates an uncreped nonwoven web, which is a spunbonded web.
  • FIGS. 3 and 4 illustrate the same spunbonded web creped according to the invention at creping percentages of 25% and 50%, respectively.
  • each of the creped webs has creped nonwoven web bond regions 50 which are bent permanently out of plane due to the creping.
  • Looped regions 52 corresponding to the unbonded, non-creped regions exist between the creped regions.
  • the creped regions 50 include tightly bonded filament regions, while the looped regions 52 include loose filament regions.
  • the individual filament loops terminate at both ends in the adhesive-reinforced regions, and are anchored in the adhesive-reinforced regions.
  • the degree of looping increases substantially when the level of creping is increased from 25% to 50%. The completeness of the loops suggest that there is very little fiber breakage.
  • the resulting creped nonwoven web has low density, high permeability, excellent surface and bulk softness, recoverable stretch properties, surface topology, and permanent out-of-plane fiber orientation.
  • the creped nonwoven web can be used in a variety of end products including inkers, transfer and surge layers, outercovers, wipers, and other fluid handling materials.
  • One excellent use of the creped nonwoven web is as an outercover component for a diaper.
  • the creped nonwoven web may, for instance, be laminated to a breathable polyolefin film including a mixture of thermoplastic polymer, e.g. a polyolefin such as polyethylene or polypropylene, and a particulate filler, e.g. calcium carbonate.
  • the film is permeable to water vapor but substantially impermeable to liquid water.
  • the breathable film can be laminated to the creped nonwoven web using thermal bonding, adhesive bonding, and/or other bonding techniques well known in the art.
  • the laminate is then positioned on the underside or backside of the absorbent core of a diaper with the film component facing the absorbent core.
  • the creped nonwoven web component thus faces outward, contributing a soft, fluffy, bulky feel to the diaper.
  • the creped nonwoven web 12 is also highly suitable for use as the female (“loop”) component in a hook-and-loop type fastener.
  • the loops in the web 12 engage the male fastener components in a peelable fashion, such that the hook and loop fastener can be opened and closed a number of times.
  • the nonwoven web can be mechanically stretched, preferably stretched in the machine direction (causing the web to contract or neck in the cross direction) before applying the adhesive and creping the web.
  • the resulting necked web product is stretchable in the cross direction.
  • Mechanical stretching of the web is accomplished using processes well known in the art.
  • the web may be pre-stretched by about 0-100% of its initial length in the machine direction to obtain a necked web that can be stretched (e.g. by about 0-100%) in the cross direction.
  • the web is stretched by about 10-100% of its initial length, more commonly by about 25-75% of its initial length.
  • the stretched web is then dimensionally stabilized to some extent, first by the adhesive which is applied to the web, and second by the heat which is imparted from the creping drum. This stabilization sets the cross-directional stretch properties of the web.
  • the machine direction stretch is further stabilized by the out-of-plane deformation of the nonwoven web bonded areas that occurs during creping.
  • the pre-stretching of the web can be used to optimize and enhance physical properties in the creped nonwoven product including softness, bulk, stretchability and recovery, permeability, basis weight, density, and liquid holding capacity.
  • the elastic behavior of the creped nonwoven web can be further enhanced by laminating it to a layer of elastic material, for example, an isotropic elastic web or a layer of elastic strands.
  • a polypropylene spunbonded web having an initial basis weight of 0.35 osy was subjected to a one-sided creping process as described above.
  • the adhesive used was an acrylic polymer emulsion sold by the B. F. Goodrich Company under the trade name HYCAR®.
  • the adhesive was applied at a 5% wet adhesive pick-up (based on the weight of the web) to different samples of the web using a printing process.
  • the adhesive covered 15-20% of the web surface.
  • the base nonwoven web was point-bonded with a HP adhesive pattern as illustrated in FIG. 5 .
  • Each sample was bonded to a drying drum and creped using a doctor blade using creping drum and wind-up roll speeds which yielded products with 10%, 25% and 50% crepe.
  • the drum had a temperature of 180° F.
  • the samples were measured for basis weight (mass divided by area covered the web), apparent density, true density, saturated capacity, thickness, mean pore radius, permeability, and pore volume. The pertinent measurement procedures are summarized
  • Example 1 Example 2 Example 3
  • Example 4 (No Crepe) (10% Crepe) (25% Crepe) (50% Crepe) Basis 0.35 osy 0.39 osy 0.45 osy 0.56 osy Weight Apparent 0.096 g/cc 0.041 g/cc 0.030 g/cc 0.022 g/cc Density True Density 0.083 g/cc 0.046 g/cc 0.044 g/cc 0.036 g/cc Saturated 10.0 g/g 19.5 g/g 20.7 g/g 25.2 g/g Capacity Thickness 5 mils 11 mils 22 mils 34 mils Mean Pore 60 microns 100 microns 140 microns 180 microns Radius Permeability 250 darcies 1000 darcies 2100 darcies 3500 darcies Pore Volume 240 cc/g 390 cc/g 460 cc/g 480 cc/g at Mean Pore Radius
  • the creping substantially increased the bulk, permeability and volume of the fabric while reducing its densities.
  • the permanently creped products had out-of-plane bonding in the creped areas and exhibited excellent softness, surface topographies, and recoverable stretchability.
  • the basis weight is determined by measuring the mass of a creped nonwoven web sample and dividing it by the area covered by the nonwoven web sample. Generally, the basis weight increases at higher levels of creping due to crinkling and bulking of the web.
  • the apparent density is determined by measuring the weight of a creped nonwoven web sample and dividing it by the sample volume.
  • the sample volume is calculated by multiplying the sample area by the sample thickness measured at 0.05 psi.
  • the saturated capacity is a measurement of the total liquid held by a saturated creped nonwoven web sample, and is reported in grams liquid per gram of creped nonwoven web. This can be determined using an apparatus based on the porous plate method reported by Burgeni and Kapur in the Textile Research Journal , Volume 37, pp. 356-366 (1967), the disclosure of which is incorporated by reference.
  • the apparatus includes a movable stage interfaced with a programmable stepper motor, and an electronic balance controlled by a computer.
  • a control program automatically moves the stage to a desired height, collects data at a specified sampling rate until equilibrium is reached, and then moves the stage to the next calculated height.
  • Controllable parameters include sampling rates, criteria for equilibrium and the number of absorption/desorption cycles.
  • the true density of the material represents the density of the interior structure and is determined from the saturated capacity (cc liquid/gram) and the density of the nonwoven fibers and/or particles.
  • True ⁇ ⁇ density fiber ⁇ ⁇ density ( saturated ⁇ ⁇ capacity ⁇ ⁇ ⁇ fiber ⁇ ⁇ density ) + 1
  • the permeability is obtained from a measurement of the resistance to flow of liquid by the material.
  • a liquid of known viscosity is forced through the material of a given thickness at a constant flow rate and the resistance to flow, measured as a pressure drop, is monitored.
  • the mean pore radius and pore volume are measured using the same apparatus used to measure saturated capacity. Again, the procedure and apparatus are described further in the above-referenced article by Burgeni and Kapur, the disclosure of which is incorporated by reference.

Abstract

A creped nonwoven web having permanent crepe includes regions of interfilament bonding which are permanently bent out-of-plane, alternating with regions of no interfilament bonding. The non-bonded regions include a multiplicity of filament loops which terminate at both ends in the creped interfilament-bonded regions. The creped nonwoven web is useful as the female component of a hook-and-loop fastener, and can also be used in diaper outercovers, liners, transfer and surge layers, wipers, and other fluid handling products.

Description

FIELD OF THE INVENTION
This invention relates to permanently creped nonwoven materials having low density, high permeability, improved loft and softness, looping, and out-of-plane fiber orientation.
BACKGROUND OF THE INVENTION
Creped thermoplastic nonwoven materials are known from U.S. Pat. No. 4,810,556, issued to Kobayashi et al. In the disclosed process, a raw nonwoven fabric is coated with a lubricant and then pressed between a drive roll and a plate having a rough sandpaper-like surface. The plate is positioned near the drum and is substantially parallel or tangential to the outer surface of the drum. The raw nonwoven fabric is crinkled in a wavelike fashion in the direction of movement of the fabric by the frictional force caused by the pressing. The resulting creped fabric has wavelike crepes which contribute to softness. However, the creping accomplished by this process is not believed to be permanent. It is believed that the creping accomplished by this process can be removed or reduced significantly by subjecting the nonwoven web to mechanical stretching sufficient to flatten out the wavelike crepes. Also, the creping is naturally reduced over time during use of the fabric.
The creping of paper is also known in the art. However, paper has traditionally been creped using processes different from those used to crepe thermoplastic nonwoven webs. U.S. Pat. No. 3,879,257, issued to Gentile et al., discloses a process used for producing creped paper. A bonding material, preferably elastomeric, is applied to first and second surfaces of the paper so that it covers from about 15-60% of both paper surfaces and penetrates into about 10-40% of the paper thickness from both surfaces. Then, one side of the paper is adhered to a creping surface, such as a creping drum, using the bonding material to cause the adhesion. Then, the paper is creped from the creping surface using a doctor blade positioned at an angle to the surface. This creping method greatly disrupts the fibers in the unbonded regions of the paper increasing the overall softness, absorbency and bulk of the paper, and finely crepes the bonded areas of the paper to soften them.
There is a need or desire for a creped thermoplastic nonwoven web in which some or portions of the fibers are greatly disrupted to cause permanent creping. There is also a need or desire for a permanently creped nonwoven web containing individual filament loops, suitable for use as the female component in a hook-and-loop fastener.
SUMMARY OF THE INVENTION
The present invention is a permanently creped thermoplastic nonwoven web having interfilament bonded areas which are bent or oriented permanently out of plane, unbonded areas between the bonded areas, and substantial filament looping in the unbonded areas. The permanently creped web has low density, high permeability and excellent softness, and is useful as a loop material for a hook and loop fastener. The web also has a crinkled, puckered texture, and is useful for liners, transfer and surge layers, outercovers, wipes, and other fluid handling products.
The starting material used to make the invention is an uncreped thermoplastic nonwoven web which can, for instance, be a thermoplastic spunbonded web or a thermoplastic meltblown web. The nonwoven web is at least partially coated on one side with an adhesive, so that about 5-100% (preferably 10-70%) of the total surface area on one side is coated, and about 0-95% (preferably 30-90%) of the area is uncoated. The nonwoven web also possesses interfilament bonding, in the form of a pattern called the “nonwoven web bond pattern,” which is imparted during manufacture of the nonwoven web. The adhesive penetrates the nonwoven web to some extent in the coated areas, causing increased interfilament bonding in those areas. The at least partially coated side of the thermoplastic nonwoven web is then placed against a creping surface, such as a creping drum, and is peelably bonded to the creping surface. The creping surface is preferably heated, and is moved (e.g. rotated) in a machine direction. As the creping surface moves, the leading edge of the nonwoven web bonded to the surface is creped off using a doctor blade.
The doctor blade penetrates the adhesive coating underneath the web and lifts the nonwoven web off the drum, resulting in permanent filament bending in the bonded areas corresponding to the nonwoven web bond pattern, and permanent looping of the filaments in the unbonded areas. Only one side of the web need be creped in this fashion to form a loop material suitable for use as the female component in a hook and loop fastener. Alternatively, both sides of the web may be creped by applying the adhesive on the second surface of the web as well as the first, adhering the second surface of the web to the same or a different creping surface, and creping the second side of the web from the creping surface using a doctor blade.
With the foregoing in mind, it is a feature and advantage of the invention to provide a permanently creped nonwoven web having low density, high permeability and excellent softness and texture.
It is also a feature and advantage of the invention to provide a permanently creped nonwoven web having a looped structure suitable for use as the female component of a hook and loop fastener.
It is also a feature and advantage of the invention to provide a permanently creped nonwoven web having a textured surface suitable for use in liners, transfer and surge layers, outercovers, wipers, and other fluid handling materials.
The foregoing and other features and advantages of the invention will become further apparent from the following detailed description of the presently preferred embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are intended to be merely illustrative rather than limiting, the scope of the invention being defined by the appended claims and equivalents thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic side view of one type of an apparatus for producing a permanently creped nonwoven web of the invention.
FIG. 2 is a greatly enlarged sectional view photograph of an uncreped nonwoven web.
FIG. 3 is a greatly enlarged sectional view photograph of a permanently creped nonwoven web of the invention, creped on one side to a 25% crepe level.
FIG. 4 is a greatly enlarged sectional view photograph of a permanently creped nonwoven web of the invention, creped on one side to a 50% crepe level.
FIGS. 5-7 illustrate three nonwoven web bonding patterns used during preparation of the creped nonwoven web of the invention.
DEFINITIONS
“Permanently creped” refers to a creped nonwoven web having bonded and unbonded areas, in which the bonded areas are permanently bent out-of-plane and the unbonded portions are permanently looped, such that the nonwoven web cannot be returned to its original uncreped state by applying a mechanical stress.
“Crepe level” is a measure of creping and is calculated according to the following equation: Crepe level ( % ) = Speed of Creping Surface minus speed of windup reel for the creped web Speed of Creping Surface × 100
Figure US06197404-20010306-M00001
“Bent out-of-plane” refers to a bonding or orientation of portions of the nonwoven web in a direction away from the plane in which the nonwoven web substantially lies before being subjected to the creping process. As used herein, the phrase “bent out-of-plane” generally refers to nonwoven webs having creped portions bent at least about 15 degrees away from the plane of the uncreped nonwoven web, preferably at least about 30 degrees.
“Looped” refers to unbonded filaments or portions of filaments in a creped nonwoven web which define an arch, semi-circle or similar configuration extending above the plane of the uncreped nonwoven web, and terminating at both ends in the nonwoven web (e.g. in the bonded areas of the creped nonwoven web).
“Nonwoven web” means a web having a structure of individual fibers or threads which are interlaid, but not in an identifiable, repeating manner. Nonwoven webs have been, in the past, formed by a variety of processes such as, for example, melt-blowing processes, spunbonding processes and bonded carded web processes.
“Nonwoven web bond pattern” is a pattern of interfilament bonding in the nonwoven web which is imparted during manufacture of the nonwoven web.
“Meltblown fibers” means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into a high velocity gas (e.g. air) stream which attenuates the filaments of molten thermoplastic material to reduce their diameter, possibly to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly disbursed meltblown fibers. Such a process is disclosed, for example, in U.S. Pat. No. 3,849,241 to Butin, the disclosure of which is hereby incorporated by reference.
“Microfibers” means small diameter fibers having an average diameter not greater than about 100 microns, for example, having an average diameter of from about 0.5 microns to about 50 microns, or more particularly, an average diameter of from about 4 microns to about 40 microns.
“Spunbonded fibers” refers to small diameter fibers which are formed by extruding a molten thermoplastic material as filaments from a plurality of fine, usually circular, capillaries of a spinnerette with the diameter of the extruded filaments then being rapidly reduced as by, for example, eductive drawing or other well-known spunbonding mechanisms. The production of spunbonded nonwoven webs is illustrated in patents such as, for example, in U.S. Pat. No. 3,802,817 to Matsuki et al. and U.S. Pat. No. 5,382,400 to Pike et al. The disclosures of these patents are hereby incorporated by reference.
“Polymer” generally includes, but is not limited to, homopolymers, copolymers, such as, for example, block, graft, random and alternating copolymers, terpolymers, etc. and blends and modifications thereof. Furthermore, the term “polymer” shall include all possible geometrical configurations of the material. These configurations include, but are not limited to, isotactic, syndiotactic and random symmetries.
“Bicomponent fibers” refers to fibers which have been formed from at least two polymers extruded from separate extruders but spun together to form one fiber. The polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the bicomponent fibers and extend continuously along the length of the bicomponent fibers. The configuration of such a bicomponent fiber may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another or may be a side-by-side arrangement or an “islands-in-the-sea” arrangement. Bicomponent fibers are taught in U.S. Pat. No. 5,108,820 to Kaneko et al., U.S. Pat. No. 5,336,552 to Strack et al., and European Patent 0586924. For two component fibers, the polymers may be present in ratios of 75/25, 50/50, 25/75 or any other desired ratios.
“Biconstituent fibers” refers to fibers which have been formed from at least two polymers extruded from the same extruder as a blend. The term “blend” is defined below. Biconstituent fibers do not have the various polymer components arranged in relatively constantly positioned distinct zones across the cross-sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils which start and end at random. Biconstituent fibers are sometimes also referred to as multiconstituent fibers. Fibers of this general type are discussed in, for example, U.S. Pat. No. 5,108,827 to Gessner. Bicomponent and biconstituent fibers are also discussed in the textbook Polymer Blends and Composites by John A. Manson and Leslie H. Sperling, copyright 1976 by Plenum Press, a division of Plenum Publishing Corporation of New York, IBSN 0-306-30831-2, at pages 273 through 277.
“Blend” means a mixture of two or more polymers while the term “alloy” means a sub-class of blends wherein the components are immiscible but have been compatibilized. “Miscibility” and “immiscibility” are defined as blends having negative and positive values, respectively, for the free energy of mixing. Further, “compatibilization” is defined as the process of modifying the interfacial properties of an immiscible polymer blend in order to make an alloy.
“Consisting essentially of” does not exclude the presence of additional materials which do not significantly affect the desired characteristics of a given composition or product. Exemplary materials of this sort would include, without limitation, pigments, antioxidants, stabilizers, surfactants, waxes, flow promoters, particulates and materials added to enhance processability of the composition.
DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
FIG. 1 illustrates a process for preparing a creped nonwoven web of the invention, which can be a creped spunbonded web, and which can be creped on one or both sides. A nonwoven web 12, which can be a spunbonded web, is unwound from a supply roll 10. The nonwoven web 12 may be passed through a first creping station 20, a second creping station 30, or both. If it is desired to crepe the nonwoven web 12 on only one side, it may be passed through either the first creping station 20 or the second creping station 30, with one creping station or the other being bypassed. If it is desired to crepe the nonwoven web 12 on both sides, it may be passed through both creping stations.
A first side 14 of the web 12 may be creped using the first creping station 20. The creping station 20 includes first a printing station including a lower patterned or smooth printing roller 22, an upper smooth anvil roller 24, and a printing bath 25, and also includes a dryer roller 26 and associated creping blade 28.
The rollers 22 and 24 nip the web 12 and guide it forward. As the rollers 22 and 24 turn, the patterned or smooth printing roller 22 dips into bath 25 containing an adhesive material, and applies the adhesive material to the first side 14 of the web 12 in a partial coverage at a plurality of spaced apart locations, or in a total coverage. The adhesive-coated web 12 is then passed around drying drum 26 whereupon the adhesive-coated surface 14 becomes adhered to the roller 26. The first side 14 of the web 12 is then creped (i.e. lifted off the drum and bent) using doctor blade 28.
A second side 16 of the web 12 may be creped using the second creping station 30, regardless of whether or not the first creping station 20 has been bypassed. The second creping station 30 includes a second printing station including a lower patterned or smooth printing roller 32, an upper smooth anvil roller 34, and a printing bath 35, and also includes a dryer drum 36 and associated creping blade 38. The rollers 32 and 34 nip the web 12 and guide it forward. As the rollers 32 and 34 turn, the printing roller 32 dips into bath 35 containing adhesive material, and applies the adhesive to the second side 16 of the web 12 in a partial or total coverage. The adhesive-coated web 12 is then passed around drying roller 36 whereupon the adhesive-coated surface 16 becomes adhered to the roller 36. The second side 16 of the web 12 is then creped (i.e. lifted off the drum surface and bent) using doctor blade 38.
After creping, the nonwoven web 12 may be passed through a chilling station 40 and wound onto a storage roll 42. The level of creping is affected by the surface speed of the windup roll 42 relative to the surface speed of the creping drum 36, according to the equation presented above. The surface speed of the windup roll 42 is slower than the surface speed of the creping drum 36, and the difference between the two speeds affects the level of creping. The level of creping should generally be about 5-75%, preferably about 15-60%, most preferably about 25-50%.
The nonwoven web 12 may be any type of thermoplastic nonwoven web. For instance, web 12 may be a spunbonded web, a meltblown web, a bonded carded web, or a combination including any of the following. Preferably, the web 12 is a spunbonded web. A wide variety of thermoplastic polymer materials can be used to make the nonwoven web 12. Exemplary polymer materials include without limitation, polypropylene, polyethylene (high and low density), ethylene copolymers with C3-C20 α-olefins, propylene copolymers with ethylene or C4-C20 α-olefins, butene copolymers with ethylene, propylene, or C5-C20 α-olefins, polyvinyl chloride, polyesters, polyamides, polyfluorocarbons, polyurethane, polystyrene, polyvinyl alcohol, caprolactams, and cellulosic and acrylic resins. Bicomponent and biconstituent thermoplastic webs may also be utilized, as well as webs containing blends of one or more of the above-listed thermoplastic polymers. The web 12 may have a basis weight of about 0.2-2.0 ounces per square yard (osy) before creping, desirably about 0.3-1.5 osy.
A wide variety of adhesive bonding materials may be utilized to reinforce the fibers of the web 12 at the locations of adhesive application, and to temporarily adhere the web 12 to the surface of the drum 26 and/or 36. Elastomeric adhesives (i.e. materials capable of at least 75% elongation without rupture) are especially suitable. Suitable materials include without limitation aqueous-based styrene butadiene adhesives, neoprene, polyvinyl chloride, vinyl copolymers, polyamides, ethylene vinyl terpolymers and combinations thereof. The presently preferred adhesive material is an acrylic polymer emulsion sold by the B. F. Goodrich Company under the trade name HYCAR®. The adhesive may be applied using the printing technique described above or may, alternatively, be applied by meltblowing, melt spraying, dripping, splattering, or any technique capable of forming a partial or total adhesive coverage on the thermoplastic nonwoven web 12.
The percent adhesive coverage of the web 12 generally affects the level of creping obtained. Generally the adhesive should cover about 5-100% of the web surface, preferably about 10-70% of the web surface, more preferably about 25-50% of the web surface. In the presently preferred embodiment, the web 12 is coated with adhesive and creped on only one side. The web 12 may be coated with adhesive and creped on both sides, however. The adhesive should also penetrate the nonwoven web 12 in the locations where the adhesive is applied. Generally, the adhesive should penetrate through about 10-50% of the nonwoven web thickness, although there may be greater or less adhesive penetration at some locations.
The resulting creped nonwoven web product has a controlled pattern creping which corresponds generally to the nonwoven web interfilament bond pattern and, to a lesser degree, the applied adhesive material. A presently preferred nonwoven web bonding pattern is a regular point bond pattern referred to as the Hansen Pennings or “HP” pattern, shown in FIG. 5. The HP pattern has a bond area of 19-32%, a bond density of 204 points/in2, and a point height or depth of 0.030 in. This bond pattern results in the formation of regular fiber loops and excellent bulk.
Another suitable nonwoven web bond pattern is the “rib knit” pattern shown in FIG. 6. The rib knit pattern is designed for a knitted fabric appearance. The pattern has a bond area of 10-20%, a bond density of 212 bond points/in2, and a bond point height or depth of 0.044 in. This pattern provides creped nonwoven fabrics with excellent softness.
Another suitable nonwoven web bond pattern, characterized by elliptical-shaped point bonds, is the “wire weave” pattern shown in FIG. 7. The wire weave pattern has a bond area of 15-21%, a bond density of 302 point/in2, and a bond point height or depth of 0.038 in. This pattern is designed to provide a nonwoven fabric with a woven look, and results in creped nonwoven fabrics having good softness, bulk, and fiber looping.
The creping of the nonwoven web is primarily manifested in the bonded areas of the base (“raw”) nonwoven web, corresponding to the nonwoven web bond pattern. As a result of the creping, the bonded regions are bent out of plane so as to cause permanent creping of the web, and the formation of filament looped regions in the unbonded regions alternating with (in between) the creped bonded regions.
FIG. 2 illustrates an uncreped nonwoven web, which is a spunbonded web. FIGS. 3 and 4 illustrate the same spunbonded web creped according to the invention at creping percentages of 25% and 50%, respectively. As shown in FIGS. 3 and 4, each of the creped webs has creped nonwoven web bond regions 50 which are bent permanently out of plane due to the creping. Looped regions 52 corresponding to the unbonded, non-creped regions exist between the creped regions. The creped regions 50 include tightly bonded filament regions, while the looped regions 52 include loose filament regions. The individual filament loops terminate at both ends in the adhesive-reinforced regions, and are anchored in the adhesive-reinforced regions. As seen in FIGS. 3 and 4, the degree of looping increases substantially when the level of creping is increased from 25% to 50%. The completeness of the loops suggest that there is very little fiber breakage.
The resulting creped nonwoven web has low density, high permeability, excellent surface and bulk softness, recoverable stretch properties, surface topology, and permanent out-of-plane fiber orientation. The creped nonwoven web can be used in a variety of end products including inkers, transfer and surge layers, outercovers, wipers, and other fluid handling materials. One excellent use of the creped nonwoven web is as an outercover component for a diaper. The creped nonwoven web may, for instance, be laminated to a breathable polyolefin film including a mixture of thermoplastic polymer, e.g. a polyolefin such as polyethylene or polypropylene, and a particulate filler, e.g. calcium carbonate. The film is permeable to water vapor but substantially impermeable to liquid water. The breathable film can be laminated to the creped nonwoven web using thermal bonding, adhesive bonding, and/or other bonding techniques well known in the art. The laminate is then positioned on the underside or backside of the absorbent core of a diaper with the film component facing the absorbent core. The creped nonwoven web component thus faces outward, contributing a soft, fluffy, bulky feel to the diaper.
Because of the looping caused in the uncreped, unbonded regions, the creped nonwoven web 12 is also highly suitable for use as the female (“loop”) component in a hook-and-loop type fastener. The loops in the web 12 engage the male fastener components in a peelable fashion, such that the hook and loop fastener can be opened and closed a number of times.
In another embodiment, the nonwoven web can be mechanically stretched, preferably stretched in the machine direction (causing the web to contract or neck in the cross direction) before applying the adhesive and creping the web. The resulting necked web product is stretchable in the cross direction. Mechanical stretching of the web is accomplished using processes well known in the art. For instance, the web may be pre-stretched by about 0-100% of its initial length in the machine direction to obtain a necked web that can be stretched (e.g. by about 0-100%) in the cross direction. Preferably, the web is stretched by about 10-100% of its initial length, more commonly by about 25-75% of its initial length. The stretched web is then dimensionally stabilized to some extent, first by the adhesive which is applied to the web, and second by the heat which is imparted from the creping drum. This stabilization sets the cross-directional stretch properties of the web. The machine direction stretch is further stabilized by the out-of-plane deformation of the nonwoven web bonded areas that occurs during creping.
The pre-stretching of the web can be used to optimize and enhance physical properties in the creped nonwoven product including softness, bulk, stretchability and recovery, permeability, basis weight, density, and liquid holding capacity. The elastic behavior of the creped nonwoven web can be further enhanced by laminating it to a layer of elastic material, for example, an isotropic elastic web or a layer of elastic strands.
EXAMPLES
A polypropylene spunbonded web having an initial basis weight of 0.35 osy was subjected to a one-sided creping process as described above. The adhesive used was an acrylic polymer emulsion sold by the B. F. Goodrich Company under the trade name HYCAR®. The adhesive was applied at a 5% wet adhesive pick-up (based on the weight of the web) to different samples of the web using a printing process. The adhesive covered 15-20% of the web surface. The base nonwoven web was point-bonded with a HP adhesive pattern as illustrated in FIG. 5. Each sample was bonded to a drying drum and creped using a doctor blade using creping drum and wind-up roll speeds which yielded products with 10%, 25% and 50% crepe. The drum had a temperature of 180° F. The samples were measured for basis weight (mass divided by area covered the web), apparent density, true density, saturated capacity, thickness, mean pore radius, permeability, and pore volume. The pertinent measurement procedures are summarized below. The following results were achieved.
Example 1 Example 2 Example 3 Example 4
(No Crepe) (10% Crepe) (25% Crepe) (50% Crepe)
Basis 0.35 osy 0.39 osy 0.45 osy 0.56 osy
Weight
Apparent 0.096 g/cc 0.041 g/cc 0.030 g/cc 0.022 g/cc
Density
True Density 0.083 g/cc 0.046 g/cc 0.044 g/cc 0.036 g/cc
Saturated 10.0 g/g 19.5 g/g 20.7 g/g 25.2 g/g
Capacity
Thickness 5 mils 11 mils 22 mils 34 mils
Mean Pore 60 microns 100 microns 140 microns 180 microns
Radius
Permeability 250 darcies 1000 darcies 2100 darcies 3500 darcies
Pore Volume 240 cc/g 390 cc/g 460 cc/g 480 cc/g
at Mean Pore
Radius
As shown above, the creping substantially increased the bulk, permeability and volume of the fabric while reducing its densities. The permanently creped products had out-of-plane bonding in the creped areas and exhibited excellent softness, surface topographies, and recoverable stretchability.
The following measurement procedures can be used to generate this data. The basis weight is determined by measuring the mass of a creped nonwoven web sample and dividing it by the area covered by the nonwoven web sample. Generally, the basis weight increases at higher levels of creping due to crinkling and bulking of the web.
The apparent density is determined by measuring the weight of a creped nonwoven web sample and dividing it by the sample volume. The sample volume is calculated by multiplying the sample area by the sample thickness measured at 0.05 psi.
The saturated capacity is a measurement of the total liquid held by a saturated creped nonwoven web sample, and is reported in grams liquid per gram of creped nonwoven web. This can be determined using an apparatus based on the porous plate method reported by Burgeni and Kapur in the Textile Research Journal, Volume 37, pp. 356-366 (1967), the disclosure of which is incorporated by reference. The apparatus includes a movable stage interfaced with a programmable stepper motor, and an electronic balance controlled by a computer. A control program automatically moves the stage to a desired height, collects data at a specified sampling rate until equilibrium is reached, and then moves the stage to the next calculated height. Controllable parameters include sampling rates, criteria for equilibrium and the number of absorption/desorption cycles.
Data for this analysis were collected using mineral oil in desorption mode. That is, the material was saturated at zero height and the porous plate (and the effective capillary tension on the sample) was progressively raised in discrete steps corresponding to the desired capillary radius. The amount of liquid pulled out from the sample was monitored. Readings at each height were taken every fifteen seconds and equilibrium was assumed to be reached when the average change of four consecutive readings was less than 0.005 g. The interfacial liquid (at the interface between the saturated nonwoven web sample and the porous plate) was removed by raising the plate slightly (0.5 cm).
The true density of the material (grams/cc) represents the density of the interior structure and is determined from the saturated capacity (cc liquid/gram) and the density of the nonwoven fibers and/or particles. True density = fiber density ( saturated capacity × fiber density ) + 1
Figure US06197404-20010306-M00002
The permeability (darcies) is obtained from a measurement of the resistance to flow of liquid by the material. A liquid of known viscosity is forced through the material of a given thickness at a constant flow rate and the resistance to flow, measured as a pressure drop, is monitored. Darcy's law is used to measure the permeability: Permeability ( cm 2 ) = flow rate ( cm / sec ) × thickness ( cm ) × viscosity ( pascal - sec ) pressure drop ( pascals ) wherein 1 darcy = 9.87 × 10 - 9 cm 2
Figure US06197404-20010306-M00003
The mean pore radius and pore volume are measured using the same apparatus used to measure saturated capacity. Again, the procedure and apparatus are described further in the above-referenced article by Burgeni and Kapur, the disclosure of which is incorporated by reference.
While the embodiments of the invention disclosed herein are presently considered preferred, various improvements and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is indicated in the appended claims, and all changes that fall within the meaning and range of equivalents are intended to be embraced therein.

Claims (40)

I claim:
1. A permanently creped thermoplastic nonwoven web comprising:
a nonwoven fibrous web at least partially covered with a creping adhesive, the nonwoven fibrous web having permanently creped interfilament-bonded regions alternating with non-creped regions of no interfilament bonding;
the nonwoven web having a nonwoven web bond pattern which effects the interfilament-bonded regions;
the interfilament-bonded regions being creped so as to exhibit permanent out-of-plane bending;
the regions of no interfilament bonding including a multiplicity of filament loops terminating in the interfilament-bonded regions.
2. The permanently creped thermoplastic nonwoven web of claim 1, having a level of creping of about 5-75%.
3. The permanently creped thermoplastic nonwoven web of claim 1, having a level of creping of about 15-60%.
4. The permanently creped thermoplastic nonwoven web of claim 1, having a level of creping of about 25-50%.
5. The creped thermoplastic nonwoven web of claim 1, comprising a nonwoven web selected from the group consisting of a spunbonded web, a meltblown web, a carded web, and combinations thereof.
6. The creped thermoplastic nonwoven web of claim 1, comprising a nonwoven spunbonded web.
7. The creped thermoplastic nonwoven web of claim 1, wherein the web comprises a polymer selected from the group consisting of propylene polymers and copolymers.
8. The creped thermoplastic nonwoven web of claim 1, wherein the web comprises a polymer selected from the group consisting of ethylene polymers and copolymers.
9. The creped thermoplastic nonwoven web of claim 1, wherein the web comprises a polymer selected from the group consisting of butene polymers and copolymers.
10. The creped thermoplastic nonwoven web of claim 1, wherein the creping adhesive comprises an elastomeric adhesive.
11. The creped thermoplastic nonwoven web of claim 1, wherein the creping adhesive comprises a material selected from the group consisting of styrene butadiene adhesives, neoprene, polyvinyl chloride, vinyl copolymers, polyamides, ethylene vinyl terpolymers, and combinations thereof.
12. The creped thermoplastic nonwoven web of claim 1, wherein the nonwoven fibrous web is mechanically stretched before the nonwoven fibrous web is at least partially covered with the creping adhesive.
13. The creped thermoplastic nonwoven web of claim 12, wherein the nonwoven fiber web is stretched in the machine direction before the nonwoven web is at least partially covered with the creping adhesive.
14. The creped thermoplastic nonwoven web of claim 12, wherein the nonwoven fibrous web is mechanically stretched by about 10-100% of an initial length of the nonwoven fibrous web before the nonwoven fibrous web is at least partially covered with the creping adhesive.
15. The creped thermoplastic nonwoven web of claim 12, wherein the nonwoven fibrous web is mechanically stretched by about 25-75% of an initial length of the nonwoven fibrous web before the nonwoven fibrous web is at least partially covered with the creping adhesive.
16. The permanently creped thermoplastic nonwoven web of claim 1, wherein the nonwoven web bond pattern comprises an HP pattern.
17. The permanently creped thermoplastic nonwoven web of claim 1, wherein the nonwoven web bond pattern comprises a rib knit pattern.
18. The permanently creped thermoplastic nonwoven web of claim 1, wherein the nonwoven web bond pattern comprises a wire weave pattern.
19. The permanently creped thermoplastic nonwoven web of claim 1, wherein the creping adhesive comprises a vinyl copolymer.
20. The permanently creped thermoplastic nonwoven web of claim 1, wherein the creping adhesive comprises an ethylene vinyl terpolymer.
21. A female component for a hook-and-loop fastener, comprising:
a permanently creped thermoplastic nonwoven web at least partially covered with a creping adhesive, the web having permanently creped interfilament-bonded regions bent out of plane, and non-creped regions of no interfilament bonding between the creped interfilament-bonded regions;
the nonwoven web having a nonwoven web bond pattern which effects the interfilament-bonded regions;
the regions of no interfilament bonding including a multiplicity of filament loops anchored at both ends in the creped regions.
22. The female fastener component of claim 21, wherein the thermoplastic nonwoven web is creped on one side thereof.
23. The female fastener component of claim 21, wherein the thermoplastic nonwoven web is creped twice, once on each side thereof.
24. The female fastener component of claim 21, wherein the creped thermoplastic nonwoven web has a level of creping of about 5-75%.
25. The female fastener component of claim 21, wherein the creped thermoplastic nonwoven web has a level of creping of about 15-60%.
26. The female fastener component of claim 21, wherein the creped thermoplastic nonwoven web has a level of creping of about 25-50%.
27. The female fastener component of claim 21, wherein the thermoplastic nonwoven web comprises a material selected from the group consisting of spunbonded webs, meltblown webs, carded webs, and combinations thereof.
28. The female fastener component of claim 21, wherein the thermoplastic nonwoven web comprises a spunbonded web.
29. The female fastener component of claim 21, wherein the nonwoven web bond pattern comprises an HP pattern.
30. The female fastener component of claim 21, wherein the nonwoven web bond pattern comprises a rib knit pattern.
31. The female fastener component of claim 21, wherein the nonwoven web bond pattern comprises a wire weave pattern.
32. An outercover material, comprising:
a permanently creped thermoplastic nonwoven web at least partially covered with a creping adhesive, the web having permanently creped interfilament-bonded regions bent out of plane, and non-creped regions of no interfilament bonding between the creped regions;
the nonwoven web having a nonwoven web bond pattern which effects the interfilament-bonded regions; and
a moisture permeable, substantially liquid impermeable polymer-based film laminated to the creped thermoplastic nonwoven web.
33. The outercover material of claim 32, wherein the nonwoven web is creped on one side thereof.
34. The outercover material of claim 32, wherein the nonwoven web comprises a material selected from the group consisting of a spunbonded web, a meltblown web, a carded web, and combinations thereof.
35. The outercover material of claim 32, wherein the nonwoven web comprises a spunbonded web.
36. The outercover material of claim 32, wherein the film comprises a mixture of a polymer and a particulate filler.
37. The outercover material of claim 36, wherein the film polymer comprises a polyolefin.
38. The outercover material of claim 32, wherein the nonwoven web bond pattern comprises an HP pattern.
39. The outercover material of claim 32, wherein the nonwoven web bond pattern comprises a rib knit pattern.
40. The outercover material of claim 32, wherein the nonwoven web bond pattern comprises a wire weave pattern.
US08/962,992 1997-10-31 1997-10-31 Creped nonwoven materials Expired - Fee Related US6197404B1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US08/962,992 US6197404B1 (en) 1997-10-31 1997-10-31 Creped nonwoven materials
US09/040,707 US6150002A (en) 1997-10-31 1998-03-18 Creped nonwoven liner with gradient capillary structure
AU11219/99A AU742034B2 (en) 1997-10-31 1998-10-26 Creped nonwoven materials and liner
CNB98812873XA CN1198527C (en) 1997-10-31 1998-10-26 Creped nonwoven materials and liner
EP19980953988 EP1024721B1 (en) 1997-10-31 1998-10-26 Creped nonwoven materials and liner
ES98953988T ES2229545T3 (en) 1997-10-31 1998-10-26 MATERIALS NON-FABRICED, RIPPED AND COATING.
BR9813315A BR9813315A (en) 1997-10-31 1998-10-26 Braided non-woven materials and coatings
DE1998626306 DE69826306T2 (en) 1997-10-31 1998-10-26 CRAZED NON-MATERIALS AND INSERT
KR10-2000-7004692A KR100491289B1 (en) 1997-10-31 1998-10-26 Creped Nonwoven Materials And Liner
PCT/US1998/022654 WO1999022619A1 (en) 1997-10-31 1998-10-26 Creped nonwoven materials and liner
CA 2307844 CA2307844C (en) 1997-10-31 1998-10-26 Creped nonwoven materials and liner
TW087117827A TW410147B (en) 1997-10-31 1998-10-28 Creped nonwoven materials and liner field of the invention
ZA989937A ZA989937B (en) 1997-10-31 1998-10-30 Creped nonwoven materials and liner
CO98064085A CO5050279A1 (en) 1997-10-31 1998-10-30 NON-FABRIC PERMANENT THERMOPLASTIC FABRIC FABRIC
ARP980105486 AR014002A1 (en) 1997-10-31 1998-10-30 A TREATED FABRIC WHEN PERMANENTLY THERMOPLASTIC AND CRESPONED; AN ABSORBENT ARTICLE, A FEMALE COMPONENT FOR A HOOK AND CLAMP CLAMP AND AN EXTERIOR COVER MATERIAL THAT INCLUDES SUCH FABRIC.
US09/209,044 US6838154B1 (en) 1997-10-31 1998-12-09 Creped materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/962,992 US6197404B1 (en) 1997-10-31 1997-10-31 Creped nonwoven materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/040,707 Continuation-In-Part US6150002A (en) 1997-10-31 1998-03-18 Creped nonwoven liner with gradient capillary structure

Publications (1)

Publication Number Publication Date
US6197404B1 true US6197404B1 (en) 2001-03-06

Family

ID=25506599

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/962,992 Expired - Fee Related US6197404B1 (en) 1997-10-31 1997-10-31 Creped nonwoven materials
US09/040,707 Expired - Fee Related US6150002A (en) 1997-10-31 1998-03-18 Creped nonwoven liner with gradient capillary structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/040,707 Expired - Fee Related US6150002A (en) 1997-10-31 1998-03-18 Creped nonwoven liner with gradient capillary structure

Country Status (5)

Country Link
US (2) US6197404B1 (en)
KR (1) KR100491289B1 (en)
AR (1) AR014002A1 (en)
CO (1) CO5050279A1 (en)
ZA (1) ZA989937B (en)

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020022108A1 (en) * 2000-03-14 2002-02-21 Krantz K. Theodor Hook and loop fastening
US20020052590A1 (en) * 2000-10-27 2002-05-02 Zehner Georgia Lynn Independence of components in absorbent articles
US20020134493A1 (en) * 2000-10-10 2002-09-26 Kimberly-Clark Worldwide, Inc. Microcreped wipers
WO2002091871A1 (en) * 2001-05-11 2002-11-21 Aplix Inc. Non-woven loop-forming material
US20030118776A1 (en) * 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Entangled fabrics
US20030119412A1 (en) * 2001-12-20 2003-06-26 Sayovitz John Joseph Method for producing creped nonwoven webs
US20030125704A1 (en) * 2001-12-31 2003-07-03 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US20030125706A1 (en) * 2001-12-31 2003-07-03 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
WO2003054269A1 (en) * 2001-12-20 2003-07-03 Kimberly-Clark Worldwide, Inc. Method for creping nonwoven webs
US20030125703A1 (en) * 2001-12-31 2003-07-03 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
WO2003057121A1 (en) * 2001-12-31 2003-07-17 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US20030148691A1 (en) * 2002-01-30 2003-08-07 Pelham Matthew C. Adhesive materials and articles containing the same
US6623837B2 (en) 2000-12-27 2003-09-23 Kimberly-Clark Worldwide, Inc. Biaxially extendible material
US20030194932A1 (en) * 2001-12-20 2003-10-16 Clark James W. Antimicrobial pre-moistened wipers
US20030208171A1 (en) * 2000-10-27 2003-11-06 Georgia Lynn Zehner Absorbent article with self-forming seals
US6663611B2 (en) 1999-09-28 2003-12-16 Kimberly-Clark Worldwide, Inc. Breathable diaper with low to moderately breathable inner laminate and more breathable outer cover
US6673980B1 (en) * 1999-07-16 2004-01-06 Kimberly-Clark Worldwide, Inc. Absorbent product with creped nonwoven dampness inhibitor
US20040005457A1 (en) * 2002-07-03 2004-01-08 Kimberly-Clark Worldwide, Inc. Methods of improving the softness of fibers and nonwoven webs and fibers and nonwoven webs having improved softness
US20040048768A1 (en) * 2001-10-12 2004-03-11 Clark James W. Antimicrobially-treated fabrics
US20040121688A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Flexible activated carbon substrates
US20040121681A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Absorbent articles containing an activated carbon substrate
US20040121693A1 (en) * 2002-12-23 2004-06-24 Anderson Ralph Lee Entangled fabric wipers for oil and grease absorbency
US20040122387A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Absorbent articles that include a stretchable substrate having odor control properties
US20040121689A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Entangled fabrics containing staple fibers
US20040127873A1 (en) * 2002-12-31 2004-07-01 Varona Eugenio Go Absorbent article including porous separation layer with capillary gradient
US20040175556A1 (en) * 2003-03-03 2004-09-09 Kimberly-Clark Worldwide, Inc. Textured fabrics applied with a treatment composition
WO2005045118A1 (en) * 2003-11-11 2005-05-19 Kolon Industries, Inc A cleansing fabrics, and a process of preparing the same
US20050136778A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc . Ultrasonically laminated multi-ply fabrics
US20050136776A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Soft and bulky composite fabrics
US20050142331A1 (en) * 2003-12-31 2005-06-30 Kimberly-Clark Worldwide, Inc. Nonwovens having reduced poisson ratio
US6914018B1 (en) * 2000-10-27 2005-07-05 Kimberly-Clark Worldwide, Inc. Biaxial stretch, breathable laminate with cloth-like aesthetics and method for making same
US20050208260A1 (en) * 2004-03-22 2005-09-22 Georg Baldauf Laminate material for hook-and-loop closures
US20050244211A1 (en) * 2004-04-30 2005-11-03 Brunner Michael S Activatable cleaning products
US20050244212A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Foam generating article
US6982231B1 (en) 2000-10-27 2006-01-03 Kimberly-Clark Worldwide, Inc. Elastomeric, breathable laminate with enhanced breathability upon extension
US20060068167A1 (en) * 2004-09-27 2006-03-30 Kimberly-Clark Worldwide, Inc. Creped electret nonwoven wiper
US20060102037A1 (en) * 1999-05-28 2006-05-18 Velcro Industries B.V., A Netherlands Corporation Hook-engageable fastener sheets, and methods and articles of manufacture
US20060141881A1 (en) * 2002-03-08 2006-06-29 3M Innovative Properties Company Wipe
US20060148357A1 (en) * 2004-12-30 2006-07-06 Baratian Stephen A Elastic laminate having topography
US20060199744A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Low molecular weight ethylene/alpha-olefin interpolymer as base lubricant oils
US20060199872A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Foams made from interpolymers of ethylene/alpha-olefins
US20060199930A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Ethylene/alpha-olefins block interpolymers
US20060199908A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Rheology modification of interpolymers of ethylene/alpha-olefins and articles made therefrom
US20060199912A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Compositions of ethylene/alpha-olefin multi-block interpolymer suitable for films
US20060199906A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/alpha-olefin with improved compatibility
US20060199931A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Fibers made from copolymers of ethylene/alpha-olefins
US20060199914A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Functionalized ethylene/alpha-olefin interpolymer compositions
US20060199911A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Cap liners, closures and gaskets from multi-block polymers
US20060199887A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Filled polymer compositions made from interpolymers of ethylene/a-olefins and uses thereof
US20060198983A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Three dimensional random looped structures made from interpolymers of ethylene/alpha-olefins and uses thereof
US20060199910A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Thermoplastic vulcanizate comprising interpolymers of ethylene alpha-olefins
US20060199896A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Viscosity index improver for lubricant compositions
US20060199030A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Compositions of ethylene/alpha-olefin multi-block interpolymer for blown films with high hot tack
US20060211819A1 (en) * 2004-03-17 2006-09-21 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/alpha-olefins and flexible molded articles made therefrom
US20070010616A1 (en) * 2004-03-17 2007-01-11 Dow Global Technologies Inc. Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers
US20070045341A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Pull tab activated sealed packet
US20070048063A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Fluid applicator with a pull tab activated pouch
US20070048062A1 (en) * 2005-08-30 2007-03-01 Kimberly-Clark Worldwide, Inc. Fluid applicator with a press activated pouch
US7194789B2 (en) 2003-12-23 2007-03-27 Kimberly-Clark Worldwide, Inc. Abraded nonwoven composite fabrics
US20070135575A1 (en) * 2005-12-09 2007-06-14 Dow Global Technologies Inc. Processes of Controlling Molecular Weight Distribution in Ethylene/Alpha-Olefin Compositions
US20070134337A1 (en) * 2003-12-23 2007-06-14 Kimberly-Clark Worldwide, Inc. Bacteria binding products
US20070141130A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Wound or surgical dressing
US20070141934A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Nonwoven webs containing bacteriostatic compositions and methods of making the same
US20070142262A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Bacteria capturing treatment for fibrous webs
US20070167578A1 (en) * 2004-03-17 2007-07-19 Arriola Daniel J Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
US20070190878A1 (en) * 2000-02-24 2007-08-16 The Procter & Gamble Company Cleaning sheets comprising a polymeric additive to improve particulate pick-up minimize residue left on surfaces and cleaning implements for use with cleaning sheets
US20070219334A1 (en) * 2004-03-17 2007-09-20 Dow Global Technologies Inc. Propylene/Alpha-Olefins Block Interpolymers
US20070275219A1 (en) * 2005-12-09 2007-11-29 Dow Global Technologies Inc. Interpolymers Suitable for Multilayer Films
US20080076313A1 (en) * 2006-09-26 2008-03-27 David Uitenbroek Wipe and methods for manufacturing and using a wipe
US20080081854A1 (en) * 2006-09-06 2008-04-03 Dow Global Technologies Inc. Fibers and Knit Fabrics Comprising Olefin Block Interpolymers
US20080119817A1 (en) * 2001-12-31 2008-05-22 Kimberly-Clark Worldwide, Inc. Absorbent article with improved fastening system and method of fastening thereof
US20080145267A1 (en) * 2006-12-15 2008-06-19 Kimberly-Clark Worldwide, Inc. Delivery of an odor control agent through the use of a presaturated wipe
US20080141437A1 (en) * 2006-12-15 2008-06-19 Kimberly-Clark Wordwide, Inc. Self warming mask
US20080171167A1 (en) * 2007-01-16 2008-07-17 Dow Global Technologies Inc. Cone dyed yarns of olefin block compositions
US20080176473A1 (en) * 2006-11-30 2008-07-24 Dow Global Technologies Inc. Molded fabric articles of olefin block interpolymers
US20080182473A1 (en) * 2007-01-16 2008-07-31 Dow Global Technologies Inc. Stretch fabrics and garments of olefin block polymers
US20080184498A1 (en) * 2007-01-16 2008-08-07 Dow Global Technologies Inc. Colorfast fabrics and garments of olefin block compositions
US20080234435A1 (en) * 2004-03-17 2008-09-25 Dow Global Technologies Inc Compositions of ethylene/alpha-olefin multi-block interpolymer for elastic films and laminates
US20080275189A1 (en) * 2005-09-15 2008-11-06 Dow Global Technologies Inc. Control of Polymer Architecture and Molecular Weight Distribution Via Multi-Centered Shuttling Agent
US20080281037A1 (en) * 2005-03-17 2008-11-13 Karjala Teresa P Adhesive and Marking Compositions Made From Interpolymers of Ethylene/Alpha-Olefins
US20080299857A1 (en) * 2006-11-30 2008-12-04 Dow Global Technologies Inc. Olefin block compositions for heavy weight stretch fabrics
US20080311812A1 (en) * 2004-03-17 2008-12-18 Arriola Daniel J Catalyst Composition Comprising Shuttling Agent for Higher Olefin Multi-Block Copolymer Formation
KR100880785B1 (en) * 2003-11-12 2009-02-02 트레데가르 필름 프로덕츠 코포레이션 Composite elastic web
US20090042472A1 (en) * 2005-03-17 2009-02-12 Poon Benjamin C Fibers Made from Copolymers of Ethylene/Alpha-Olefins
US20090068427A1 (en) * 2005-10-26 2009-03-12 Dow Global Technologies Inc. Multi-layer, elastic articles
US20090068436A1 (en) * 2007-07-09 2009-03-12 Dow Global Technologies Inc. Olefin block interpolymer composition suitable for fibers
US20090104424A1 (en) * 2007-10-22 2009-04-23 Dow Global Technologies Inc. Multilayer films
US20090105374A1 (en) * 2007-09-28 2009-04-23 Dow Global Technologies Inc. Thermoplastic olefin composition with improved heat distortion temperature
US20090105417A1 (en) * 2005-03-17 2009-04-23 Walton Kim L Polymer Blends from Interpolymers of Ethylene/Alpha-Olefin with Improved Compatibility
US20090163667A1 (en) * 2005-09-15 2009-06-25 Dow Global Technologies Inc. Catalytic olefin block copolymers via polymerizable shuttling agent
US20090209932A1 (en) * 2007-12-07 2009-08-20 Maurizio Tamburro Absorbent core
US7671131B2 (en) 2004-03-17 2010-03-02 Dow Global Technologies Inc. Interpolymers of ethylene/α-olefins blends and profiles and gaskets made therefrom
US7737061B2 (en) 2005-03-17 2010-06-15 Dow Global Technologies Inc. Compositions of ethylene/alpha-olefin multi-block interpolymer for elastic films and laminates
US7842627B2 (en) 2006-11-30 2010-11-30 Dow Global Technologies Inc. Olefin block compositions for stretch fabrics with wrinkle resistance
US8871232B2 (en) 2007-12-13 2014-10-28 Kimberly-Clark Worldwide, Inc. Self-indicating wipe for removing bacteria from a surface
US9217094B2 (en) 2011-07-28 2015-12-22 The Board Of Trustees Of The University Of Illinois Superhydrophobic compositions
USD752350S1 (en) * 2013-01-15 2016-03-29 Air China Limited Fabric
US9327477B2 (en) 2008-01-24 2016-05-03 Clopay Plastic Products Company, Inc. Elastomeric materials
US9364859B2 (en) 2011-07-28 2016-06-14 Kimberly-Clark Worldwide, Inc. Superhydrophobic surfaces
US9803100B2 (en) 2013-04-30 2017-10-31 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic surfaces
US10005917B2 (en) 2013-04-30 2018-06-26 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
US10533096B2 (en) 2015-02-27 2020-01-14 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
EP3594396A1 (en) 2018-07-10 2020-01-15 Karlsruher Institut für Technologie Process for producing micro- and nano-structured fiber-based substrates
US10792194B2 (en) 2014-08-26 2020-10-06 Curt G. Joa, Inc. Apparatus and methods for securing elastic to a carrier web
US11701268B2 (en) 2018-01-29 2023-07-18 Curt G. Joa, Inc. Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product
US11744744B2 (en) 2019-09-05 2023-09-05 Curt G. Joa, Inc. Curved elastic with entrapment
US11850128B2 (en) 2018-09-27 2023-12-26 The Procter And Gamble Company Garment-like absorbent articles
US11925538B2 (en) 2019-01-07 2024-03-12 Curt G. Joa, Inc. Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592697B2 (en) 2000-12-08 2003-07-15 Kimberly-Clark Worldwide, Inc. Method of producing post-crepe stabilized material
US6689242B2 (en) 2001-03-26 2004-02-10 First Quality Nonwovens, Inc. Acquisition/distribution layer and method of making same
US6797360B2 (en) 2001-08-22 2004-09-28 Kimberly-Clark Worldwide, Inc. Nonwoven composite with high pre-and post-wetting permeability
US20040118534A1 (en) * 2002-12-19 2004-06-24 Anderson Ralph Lee Low formaldehyde creping composition and product and process incorporating same
ES2873925T3 (en) * 2002-12-20 2021-11-04 Procter & Gamble Plush laminated band
CN100579495C (en) * 2002-12-20 2010-01-13 宝洁公司 Fixable tufted laminate
US20040121121A1 (en) * 2002-12-23 2004-06-24 Kimberly -Clark Worldwide, Inc. Entangled fabrics containing an apertured nonwoven web
US6964726B2 (en) * 2002-12-26 2005-11-15 Kimberly-Clark Worldwide, Inc. Absorbent webs including highly textured surface
US20050054999A1 (en) * 2003-09-08 2005-03-10 Kimberly-Clark Worldwide, Inc. Nonwoven fabric laminate that reduces particle migration
US7872168B2 (en) 2003-10-31 2011-01-18 Kimberely-Clark Worldwide, Inc. Stretchable absorbent article
US20050148264A1 (en) * 2003-12-30 2005-07-07 Varona Eugenio G. Bimodal pore size nonwoven web and wiper
US20050148981A1 (en) 2003-12-30 2005-07-07 Price Cindy L. Customizable absorbent article with extensible layers
US20050148262A1 (en) * 2003-12-30 2005-07-07 Varona Eugenio G. Wet wipe with low liquid add-on
US7754050B2 (en) * 2004-06-21 2010-07-13 The Procter + Gamble Company Fibrous structures comprising a tuft
US7579062B2 (en) * 2004-06-21 2009-08-25 The Procter & Gamble Company Hydroxyl polymer web structures comprising a tuft
US20060099871A1 (en) * 2004-11-05 2006-05-11 Kimberly-Clark Worldwide, Inc. Reinforced elastic fiberous web
US20070010153A1 (en) * 2005-07-11 2007-01-11 Shaffer Lori A Cleanroom wiper
US20070010148A1 (en) * 2005-07-11 2007-01-11 Shaffer Lori A Cleanroom wiper
US20070049153A1 (en) * 2005-08-31 2007-03-01 Dunbar Charlene H Textured wiper material with multi-modal pore size distribution
US7803244B2 (en) 2006-08-31 2010-09-28 Kimberly-Clark Worldwide, Inc. Nonwoven composite containing an apertured elastic film
US8044257B2 (en) * 2006-10-30 2011-10-25 Kimberly-Clark Worldwide, Inc. Absorbent article containing lateral flow assay device
US8012761B2 (en) 2006-12-14 2011-09-06 Kimberly-Clark Worldwide, Inc. Detection of formaldehyde in urine samples
US7951127B2 (en) 2006-12-15 2011-05-31 Kimberly-Clark Worldwide, Inc. Composite bodyside liner
US7846383B2 (en) 2006-12-15 2010-12-07 Kimberly-Clark Worldwide, Inc. Lateral flow assay device and absorbent article containing same
US7935207B2 (en) 2007-03-05 2011-05-03 Procter And Gamble Company Absorbent core for disposable absorbent article
US8502013B2 (en) 2007-03-05 2013-08-06 The Procter And Gamble Company Disposable absorbent article
US8043272B2 (en) * 2007-04-30 2011-10-25 Kimberly-Clark Worldwide, Inc. Collection and testing of infant urine using an absorbent article
US20080269707A1 (en) * 2007-04-30 2008-10-30 Kimberly-Clark Worldwide, Inc. Lateral Flow Device for Attachment to an Absorbent Article
US8901366B2 (en) * 2007-12-14 2014-12-02 Kimberly Clark Worldwide, Inc. Urine volume hydration test devices
US9103796B2 (en) * 2007-12-14 2015-08-11 Kimberly-Clark Worldwide, Inc. Multi-layered devices for analyte detection
US8227658B2 (en) * 2007-12-14 2012-07-24 Kimberly-Clark Worldwide, Inc Film formed from a blend of biodegradable aliphatic-aromatic copolyesters
US8134042B2 (en) * 2007-12-14 2012-03-13 Kimberly-Clark Worldwide, Inc. Wetness sensors
US20090157024A1 (en) * 2007-12-14 2009-06-18 Kimberly-Clark Worldwide, Inc. Hydration Test Devices
US8287677B2 (en) 2008-01-31 2012-10-16 Kimberly-Clark Worldwide, Inc. Printable elastic composite
US8222476B2 (en) 2008-10-31 2012-07-17 Kimberly-Clark Worldwide, Inc. Absorbent articles with impending leakage sensors
US20100145294A1 (en) * 2008-12-05 2010-06-10 Xuedong Song Three-dimensional vertical hydration/dehydration sensor
US8623292B2 (en) 2010-08-17 2014-01-07 Kimberly-Clark Worldwide, Inc. Dehydration sensors with ion-responsive and charged polymeric surfactants
US8506755B2 (en) * 2010-12-28 2013-08-13 Kimberly-Clark Worldwide, Inc Creped tissue product with enhanced retention capacity
EP2847384B1 (en) 2012-05-08 2017-06-21 The Procter and Gamble Company Fibrous structures and methods for making same
CN102805459A (en) * 2012-08-21 2012-12-05 杭州三信织造有限公司 Ultra-thin lint-free adherent buckle belt and manufacturing method thereof
MX2015016236A (en) 2013-06-12 2016-03-01 Kimberly Clark Co Pore initiation technique.
WO2014199269A1 (en) 2013-06-12 2014-12-18 Kimberly-Clark Worldwide, Inc. Porous polyolefin fibers
JP2016521785A (en) 2013-06-12 2016-07-25 キンバリー クラーク ワールドワイド インコーポレイテッド Polymer material with multimode pore size distribution
KR102166747B1 (en) 2013-06-12 2020-10-16 킴벌리-클라크 월드와이드, 인크. Polymeric material for use in thermal insulation
WO2014199270A1 (en) 2013-06-12 2014-12-18 Kimberly-Clark Worldwide, Inc. Absorbent article containing a porous polyolefin film
WO2015019202A1 (en) 2013-08-09 2015-02-12 Kimberly-Clark Worldwide, Inc. Technique for selectively controlling the porosity of a polymeric material
AU2014304179B2 (en) 2013-08-09 2017-08-17 Kimberly-Clark Worldwide, Inc. Anisotropic polymeric material
BR112016011370B1 (en) 2013-11-20 2022-02-08 Kimberly-Clark Worldwide, Inc NON-WOVEN COMPOSITE, MULTI-LAYER LAMINATED, AND ABSORBENT ARTICLE
US10946117B2 (en) 2013-11-20 2021-03-16 Kimberly-Clark Worldwide, Inc. Absorbent article containing a soft and durable backsheet
KR102342026B1 (en) 2014-01-31 2021-12-22 킴벌리-클라크 월드와이드, 인크. Nanocomposite packaging film
MX355934B (en) 2014-01-31 2018-05-04 Kimberly Clark Co Stiff nanocomposite film for use in an absorbent article.
MX2016009275A (en) 2014-01-31 2016-10-07 Kimberly Clark Co Thin nanocomposite film for use in an absorbent article.
US8899318B1 (en) 2014-04-24 2014-12-02 Ronald C. Parsons Applying an aggregate to expandable tubular
SG11201609508RA (en) 2014-06-06 2016-12-29 Kimberly Clark Co Thermoformed article formed from a porous polymeric sheet
EP3152348B1 (en) 2014-06-06 2020-08-05 Kimberly-Clark Worldwide, Inc. Hollow porous fibers
MX2017005149A (en) 2014-11-18 2017-08-08 Kimberly Clark Co Soft and durable nonwoven web.
WO2016085712A1 (en) 2014-11-26 2016-06-02 Kimberly-Clark Worldwide, Inc. Annealed porous polyolefin material
AU2015353884B2 (en) 2014-11-26 2020-07-02 Kimberly-Clark Worldwide, Inc. Biaxially stretched porous film
MX2017006786A (en) 2014-12-19 2017-09-05 Kimberly Clark Co Fine hollow fibers having a high void fraction.
AU2015380470A1 (en) 2015-01-30 2017-08-10 Kimberly-Clark Worldwide, Inc. Absorbent article package with reduced noise
CN107205871B (en) 2015-01-30 2019-11-29 金伯利-克拉克环球有限公司 The film with reduced noise for absorbent article
KR102587532B1 (en) 2015-02-27 2023-10-11 킴벌리-클라크 월드와이드, 인크. Absorbent Article Leakage Evaluation System
CN108291346B (en) 2015-12-02 2021-05-11 金伯利-克拉克环球有限公司 Improved acquisition distribution laminate
US10640890B2 (en) 2015-12-11 2020-05-05 Kimberly-Clark Worldwide, Inc. Multi-stage drawing technique for forming porous fibers
AU2016368453B2 (en) 2015-12-11 2021-10-28 Kimberly-Clark Worldwide, Inc. Method for forming porous fibers
JP2019524307A (en) 2016-08-08 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Loop material sheet, method and apparatus for forming the same
CN110177583B (en) 2017-01-31 2022-06-24 金伯利-克拉克环球有限公司 Porous polyester material
KR102556244B1 (en) 2017-01-31 2023-07-18 킴벌리-클라크 월드와이드, 인크. polymeric substances
DE112018000359T5 (en) 2017-02-28 2019-10-02 Kimberly-Clark Worldwide, Inc. TECHNIQUE FOR TRAINING POROUS FIBERS
MX2019010970A (en) 2017-04-05 2019-12-16 Kimberly Clark Co Garment for detecting absorbent article leakage and methods of detecting absorbent article leakage utilizing the same.
WO2019023065A1 (en) 2017-07-28 2019-01-31 Kimberly-Clark Worldwide, Inc. Feminine care absorbent article containing nanoporous superabsorbent particles
JP7219270B2 (en) 2017-10-09 2023-02-07 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Aqueous binder composition
CN111201275B (en) 2017-10-09 2022-07-01 欧文斯科宁知识产权资产有限公司 Aqueous adhesive composition
AU2018429346A1 (en) 2018-06-27 2021-01-14 Kimberly-Clark Worldwide, Inc. Nanoporous superabsorbent particles
EP3941404B1 (en) * 2019-03-18 2024-04-03 The Procter & Gamble Company Forming belts used to produce shaped nonwovens that exhibit high visual resolution
EP3941408A1 (en) 2019-03-18 2022-01-26 The Procter & Gamble Company Shaped nonwovens that exhibit high visual resolution
US11813833B2 (en) 2019-12-09 2023-11-14 Owens Corning Intellectual Capital, Llc Fiberglass insulation product

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668054A (en) 1970-03-31 1972-06-06 Kimberly Clark Co High bulk corrugated nonwoven fabric
US3687754A (en) 1968-10-23 1972-08-29 Kimberly Clark Co Method of manufacturing an elastic nonwoven fabric
US3694867A (en) 1970-08-05 1972-10-03 Kimberly Clark Co Separable clasp containing high-loft, non woven fabric
US3705065A (en) 1970-10-05 1972-12-05 Kimberly Clark Co Method of producing crushed high-loft,nonwoven material,including card and breaker frame blending
US3802817A (en) 1969-10-01 1974-04-09 Asahi Chemical Ind Apparatus for producing non-woven fleeces
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US3879257A (en) 1973-04-30 1975-04-22 Scott Paper Co Absorbent unitary laminate-like fibrous webs and method for producing them
US3881490A (en) 1973-12-20 1975-05-06 Kimberly Clark Co Thin, flexible absorbent pads
US3949128A (en) * 1972-08-22 1976-04-06 Kimberly-Clark Corporation Product and process for producing a stretchable nonwoven material from a spot bonded continuous filament web
US4125659A (en) * 1976-06-01 1978-11-14 American Can Company Patterned creping of fibrous products
US4127637A (en) * 1975-03-13 1978-11-28 Scott Paper Co. Method of manufacturing a dry-formed, embossed adhesively bonded, nonwoven fibrous sheet
US4158594A (en) 1970-04-13 1979-06-19 Scott Paper Company Bonded, differentially creped, fibrous webs and method and apparatus for making same
EP0064853A1 (en) 1981-05-04 1982-11-17 Scott Paper Company Non woven fabric and method of making same
US4810556A (en) 1986-09-29 1989-03-07 Mitsui Petrochemical Industries, Ltd. Very soft polyolefin spunbonded nonwoven fabric
US4892557A (en) 1986-10-27 1990-01-09 Burlington Industries, Inc. Process for forming crepe fabrics and for temporarily stabilizing high twist filament yarn in the manufacture of such fabrics
US5102724A (en) 1987-06-10 1992-04-07 Kanebo, Ltd. Two-way stretch fabric and method for the preparation thereof
US5108827A (en) 1989-04-28 1992-04-28 Fiberweb North America, Inc. Strong nonwoven fabrics from engineered multiconstituent fibers
US5108820A (en) 1989-04-25 1992-04-28 Mitsui Petrochemical Industries, Ltd. Soft nonwoven fabric of filaments
US5270107A (en) 1992-04-16 1993-12-14 Fiberweb North America High loft nonwoven fabrics and method for producing same
EP0586924A1 (en) 1992-08-21 1994-03-16 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5336552A (en) 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
US5468796A (en) 1994-08-17 1995-11-21 Kimberly-Clark Corporation Creeping chemical composition and method of use
US5543202A (en) 1994-03-14 1996-08-06 Kimberly-Clark Corporation Process for producing a crimp-bonded fibrous cellulosic laminate
US5614281A (en) 1995-11-29 1997-03-25 Kimberly-Clark Corporation Creped nonwoven laminate loop fastening material for mechanical fastening systems
US5623888A (en) 1993-04-22 1997-04-29 E. I. Du Pont De Nemours And Company Bulky, stable nonwoven fabric
WO1997019808A1 (en) 1995-11-29 1997-06-05 Kimberly-Clark Worldwide, Inc. Creped hydroentangled nonwoven laminate and process for making

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000237A (en) * 1973-04-30 1976-12-28 Scott Paper Company Method for producing a soft, absorbent, unitary, laminate-like fibrous web with delaminating strength
US4326000A (en) * 1973-04-30 1982-04-20 Scott Paper Company Soft, absorbent, unitary, laminate-like fibrous web
US5669900A (en) * 1993-11-03 1997-09-23 Kimberly-Clark Worldwide, Inc. Spunbond loop material for hook and loop fastening systems
US5846232A (en) * 1995-12-20 1998-12-08 Kimberly-Clark Worldwide, Inc. Absorbent article containing extensible zones
US5728081A (en) * 1996-07-16 1998-03-17 Fibertech Group, Inc. Absorbent composite article having fluid acquisition sub-layer

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687754A (en) 1968-10-23 1972-08-29 Kimberly Clark Co Method of manufacturing an elastic nonwoven fabric
US3720554A (en) 1968-10-23 1973-03-13 Kimberly Clark Co Method of manufacturing high-loft, nonwoven fabric
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US3802817A (en) 1969-10-01 1974-04-09 Asahi Chemical Ind Apparatus for producing non-woven fleeces
US3668054A (en) 1970-03-31 1972-06-06 Kimberly Clark Co High bulk corrugated nonwoven fabric
US4158594A (en) 1970-04-13 1979-06-19 Scott Paper Company Bonded, differentially creped, fibrous webs and method and apparatus for making same
US3694867A (en) 1970-08-05 1972-10-03 Kimberly Clark Co Separable clasp containing high-loft, non woven fabric
US3705065A (en) 1970-10-05 1972-12-05 Kimberly Clark Co Method of producing crushed high-loft,nonwoven material,including card and breaker frame blending
US3949128A (en) * 1972-08-22 1976-04-06 Kimberly-Clark Corporation Product and process for producing a stretchable nonwoven material from a spot bonded continuous filament web
US3879257A (en) 1973-04-30 1975-04-22 Scott Paper Co Absorbent unitary laminate-like fibrous webs and method for producing them
US3881490A (en) 1973-12-20 1975-05-06 Kimberly Clark Co Thin, flexible absorbent pads
US4127637A (en) * 1975-03-13 1978-11-28 Scott Paper Co. Method of manufacturing a dry-formed, embossed adhesively bonded, nonwoven fibrous sheet
US4125659A (en) * 1976-06-01 1978-11-14 American Can Company Patterned creping of fibrous products
US4422892A (en) * 1981-05-04 1983-12-27 Scott Paper Company Method of making a bonded corrugated nonwoven fabric and product made thereby
EP0064853A1 (en) 1981-05-04 1982-11-17 Scott Paper Company Non woven fabric and method of making same
US4810556A (en) 1986-09-29 1989-03-07 Mitsui Petrochemical Industries, Ltd. Very soft polyolefin spunbonded nonwoven fabric
US4892557A (en) 1986-10-27 1990-01-09 Burlington Industries, Inc. Process for forming crepe fabrics and for temporarily stabilizing high twist filament yarn in the manufacture of such fabrics
US5102724A (en) 1987-06-10 1992-04-07 Kanebo, Ltd. Two-way stretch fabric and method for the preparation thereof
US5108820A (en) 1989-04-25 1992-04-28 Mitsui Petrochemical Industries, Ltd. Soft nonwoven fabric of filaments
US5108827A (en) 1989-04-28 1992-04-28 Fiberweb North America, Inc. Strong nonwoven fabrics from engineered multiconstituent fibers
US5270107A (en) 1992-04-16 1993-12-14 Fiberweb North America High loft nonwoven fabrics and method for producing same
EP0586924A1 (en) 1992-08-21 1994-03-16 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5382400A (en) 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5336552A (en) 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
US5623888A (en) 1993-04-22 1997-04-29 E. I. Du Pont De Nemours And Company Bulky, stable nonwoven fabric
US5543202A (en) 1994-03-14 1996-08-06 Kimberly-Clark Corporation Process for producing a crimp-bonded fibrous cellulosic laminate
US5468796A (en) 1994-08-17 1995-11-21 Kimberly-Clark Corporation Creeping chemical composition and method of use
US5614281A (en) 1995-11-29 1997-03-25 Kimberly-Clark Corporation Creped nonwoven laminate loop fastening material for mechanical fastening systems
WO1997019808A1 (en) 1995-11-29 1997-06-05 Kimberly-Clark Worldwide, Inc. Creped hydroentangled nonwoven laminate and process for making

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"A refined method to evaluate diapers for effectiveness in reducing skin hydration using the adult forearm"; Frank J. Akin, Jac T. Lemmen, Dena L. Bozarth, Martin J. Garofalo and Gary L. Grove; Skin Research and Technology 1997:3: 173-176.
Capillary Sorption Equilibria in Fiber Masses by A.A. Burgeni and C. Kapur, Textile Research Journal, vol. 37 pp. 356-366, (1967).
Polymer Blends and Composites by John A. Manson and Leslie H. Sperling, Copyright 1976, by Plenum Press, a division of Plenum Publishing Corporation of New York, IBSN 0-306-30831-2, pp. 273-277.

Cited By (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060102037A1 (en) * 1999-05-28 2006-05-18 Velcro Industries B.V., A Netherlands Corporation Hook-engageable fastener sheets, and methods and articles of manufacture
US8500940B2 (en) * 1999-05-28 2013-08-06 Velcro Industries B.V. Hook-engageable fastener sheets, and methods and articles of manufacture
US6673980B1 (en) * 1999-07-16 2004-01-06 Kimberly-Clark Worldwide, Inc. Absorbent product with creped nonwoven dampness inhibitor
US6663611B2 (en) 1999-09-28 2003-12-16 Kimberly-Clark Worldwide, Inc. Breathable diaper with low to moderately breathable inner laminate and more breathable outer cover
US20070190878A1 (en) * 2000-02-24 2007-08-16 The Procter & Gamble Company Cleaning sheets comprising a polymeric additive to improve particulate pick-up minimize residue left on surfaces and cleaning implements for use with cleaning sheets
US20020022108A1 (en) * 2000-03-14 2002-02-21 Krantz K. Theodor Hook and loop fastening
US7048818B2 (en) * 2000-03-14 2006-05-23 Velcro Industries B.V. Hook and loop fastening
US6797226B2 (en) 2000-10-10 2004-09-28 Kimberly-Clark Worldwide, Inc. Process of making microcreped wipers
US20020134493A1 (en) * 2000-10-10 2002-09-26 Kimberly-Clark Worldwide, Inc. Microcreped wipers
US20030208171A1 (en) * 2000-10-27 2003-11-06 Georgia Lynn Zehner Absorbent article with self-forming seals
US6982231B1 (en) 2000-10-27 2006-01-03 Kimberly-Clark Worldwide, Inc. Elastomeric, breathable laminate with enhanced breathability upon extension
US6914018B1 (en) * 2000-10-27 2005-07-05 Kimberly-Clark Worldwide, Inc. Biaxial stretch, breathable laminate with cloth-like aesthetics and method for making same
US20020052590A1 (en) * 2000-10-27 2002-05-02 Zehner Georgia Lynn Independence of components in absorbent articles
US6623837B2 (en) 2000-12-27 2003-09-23 Kimberly-Clark Worldwide, Inc. Biaxially extendible material
WO2002091871A1 (en) * 2001-05-11 2002-11-21 Aplix Inc. Non-woven loop-forming material
US20040048768A1 (en) * 2001-10-12 2004-03-11 Clark James W. Antimicrobially-treated fabrics
US6712121B2 (en) 2001-10-12 2004-03-30 Kimberly-Clark Worldwide, Inc. Antimicrobially-treated fabrics
WO2003054273A1 (en) * 2001-12-20 2003-07-03 Kimberly-Clark Worldwide, Inc. Method for producing creped nonwoven webs
US20030194932A1 (en) * 2001-12-20 2003-10-16 Clark James W. Antimicrobial pre-moistened wipers
US7838447B2 (en) 2001-12-20 2010-11-23 Kimberly-Clark Worldwide, Inc. Antimicrobial pre-moistened wipers
US20030118776A1 (en) * 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Entangled fabrics
US20030119412A1 (en) * 2001-12-20 2003-06-26 Sayovitz John Joseph Method for producing creped nonwoven webs
WO2003054269A1 (en) * 2001-12-20 2003-07-03 Kimberly-Clark Worldwide, Inc. Method for creping nonwoven webs
US6835264B2 (en) 2001-12-20 2004-12-28 Kimberly-Clark Worldwide, Inc. Method for producing creped nonwoven webs
US7862550B2 (en) 2001-12-31 2011-01-04 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US8007485B2 (en) 2001-12-31 2011-08-30 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
WO2003057121A1 (en) * 2001-12-31 2003-07-17 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US20030125704A1 (en) * 2001-12-31 2003-07-03 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US20030125706A1 (en) * 2001-12-31 2003-07-03 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US20050267437A1 (en) * 2001-12-31 2005-12-01 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US8211080B2 (en) 2001-12-31 2012-07-03 Kimberly-Clark Worldwide, Inc. Absorbent article with improved fastening system and method of fastening thereof
AU2002359486B2 (en) * 2001-12-31 2007-10-11 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US20080119817A1 (en) * 2001-12-31 2008-05-22 Kimberly-Clark Worldwide, Inc. Absorbent article with improved fastening system and method of fastening thereof
US20090131895A1 (en) * 2001-12-31 2009-05-21 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US6953452B2 (en) 2001-12-31 2005-10-11 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US20030125703A1 (en) * 2001-12-31 2003-07-03 Kimberly-Clark Worldwide, Inc. Mechanical fastening system for an absorbent article
US20030148691A1 (en) * 2002-01-30 2003-08-07 Pelham Matthew C. Adhesive materials and articles containing the same
WO2003064153A1 (en) * 2002-01-30 2003-08-07 Jentex Corporation Adhesive materials and articles containing the same
US7691760B2 (en) 2002-03-08 2010-04-06 3M Innovative Properties Company Wipe
US20060141881A1 (en) * 2002-03-08 2006-06-29 3M Innovative Properties Company Wipe
US20040005457A1 (en) * 2002-07-03 2004-01-08 Kimberly-Clark Worldwide, Inc. Methods of improving the softness of fibers and nonwoven webs and fibers and nonwoven webs having improved softness
US20040121688A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Flexible activated carbon substrates
US20050245160A1 (en) * 2002-12-23 2005-11-03 Anderson Ralph L Entangled fabrics containing staple fibers
US20040121681A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Absorbent articles containing an activated carbon substrate
US20040121693A1 (en) * 2002-12-23 2004-06-24 Anderson Ralph Lee Entangled fabric wipers for oil and grease absorbency
US20040121689A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Entangled fabrics containing staple fibers
US20040122387A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Absorbent articles that include a stretchable substrate having odor control properties
US20040127873A1 (en) * 2002-12-31 2004-07-01 Varona Eugenio Go Absorbent article including porous separation layer with capillary gradient
US7815995B2 (en) 2003-03-03 2010-10-19 Kimberly-Clark Worldwide, Inc. Textured fabrics applied with a treatment composition
US20040175556A1 (en) * 2003-03-03 2004-09-09 Kimberly-Clark Worldwide, Inc. Textured fabrics applied with a treatment composition
WO2005045118A1 (en) * 2003-11-11 2005-05-19 Kolon Industries, Inc A cleansing fabrics, and a process of preparing the same
KR100880785B1 (en) * 2003-11-12 2009-02-02 트레데가르 필름 프로덕츠 코포레이션 Composite elastic web
US7194789B2 (en) 2003-12-23 2007-03-27 Kimberly-Clark Worldwide, Inc. Abraded nonwoven composite fabrics
US7645353B2 (en) 2003-12-23 2010-01-12 Kimberly-Clark Worldwide, Inc. Ultrasonically laminated multi-ply fabrics
US20050136776A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Soft and bulky composite fabrics
US20050136778A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc . Ultrasonically laminated multi-ply fabrics
US20070134337A1 (en) * 2003-12-23 2007-06-14 Kimberly-Clark Worldwide, Inc. Bacteria binding products
US20050142331A1 (en) * 2003-12-31 2005-06-30 Kimberly-Clark Worldwide, Inc. Nonwovens having reduced poisson ratio
US20070286987A1 (en) * 2003-12-31 2007-12-13 Anderson Ralph L Nonwovens Having Reduced Poisson Ratio
US7252870B2 (en) 2003-12-31 2007-08-07 Kimberly-Clark Worldwide, Inc. Nonwovens having reduced Poisson ratio
US20110118416A1 (en) * 2004-03-17 2011-05-19 Arriola Daniel J Catalyst Composition Comprising Shuttling Agent for Ethylene Multi-Block Copolymer Formation
US8211982B2 (en) 2004-03-17 2012-07-03 Dow Global Technologies Llc Functionalized ethylene/α-olefin interpolymer compositions
US20060211819A1 (en) * 2004-03-17 2006-09-21 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/alpha-olefins and flexible molded articles made therefrom
US20070010616A1 (en) * 2004-03-17 2007-01-11 Dow Global Technologies Inc. Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers
US9352537B2 (en) 2004-03-17 2016-05-31 Dow Global Technologies Llc Compositions of ethylene/α-olefin multi-block interpolymer suitable for films
US9243090B2 (en) 2004-03-17 2016-01-26 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
US8816006B2 (en) 2004-03-17 2014-08-26 Dow Global Technologies Llc Compositions of ethylene/α-olefin multi-block interpolymer suitable for films
US20060199896A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Viscosity index improver for lubricant compositions
US8785551B2 (en) 2004-03-17 2014-07-22 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
US20060199910A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Thermoplastic vulcanizate comprising interpolymers of ethylene alpha-olefins
US8710143B2 (en) 2004-03-17 2014-04-29 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
US8609779B2 (en) 2004-03-17 2013-12-17 Dow Global Technologies Llc Functionalized ethylene/alpha-olefin interpolymer compositions
US8318864B2 (en) 2004-03-17 2012-11-27 Dow Global Technologies Llc Functionalized ethylene/α-olefin interpolymer compositions
US20070167578A1 (en) * 2004-03-17 2007-07-19 Arriola Daniel J Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
US20060198983A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Three dimensional random looped structures made from interpolymers of ethylene/alpha-olefins and uses thereof
US20060199887A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Filled polymer compositions made from interpolymers of ethylene/a-olefins and uses thereof
US20070219334A1 (en) * 2004-03-17 2007-09-20 Dow Global Technologies Inc. Propylene/Alpha-Olefins Block Interpolymers
US20060199911A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Cap liners, closures and gaskets from multi-block polymers
US8273838B2 (en) 2004-03-17 2012-09-25 Dow Global Technologies Llc Propylene/α-olefins block interpolymers
US20060199914A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Functionalized ethylene/alpha-olefin interpolymer compositions
US20060199030A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Compositions of ethylene/alpha-olefin multi-block interpolymer for blown films with high hot tack
US8198374B2 (en) 2004-03-17 2012-06-12 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
US20060199931A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Fibers made from copolymers of ethylene/alpha-olefins
US8067319B2 (en) 2004-03-17 2011-11-29 Dow Global Technologies Llc Fibers made from copolymers of ethylene/α-olefins
US20110152437A1 (en) * 2004-03-17 2011-06-23 Harris William J Functionalized Ethylene/a-Olefin Interpolymer Compositions
US20110144240A1 (en) * 2004-03-17 2011-06-16 Harris William J Functionalized Ethylene/Alpha-Olefin Interpolymer Compositions
US7951882B2 (en) 2004-03-17 2011-05-31 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
US20110124818A1 (en) * 2004-03-17 2011-05-26 Arriola Daniel J Catalyst Composition Comprising Shuttling Agent for Ethylene Multi-Block Copolymer Formation
US7897689B2 (en) 2004-03-17 2011-03-01 Dow Global Technologies Inc. Functionalized ethylene/α-olefin interpolymer compositions
US7863379B2 (en) 2004-03-17 2011-01-04 Dow Global Technologies Inc. Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers
US20080234435A1 (en) * 2004-03-17 2008-09-25 Dow Global Technologies Inc Compositions of ethylene/alpha-olefin multi-block interpolymer for elastic films and laminates
US7858706B2 (en) 2004-03-17 2010-12-28 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
US7842770B2 (en) 2004-03-17 2010-11-30 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for blown films with high hot tack
US20060199744A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Low molecular weight ethylene/alpha-olefin interpolymer as base lubricant oils
US20080311812A1 (en) * 2004-03-17 2008-12-18 Arriola Daniel J Catalyst Composition Comprising Shuttling Agent for Higher Olefin Multi-Block Copolymer Formation
US20100279571A1 (en) * 2004-03-17 2010-11-04 Poon Benjamin C Fibers Made From Copolymers of Ethylene/A-Olefins
US20060199906A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/alpha-olefin with improved compatibility
US20060199872A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Foams made from interpolymers of ethylene/alpha-olefins
US7803728B2 (en) 2004-03-17 2010-09-28 Dow Global Technologies Inc. Fibers made from copolymers of ethylene/α-olefins
US7795321B2 (en) 2004-03-17 2010-09-14 Dow Global Technologies Inc. Rheology modification of interpolymers of ethylene/α-olefins and articles made therefrom
US7741397B2 (en) 2004-03-17 2010-06-22 Dow Global Technologies, Inc. Filled polymer compositions made from interpolymers of ethylene/α-olefins and uses thereof
US7732052B2 (en) 2004-03-17 2010-06-08 Dow Global Technologies Inc. Compositions of ethylene/alpha-olefin multi-block interpolymer for elastic films and laminates
US7714071B2 (en) 2004-03-17 2010-05-11 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/α-olefins and flexible molded articles made therefrom
US20060199930A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Ethylene/alpha-olefins block interpolymers
US20060199912A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Compositions of ethylene/alpha-olefin multi-block interpolymer suitable for films
US7687442B2 (en) 2004-03-17 2010-03-30 Dow Global Technologies Inc. Low molecular weight ethylene/α-olefin interpolymer as base lubricant oils
US7671106B2 (en) 2004-03-17 2010-03-02 Dow Global Technologies Inc. Cap liners, closures and gaskets from multi-block polymers
US7671131B2 (en) 2004-03-17 2010-03-02 Dow Global Technologies Inc. Interpolymers of ethylene/α-olefins blends and profiles and gaskets made therefrom
US7666918B2 (en) 2004-03-17 2010-02-23 Dow Global Technologies, Inc. Foams made from interpolymers of ethylene/α-olefins
US7579408B2 (en) 2004-03-17 2009-08-25 Dow Global Technologies Inc. Thermoplastic vulcanizate comprising interpolymers of ethylene/α-olefins
US7582716B2 (en) 2004-03-17 2009-09-01 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for blown films with high hot tack
US7662881B2 (en) 2004-03-17 2010-02-16 Dow Global Technologies Inc. Viscosity index improver for lubricant compositions
US7622529B2 (en) 2004-03-17 2009-11-24 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/alpha-olefin with improved compatibility
US7622179B2 (en) * 2004-03-17 2009-11-24 Dow Global Technologies Inc. Three dimensional random looped structures made from interpolymers of ethylene/α-olefins and uses thereof
US20090324914A1 (en) * 2004-03-17 2009-12-31 Dow Global Technologies Inc. Compositions of ethylene / alpha-olefin multi-block interpolymer for blown films with high hot tack
US20060199908A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Rheology modification of interpolymers of ethylene/alpha-olefins and articles made therefrom
US20050208260A1 (en) * 2004-03-22 2005-09-22 Georg Baldauf Laminate material for hook-and-loop closures
US7527848B2 (en) * 2004-03-22 2009-05-05 Nordenia Deutschland Gronau Gmbh Laminate material for hook-and-loop closures
US20050244211A1 (en) * 2004-04-30 2005-11-03 Brunner Michael S Activatable cleaning products
US20050244212A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Foam generating article
US7476047B2 (en) 2004-04-30 2009-01-13 Kimberly-Clark Worldwide, Inc. Activatable cleaning products
US20060068167A1 (en) * 2004-09-27 2006-03-30 Kimberly-Clark Worldwide, Inc. Creped electret nonwoven wiper
US7846530B2 (en) 2004-09-27 2010-12-07 Kimberly-Clark Worldwide, Inc. Creped electret nonwoven wiper
US20060148357A1 (en) * 2004-12-30 2006-07-06 Baratian Stephen A Elastic laminate having topography
US7737061B2 (en) 2005-03-17 2010-06-15 Dow Global Technologies Inc. Compositions of ethylene/alpha-olefin multi-block interpolymer for elastic films and laminates
US20090105417A1 (en) * 2005-03-17 2009-04-23 Walton Kim L Polymer Blends from Interpolymers of Ethylene/Alpha-Olefin with Improved Compatibility
US7947367B2 (en) 2005-03-17 2011-05-24 Dow Global Technologies Llc Fibers made from copolymers of ethylene/α-olefins
US8084537B2 (en) 2005-03-17 2011-12-27 Dow Global Technologies Llc Polymer blends from interpolymers of ethylene/α-olefin with improved compatibility
US20090042472A1 (en) * 2005-03-17 2009-02-12 Poon Benjamin C Fibers Made from Copolymers of Ethylene/Alpha-Olefins
US20080281037A1 (en) * 2005-03-17 2008-11-13 Karjala Teresa P Adhesive and Marking Compositions Made From Interpolymers of Ethylene/Alpha-Olefins
US7989543B2 (en) 2005-03-17 2011-08-02 Dow Global Technologies Llc Adhesive and marking compositions made from interpolymers of ethylene/α-olefins
US7604623B2 (en) 2005-08-30 2009-10-20 Kimberly-Clark Worldwide, Inc. Fluid applicator with a press activated pouch
US20070048062A1 (en) * 2005-08-30 2007-03-01 Kimberly-Clark Worldwide, Inc. Fluid applicator with a press activated pouch
US20070048063A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Fluid applicator with a pull tab activated pouch
US7565987B2 (en) 2005-08-31 2009-07-28 Kimberly-Clark Worldwide, Inc. Pull tab activated sealed packet
US7575384B2 (en) 2005-08-31 2009-08-18 Kimberly-Clark Worldwide, Inc. Fluid applicator with a pull tab activated pouch
US20070045341A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Pull tab activated sealed packet
US8415434B2 (en) 2005-09-15 2013-04-09 Dow Global Technologies Llc Catalytic olefin block copolymers via polymerizable shuttling agent
US7858707B2 (en) 2005-09-15 2010-12-28 Dow Global Technologies Inc. Catalytic olefin block copolymers via polymerizable shuttling agent
US20080275189A1 (en) * 2005-09-15 2008-11-06 Dow Global Technologies Inc. Control of Polymer Architecture and Molecular Weight Distribution Via Multi-Centered Shuttling Agent
US20090163667A1 (en) * 2005-09-15 2009-06-25 Dow Global Technologies Inc. Catalytic olefin block copolymers via polymerizable shuttling agent
US7947787B2 (en) 2005-09-15 2011-05-24 Dow Global Technologies Llc Control of polymer architecture and molecular weight distribution via multi-centered shuttling agent
US20090068427A1 (en) * 2005-10-26 2009-03-12 Dow Global Technologies Inc. Multi-layer, elastic articles
US8969495B2 (en) 2005-12-09 2015-03-03 Dow Global Technologies Llc Processes of controlling molecular weight distribution in ethylene/α-olefin compositions
US8153243B2 (en) 2005-12-09 2012-04-10 Dow Global Technologies Llc Interpolymers suitable for multilayer films
US20070135575A1 (en) * 2005-12-09 2007-06-14 Dow Global Technologies Inc. Processes of Controlling Molecular Weight Distribution in Ethylene/Alpha-Olefin Compositions
US8475933B2 (en) 2005-12-09 2013-07-02 Dow Global Technologies Llc Interpolymers suitable for multilayer films
US8362162B2 (en) 2005-12-09 2013-01-29 Dow Global Technologies Llc Processes of controlling molecular weight distribution in ethylene/alpha-olefin compositions
US20070275219A1 (en) * 2005-12-09 2007-11-29 Dow Global Technologies Inc. Interpolymers Suitable for Multilayer Films
US20070141130A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Wound or surgical dressing
US20070141934A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Nonwoven webs containing bacteriostatic compositions and methods of making the same
US7985209B2 (en) * 2005-12-15 2011-07-26 Kimberly-Clark Worldwide, Inc. Wound or surgical dressing
US20070142262A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Bacteria capturing treatment for fibrous webs
US20080081854A1 (en) * 2006-09-06 2008-04-03 Dow Global Technologies Inc. Fibers and Knit Fabrics Comprising Olefin Block Interpolymers
US20080076313A1 (en) * 2006-09-26 2008-03-27 David Uitenbroek Wipe and methods for manufacturing and using a wipe
US7776770B2 (en) 2006-11-30 2010-08-17 Dow Global Technologies Inc. Molded fabric articles of olefin block interpolymers
US7928022B2 (en) 2006-11-30 2011-04-19 Dow Global Technologies Llc Olefin block compositions for heavy weight stretch fabrics
US7842627B2 (en) 2006-11-30 2010-11-30 Dow Global Technologies Inc. Olefin block compositions for stretch fabrics with wrinkle resistance
US20080176473A1 (en) * 2006-11-30 2008-07-24 Dow Global Technologies Inc. Molded fabric articles of olefin block interpolymers
US20080299857A1 (en) * 2006-11-30 2008-12-04 Dow Global Technologies Inc. Olefin block compositions for heavy weight stretch fabrics
US20080145267A1 (en) * 2006-12-15 2008-06-19 Kimberly-Clark Worldwide, Inc. Delivery of an odor control agent through the use of a presaturated wipe
US20080141437A1 (en) * 2006-12-15 2008-06-19 Kimberly-Clark Wordwide, Inc. Self warming mask
WO2008075233A1 (en) 2006-12-15 2008-06-26 Kimberly-Clark Worldwide, Inc. Delivery of an odor control agent through the use of a premoistened wipe
US8066956B2 (en) 2006-12-15 2011-11-29 Kimberly-Clark Worldwide, Inc. Delivery of an odor control agent through the use of a presaturated wipe
US7707655B2 (en) 2006-12-15 2010-05-04 Kimberly-Clark Worldwide, Inc. Self warming mask
US20080184498A1 (en) * 2007-01-16 2008-08-07 Dow Global Technologies Inc. Colorfast fabrics and garments of olefin block compositions
US20080182473A1 (en) * 2007-01-16 2008-07-31 Dow Global Technologies Inc. Stretch fabrics and garments of olefin block polymers
US20080171167A1 (en) * 2007-01-16 2008-07-17 Dow Global Technologies Inc. Cone dyed yarns of olefin block compositions
US20090068436A1 (en) * 2007-07-09 2009-03-12 Dow Global Technologies Inc. Olefin block interpolymer composition suitable for fibers
US20090105374A1 (en) * 2007-09-28 2009-04-23 Dow Global Technologies Inc. Thermoplastic olefin composition with improved heat distortion temperature
US9102128B2 (en) 2007-10-22 2015-08-11 Dow Global Technologies Llc Multilayer films
US20090104424A1 (en) * 2007-10-22 2009-04-23 Dow Global Technologies Inc. Multilayer films
US8124827B2 (en) 2007-12-07 2012-02-28 The Procter And Gamble Company Absorbent core
US20090209932A1 (en) * 2007-12-07 2009-08-20 Maurizio Tamburro Absorbent core
US8871232B2 (en) 2007-12-13 2014-10-28 Kimberly-Clark Worldwide, Inc. Self-indicating wipe for removing bacteria from a surface
US9327477B2 (en) 2008-01-24 2016-05-03 Clopay Plastic Products Company, Inc. Elastomeric materials
US9669606B2 (en) 2008-01-24 2017-06-06 Clopay Plastic Products Company, Inc. Elastomeric materials
US9217094B2 (en) 2011-07-28 2015-12-22 The Board Of Trustees Of The University Of Illinois Superhydrophobic compositions
US9364859B2 (en) 2011-07-28 2016-06-14 Kimberly-Clark Worldwide, Inc. Superhydrophobic surfaces
USD752350S1 (en) * 2013-01-15 2016-03-29 Air China Limited Fabric
US10005917B2 (en) 2013-04-30 2018-06-26 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
US9803100B2 (en) 2013-04-30 2017-10-31 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic surfaces
US10792194B2 (en) 2014-08-26 2020-10-06 Curt G. Joa, Inc. Apparatus and methods for securing elastic to a carrier web
US11690767B2 (en) 2014-08-26 2023-07-04 Curt G. Joa, Inc. Apparatus and methods for securing elastic to a carrier web
US10533096B2 (en) 2015-02-27 2020-01-14 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
US11701268B2 (en) 2018-01-29 2023-07-18 Curt G. Joa, Inc. Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product
EP3594396A1 (en) 2018-07-10 2020-01-15 Karlsruher Institut für Technologie Process for producing micro- and nano-structured fiber-based substrates
US11850128B2 (en) 2018-09-27 2023-12-26 The Procter And Gamble Company Garment-like absorbent articles
US11918442B2 (en) 2018-09-27 2024-03-05 The Procter & Gamble Company Garment-like absorbent articles
US11925538B2 (en) 2019-01-07 2024-03-12 Curt G. Joa, Inc. Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product
US11744744B2 (en) 2019-09-05 2023-09-05 Curt G. Joa, Inc. Curved elastic with entrapment

Also Published As

Publication number Publication date
AR014002A1 (en) 2001-01-31
ZA989937B (en) 1999-05-13
US6150002A (en) 2000-11-21
KR20010031639A (en) 2001-04-16
CO5050279A1 (en) 2001-06-27
KR100491289B1 (en) 2005-05-24

Similar Documents

Publication Publication Date Title
US6197404B1 (en) Creped nonwoven materials
EP1024721B1 (en) Creped nonwoven materials and liner
US4753834A (en) Nonwoven web with improved softness
US9694556B2 (en) Tufted fibrous web
US4588630A (en) Apertured fusible fabrics
US7838099B2 (en) Looped nonwoven web
US7008685B2 (en) Laminated material and method for its production
US7045029B2 (en) Structured material and method of producing the same
EP1765241B1 (en) Looped nonwoven web
CA2086033A1 (en) Laminated non-woven fabric and process for producing the same
JP2541524B2 (en) Multilayer nonwoven
JP2541523B2 (en) Nonwoven webs with improved softness
US6592697B2 (en) Method of producing post-crepe stabilized material
JPH0967748A (en) Bulky nonwoven fabric and its production
JPH04100920A (en) Composite type thermal-adhesive fiber and nonwoven fabric using the same fiber
AU2006209374B2 (en) Tufted fibrous web
JPH03286726A (en) Wiping cloth for makeup

Legal Events

Date Code Title Description
AS Assignment

Owner name: KIMBERLY-CLARK WORLDWIDE, INC., WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GO VARONA, EUGENIO;REEL/FRAME:009056/0729

Effective date: 19980310

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20090306