US7013965B2 - Organic matrices containing nanomaterials to enhance bulk thermal conductivity - Google Patents

Organic matrices containing nanomaterials to enhance bulk thermal conductivity Download PDF

Info

Publication number
US7013965B2
US7013965B2 US10/426,485 US42648503A US7013965B2 US 7013965 B2 US7013965 B2 US 7013965B2 US 42648503 A US42648503 A US 42648503A US 7013965 B2 US7013965 B2 US 7013965B2
Authority
US
United States
Prior art keywords
resins
thermal interface
nanoparticles
interface composition
functionalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/426,485
Other versions
US20050161210A1 (en
Inventor
Hong Zhong
Slawomir Rubinsztajn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US10/426,485 priority Critical patent/US7013965B2/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RUBINSZTAJN, SLAWOMIR, ZHONG, HONG
Publication of US20050161210A1 publication Critical patent/US20050161210A1/en
Application granted granted Critical
Publication of US7013965B2 publication Critical patent/US7013965B2/en
Assigned to JPMORGAN CHASE BANK, N.A. AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A. AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: MOMENTIVE PERFORMANCE MATERIALS GMBH & CO. KG, MOMENTIVE PERFORMANCE MATERIALS HOLDINGS INC., MOMENTIVE PERFORMANCE MATERIALS JAPAN HOLDINGS GK
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL TRUSTEE reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL TRUSTEE SECURITY AGREEMENT Assignors: JUNIPER BOND HOLDINGS I LLC, JUNIPER BOND HOLDINGS II LLC, JUNIPER BOND HOLDINGS III LLC, JUNIPER BOND HOLDINGS IV LLC, MOMENTIVE PERFORMANCE MATERIALS CHINA SPV INC., MOMENTIVE PERFORMANCE MATERIALS QUARTZ, INC., MOMENTIVE PERFORMANCE MATERIALS SOUTH AMERICA INC., MOMENTIVE PERFORMANCE MATERIALS USA INC., MOMENTIVE PERFORMANCE MATERIALS WORLDWIDE INC., MOMENTIVE PERFORMANCE MATERIALS, INC., MPM SILICONES, LLC
Assigned to BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE reassignment BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE SECURITY AGREEMENT Assignors: MOMENTIVE PERFORMANCE MATERIALS INC
Assigned to BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE reassignment BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE PATENT SECURITY AGREEMENT Assignors: MOMENTIVE PERFORMANCE MATERIALS INC.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY AGREEMENT Assignors: MOMENTIVE PERFORMANCE MATERIALS INC.
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOMENTIVE PERFORMANCE MATERIALS INC.
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOMENTIVE PERFORMANCE MATERIALS INC.
Assigned to MOMENTIVE PERFORMANCE MATERIALS INC. reassignment MOMENTIVE PERFORMANCE MATERIALS INC. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.
Assigned to MOMENTIVE PERFORMANCE MATERIALS INC. reassignment MOMENTIVE PERFORMANCE MATERIALS INC. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.
Assigned to BOKF, NA, AS SUCCESSOR COLLATERAL AGENT reassignment BOKF, NA, AS SUCCESSOR COLLATERAL AGENT NOTICE OF CHANGE OF COLLATERAL AGENT - ASSIGNMENT OF SECURITY INTEREST IN INTELLECTUAL PROPERTY - SECOND LIEN Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. AS COLLATERAL AGENT
Assigned to BOKF, NA, AS SUCCESSOR COLLATERAL AGENT reassignment BOKF, NA, AS SUCCESSOR COLLATERAL AGENT NOTICE OF CHANGE OF COLLATERAL AGENT - ASSIGNMENT OF SECURITY INTEREST IN INTELLECTUAL PROPERTY Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. AS COLLATERAL AGENT
Assigned to MOMENTIVE PERFORMANCE MATERIALS INC. reassignment MOMENTIVE PERFORMANCE MATERIALS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BOKF, NA
Assigned to MOMENTIVE PERFORMANCE MATERIALS INC. reassignment MOMENTIVE PERFORMANCE MATERIALS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BOKF, NA
Assigned to MOMENTIVE PERFORMANCE MATERIALS INC. reassignment MOMENTIVE PERFORMANCE MATERIALS INC. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to MOMENTIVE PERFORMANCE MATERIALS INC., MOMENTIVE PERFORMANCE MATERIALS GMBH & CO KG, MOMENTIVE PERFORMANCE MATERIALS JAPAN HOLDINGS GK reassignment MOMENTIVE PERFORMANCE MATERIALS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Assigned to MOMENTIVE PERFORMANCE MATERIALS INC. reassignment MOMENTIVE PERFORMANCE MATERIALS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/006Heat conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present disclosure relates to use of nanoparticles to increase the thermal conductivity of polymer matrices.
  • thermal management techniques are often implemented within electrical circuits and systems to facilitate heat removal during periods of operation.
  • a heat sink is a structure formed from a high thermal conductivity material (e.g., typically a metal) that is mechanically coupled to an electrical component to aid in heat removal.
  • a heat sink can include a piece of metal (e.g., aluminum or copper) that is in contact with the electrical circuit during operation. Heat from the electrical circuit flows into the heat sink through the mechanical interface between the units.
  • a heat sink is mechanically coupled to the heat producing component during operation by positioning a flat surface of the heat sink against a flat surface of the electrical component and holding the heat sink in place using some form of adhesive or fastener.
  • the surface of the heat sink and the surface of the component will rarely be perfectly planar or smooth, so air gaps will generally exist between the surfaces.
  • the existence of air gaps between two opposing surfaces reduces the ability to transfer heat through the interface between the surfaces.
  • these air gaps reduce the effectiveness and value of the heat sink as a thermal management device.
  • polymeric compositions have been developed for placement between the heat transfer surfaces to decrease the thermal resistance there between.
  • the bulk thermal conductivity of current thermal interface materials is largely limited by the low thermal conductivity of polymer matrices ( ⁇ 0.2 W/m-K for polymers typically found in thermal interface materials or TIMs).
  • the maximum bulk thermal conductivity attainable by electrically insulating polymer composites is only 20–30 times that of the base polymer matrices. This number changes little regardless of the filler type, once the thermal conductivity of the filler exceeds 100 times that of the base polymer matrix.
  • thermal conductivity of polymeric materials is low compared to the thermal conductivity of the heat sink, resulting in an inefficient transfer of heat from the heat producing component to the heat sink.
  • effective heat transfer capability is further reduced by interfacial imperfections due to 1) micro or nanovoids, and 2) a filler-depleted layer caused by filler settlement or the inability of micro-sized filler to penetrate into surface irregularities that are smaller than the filler size.
  • Thermal interface compositions in accordance with this disclosure contain nanoparticles which are functionalized with at least one organo-functional group blended into an organic matrix.
  • the thermal interface composition also includes micron sized filler particles.
  • Electrical components are also described herein which include a heat producing component and a heat sink or heat spreader each in contact with a thermal interface composition that contains organo-functionalized nanoparticles blended with an organic matrix.
  • Methods of increasing the efficiency of heat transfer in accordance with this disclosure include the steps of interposing a thermal interface composition that contains organo-functionalized nanoparticles blended with an organic matrix between a heat producing component and a heat sink or heat spreader.
  • FIG. 1 is a schematic representation of an electrical component in accordance with this disclosure.
  • the present invention provides a thermal interface composition containing functionalized nanoparticles blended with an organic matrix.
  • the nanoparticles may be either convalently linked into the matrices, or dispersed through the matrices via non-covalent forces.
  • Matrices containing nanoparticles in accordance with this disclosure will have higher thermal conductivities than matrices without nanoparticles.
  • the functionalized nanoparticles thus increase the bulk thermal conductivity of the matrix, while maintaining a viscosity that allows easy processing and manipulation.
  • the polymer composites in accordance with certain embodiments described hereinafter composed of micro-sized filler and organic matrices containing nanoparticles can achieve higher thermal conductivity than comparable blend of micro-sized filler and organic matrices alone. This allows a higher maximum attainable bulk thermal conductivity. Furthermore, nanoparticles can penetrate into surface pores and irregularities inaccessible to micro-sized fillers, thereby reducing the effects of interfacial resistance.
  • An increased thermal conductivity in the polymer matrix is also advantageous in reducing interfacial resistance in cases where filler settlement occurs and an ensuing “skin layer” (layer consisting of few to no microfillers) appears.
  • the reduction in heat transfer will be much less severe if the skin layer has higher thermal conductivity than otherwise attainable.
  • a further benefit of incorporation of nanoparticle is that these small particles may prevent or decrease the rate of micron-sized filler settlement, thus reducing the likelihood of the formation of a filler depleted layer in the interface material.
  • nanoparticles that can be functionalized and which has a higher thermal conductivity than the organic matrix can be used to prepare the present compositions.
  • Suitable nanoparticles include but are not limited to colloidal silica, polyhedral oligomeric silsequioxane (“POSS”), nano-sized metal oxides (e.g. alumina, titania, zirconia), nano-sized metal nitrides (e.g. boron nitrides, aluminum nitrides) and nano-metal particles (e.g., silver, gold, or copper nanoparticles).
  • the nanoparticles are organo-functionalized POSS materials or colloidal silica.
  • Colloidal silica exists as a dispersion of submicron-sized silica (SiO 2 ) particles in an aqueous or other solvent medium.
  • the colloidal silica contains up to about 85 weight % of silicon dioxide (SiO 2 ) and typically up to about 80 weight % of silicon dioxide.
  • the particle size of the colloidal silica is typically in a range between about 1 nanometers (“nm”) and about 250 nm, and more typically in a range between about 5 nm and about 150 nm.
  • the nanoparticles are functionalized to improve their compatibility with the organic matrix.
  • the precise chemical nature of the functional groups added to the nanoparticles will thus depend on a variety of factors including the chemical nature of the particular nanoparticles chosen and the chemical makeup of the matrix. Additionally, the functional groups may be reactive, unreactive or a combination of the two.
  • a reactive functional group is one that can react either with the organic matrix in which the nanoparticles are dispersed; or with the mating surfaces on which the final compositions are dispensed. Ensuing chemical reactions will attach nanoparticles through covalent bonds to the organic matrices or the mating surfaces.
  • Suitable functional agents include organoalkoxysilane, organochlorosilane, organo-acetate silane and organosilazanes, containing alkyl, alkenyl, alkynyl, silyl, siloxyl, acrylate, methacrylate, epoxide, aryl, hydride, amino, hydroxyl and other functional groups. Reaction schemes for adding functional groups to nanoparticles are within the purview of those skilled in the art.
  • the functionalized nanoparticles can advantageously be prepared as a dispersion in a compatible solvent to facilitate combination with the organic matrix. Particularly useful dispersions have a solids content of between 20 and 50 percent, however any solids content that allows the dispersion to be pourable or flowable can be used.
  • the functionalized nanoparticles are organofunctionalized POSS materials or colloidal silica functionalized with an organoalkoxysilane.
  • Organoalkoxysilanes used to functionalize the colloidal silica are included within the formula: (R 1 ) a Si(OR 2 ) 4-a
  • the functionalization of colloidal silica can be performed by adding the organoalkoxysilane functionalization agent to a commercially available aqueous dispersion of colloidal silica in the weight ratio described above to which an aliphatic alcohol has been added.
  • the resulting composition comprising the functionalized colloidal silica and the organoalkoxysilane functionalization agent in the aliphatic alcohol is defined herein as a pre-dispersion.
  • Suitable aliphatic alcohols include, but are not limited to, isopropanol, t-butanol, 2-butanol, 1-methoxy-2-propanol and combinations thereof.
  • the amount of aliphatic alcohol is typically in a range between about 1 fold and about 25 fold of the amount of silicon dioxide present in the aqueous colloidal silica pre-dispersion.
  • stabilizers such as 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (i.e. 4-hydroxy TEMPO) can be added to the pre-dispersion.
  • small amounts of acid or base can be added to adjust the pH of the transparent pre-dispersion.
  • the resulting pre-dispersion is typically heated in a range between about 50° C. and about 140° C. for a period in a range between about 1 hour and about 5 hours to facilitate the condensation of alkoxysilanes with OH group on the surface of colloidal silica, and to achieve functionalization of colloidal silica.
  • the functionalized nanoparticles are combined with an organic matrix to form the present compositions.
  • the organic matrix can be any polymeric material. Suitable organic matrices include, but are not limited to polydimethylsiloxane resins, epoxy resins, acrylate resins, other organo-functionalized polysiloxane resins, polyimide resins, fluorocarbon resins, benzocyclobutene resins, fluorinated polyallyl ethers, polyamide resins, polyimidoamide resins, phenol resol resins, aromatic polyester resins, polyphenylene ether (PPE) resins, bismaleimide triazine resins, fluororesins and any other polymeric systems known to those skilled in the art.
  • PPE polyphenylene ether
  • Preferred curable thermoset matrices are acrylate resins, epoxy resins, polydimethyl siloxane resins and other organo-functionalized polysiloxane resins that can form cross-linking networks via free radical polymerization, atom transfer, radical polymerization ring-opening polymerization, ring-opening metathesis polymerization, anionic polymerization, cationic polymerization or any other method known to those skilled in the art.
  • Suitable curable silicone resins include, for example, the addition curable and condensation curable matrice as described in “Chemistry and Technology of Silicone”, Noll, W.; Academic Press 1968.
  • the resulting thermal interface composition can be formulated as a gel, grease or phase change materials that can hold components together during fabrication and thermal transfer during operation of the device.
  • the organic matrix is functionalized to improve compatibility with the functionalized nanoparticles.
  • Suitable aliphatic solvents include, but are not limited to, isopropanol, 1-methoxy-2-propanol, 1-methoxy-2-propyl acetate, toluene, xylene, n-methyl pyrolidone, dichlorobenzene and combinations thereof.
  • the manner in which the functionalized nanoparticles are combined with the organic matrix is not critical. Where the nanoparticles are formulated into a pre-dispersion, the organic matrix and optional solvent can be added to the pre-dispersion.
  • the composition can be treated with acid or base or with ion exchange resins to remove acidic or basic impurities.
  • This composition can advantageously be subjected to vacuum in a range between about 0.5 Torr and about 250 Torr and at a temperature in a range between about 20° C. and about 140° C. to substantially remove any low boiling components such as solvent, residual water, and combinations thereof.
  • the result is a dispersion of functionalized nanoparticles in an organic matrix, herein referred to as a final dispersion.
  • Substantial removal of low boiling components is defined herein as removal of at least about 90% of the total amount of low boiling components.
  • the pre-dispersion or the final dispersion of the functionalized colloidal silica can be further functionalized.
  • Low boiling components are at least partially removed and subsequently, an appropriate capping agent that will react with residual hydroxyl functionality of the functionalized colloidal silica is added in an amount in a range between about 0.05 times and about 10 times the amount of silicon dioxide present in the pre-dispersion or final dispersion.
  • Partial removal of low boiling components as used herein refers to removal of at least about 10% of the total amount of low boiling components, and preferably, at least about 50% of the total amount of low boiling components.
  • Capped functionalized colloidal silica is defined as having at least 10%, preferably at least 20%, more preferably at least 35% of the free hydroxyl groups present in the total composition functionalized by reaction with a capping agent. Capping the functionalized colloidal silica effectively can improve room temperature stability of the final dispersion in certain cases.
  • Preferred capping agents include hydroxyl reactive materials such as silylating agents.
  • a silylating agent include, but are not limited to, hexamethyldisilazane (HMDZ), tetramethyldisilazane, divinyltetramethyldisilazane, diphenyltetramethyldisilazane, N-(trimethylsilyl)diethylamine, 1-(trimethylsilyl)imidazole, trimethylchlorosilane, pentamethylchlorodisiloxane, pentamethyldisiloxane, and combinations thereof.
  • HMDZ hexamethyldisilazane
  • tetramethyldisilazane divinyltetramethyldisilazane
  • diphenyltetramethyldisilazane diphenyltetramethyldisilazane
  • N-(trimethylsilyl)diethylamine 1-(trimethylsilyl
  • the resultant mixture is then filtered. If the pre-dispersion was reacted with the capping agent, at least one organic matrix composition is added to form the final dispersion.
  • the mixture of the functionalized colloidal silica in the organic material is concentrated at a pressure in a range between about 0.5 Torr and about 250 Torr to form the final concentrated dispersion. During this process, lower boiling components such as solvent, residual water, byproducts of the capping agent and hydroxyl groups, excess capping agent, and combinations thereof are substantially removed.
  • the total final dispersion composition can be blended with a micron-sized filler.
  • the addition of micron-sized fillers can increase the thermal conductivity of the composition substantially. Accordingly, the effect of the functionalized nanoparticles on the thermal conductivity of the polymeric matrix is multiplied greatly by the addition of the micro-fillers.
  • the addition of 80–90 wt % of a suitable micro-filler can raise the thermal conductivity to 2.0 W/m-K.
  • the initial thermal conductivity of the polymeric matrix can be raised even to 0.3 W/m-K and higher, the addition of the same amount of micron-sized-filler will raise the thermal conductivity to approximately 3 W/m-K, a fifty percent increase compared to compositions not containing the nanoparticles.
  • the addition of micro-particles alone to reach a thermal conductivity of 3 W/m-K in many instances will result in a composition that is very viscous, not easily processable and which will not flow as necessary for preparation of electronic devices, especially flip/chip devices.
  • Using nanoparticles in accordance with the present disclosure provides increased thermal conductivity while maintaining sufficiently low viscosities to allow easy processing.
  • the fillers are micron-sized thermally conductive materials, and can be reinforcing or non-reinforcing.
  • Fillers can include, for example, fumed silica, fused silica, finely divided quartz powder, amorphous silicas, carbon black, graphite, diamond, metals (such as silver, gold, aluminum, and copper), silicone carbide, aluminum hydrates, metal nitrides (such as boron nitride, and aluminum nitrides), metal oxides (such as aluminum oxide, zinc oxide, titanium dioxide or iron oxide) and combinations thereof.
  • the filler is typically present in a range between about 10 weight % and about 95 weight %, based on the weight of the total final composition. More typically, the filler is present in a range between about 20 weight % and about 90 weight %, based on the weight of the total final dispersion composition.
  • nanoparticles in the present compositions also improves the stability of the composition when micro-fillers are present.
  • the nanoparticles have been found to inhibit settling of the micro-particles to the bottom of a container containing the composition compared to compositions containing the same amount of micro-filler, but no nanoparticles.
  • a curing catalyst can be added to the final dispersion to accelerate curing of the final composition.
  • the catalyst is present in a range between about 10 parts per million (ppm) and about 10% by weight of the total curable composition.
  • cationic curing catalysts include, but are not limited to, onium catalysts such as bisaryliodonium salts (e.g. bis(dodecylphenyl)iodonium hexafluoroantimonate, (octyloxyphenyl, phenyl)iodonium hexafluoroantimonate, bisaryliodonium tetrakis(pentafluorophenyl)borate), triarylsulphonium salts, and combinations thereof.
  • onium catalysts such as bisaryliodonium salts (e.g. bis(dodecylphenyl)iodonium hexafluoroantimonate, (octyloxyphenyl, phenyl
  • radical curing catalysts include, but are not limited to various peroxides (e.g. tert-butyl peroxy benzoate), azo compounds (e.g. 2–2′-azo bis-isobutyl nitrile) and nitroxides (e.g. 4-hydroxy TEMPO).
  • the preferred catalysts are various Group 8–10 transition metals (e.g., ruthenium, rhodium, platinum) complexes.
  • the preferred catalysts are organo-tin or organo-titanium complexes. Detailed structures of the catalysts are known to those skilled in the art.
  • an effective amount of a free-radical generating compound can be added as the optional reagent such as aromatic pinacols, benzoinalkyl ethers, organic peroxides, and combinations thereof.
  • the free radical generating compound facilitates decomposition of onium salt at lower temperature.
  • curing catalysts may be selected from, but are not limited to, amines, alkyl-substituted imidazole, imidazolium salts, phosphines, metal salts, triphenyl phosphine, alkyl-imidazole, and aluminum acetyl acetonate and combinations thereof.
  • curing agents such as multi-function amines can be optionally incorporated as cross-linking agents.
  • Exemplary amines may include, but are not limited to ethylene diamine, propylene diamine, 1,2-phenylenediamine, 1,3-phenylene diamine, 1,4-phenylene diamine, and any other compounds containing 2 or more amino groups.
  • exemplary anhydride curing agents typically include methylhexahydrophthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride, bicyclo[2.2.1] hept-5-ene-2,3-dicarboxylic anhydride, methylbicyclo [2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, phthalic anhydride, pyromellitic dianhydride, hexahydrophthalic anhydride, dodecenylsuccinic anhydride, dichloromaleic anhydride, chlorendic anhydride, tetrachlorophthalic anhydride, and the like.
  • Combinations comprising at least two anhydride curing agents may also be used.
  • Illustrative examples are described in “Chemistry and Technology of the Epoxy Resins” B. Ellis (Ed.) Chapman Hall, New York, 1993 and in “Epoxy Resins Chemistry and Technology”, edited by C. A. May, Marcel Dekker, New York, 2nd edition, 1988.
  • cross-linking agents such as multi-functional Si—H containing silicone fluids can be incorporated, so that the Si—H to vinyl molar ratio in the final formulation ranges between 0.5–5.0 and preferably between 0.9–2.0.
  • inhibitors can be optionally included to modify the curing profile and achieve the desired shelf life.
  • Inhibitors include but are not limited to phosphine compounds, amine compounds, isocyanurates, alkynyl alcohol, maleic esters and any other compounds known to those skilled in the art.
  • a reactive organic diluents may also be added to the total curable composition to decrease the viscosity of the composition.
  • reactive diluents include, but are not limited to, 3-ethyl-3-hydroxymethyl-oxetane, dodecylglycidyl ether, 4-vinyl-1-cyclohexane diepoxide, di(Beta-(3,4-epoxycyclohexyl)ethyl)-tetramethyldisiloxane, various dienes (e.g., 1,5-hexadiene), alkenes (e.g., n-octene), alkenes, styrenic compounds, acrylate or methacrylate containing compounds (e.g., methacryloxypropyltrimethoxysilane) and combinations thereof.
  • An unreactive diluent may also be added to the composition to decrease the viscosity of the formulation.
  • unreactive diluants include, but are not limited to, low boiling aliphatic hydrocarbons (e.g., octane), toluene, ethylacetate, butyl acetate, 1-methoxy propyl acetate, ethylene glycol, dimethyl ether, and combinations thereof.
  • Adhesion promoters can also be employed with the total final dispersion such as trialkoxyorganosilanes (e.g., ⁇ -aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, bis(trimethoxysilylpropyl)fumarate) used in an effective amount which is typically in a range between about 0.01% by weight and about 2% by weight of the total final dispersion.
  • trialkoxyorganosilanes e.g., ⁇ -aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, bis(trimethoxysilylpropyl)fumarate
  • Flame retardants can be optionally used in the total final dispersion in a range between about 0.5 weight % and about 20 weight % relative to the amount of the total final dispersion.
  • flame retardants include phosphoramides, triphenyl phosphate (TPP), resorcinol diphosphate (RDP), bisphenol-a-disphosphate (BPA-DP), organic phosphine oxides, halogenated epoxy resin (tetrabromobisphenol A), metal oxide, metal hydroxides, and combinations thereof.
  • the final dispersion composition can be hand-mixed or mixed by standard mixing equipment such as dough mixers, chain can mixers, planetary mixers, twin screw extruder, two or three roll mill and the like.
  • standard mixing equipment such as dough mixers, chain can mixers, planetary mixers, twin screw extruder, two or three roll mill and the like.
  • the blending of the dispersion components can be performed in batch, continuous, or semi-continuous mode by any means used by those skilled in the art.
  • the curing process can be performed by any process known to those skilled in the art. Curing can be done by methods such as thermal cure, UV light cure, microwave cure, e-beam cure and combinations thereof. Curing typically occurs at a temperature in a range between about 20° C. and about 250° C., more typically in a range between about 20° C. and about 150° C. Curing typically occurs at a pressure in a range between about 1 atmosphere (“atm”) and about 5 tons pressure per square inch, more typically in a range between about 1 atmosphere and about 100 pounds per square inch (“psi”). In addition, curing may typically occur over a period in a range between about 30 seconds and about 5 hours, and more typically in a range between about 90 seconds and about 60 minutes. Optionally, the cured composition can be post-cured at a temperature in a range between about 100° C. and about 150° C. over a period in a range between about 1 hour and about 4 hours.
  • the present thermal interface compositions reduce the interfacial resistance to heat flow that is inherently present at the surfaces of any two components between which heat is to be transferred, as described, above.
  • the present thermal interface compositions can be used in devices in electronics such as computers, semiconductors, or any device where heat transfer between components is needed. As shown schematically in FIG. 1 , for example, the present thermal interface compositions 2 can be interposed between a semiconductor chip 3 and a heat sink 1 to fill any air gaps and facilitate heat transfer.
  • the layer 2 of the present thermal interface composition can be as thin as 20–150 microns and still provide the desired effect.
  • Application of the present thermal interface compositions may be achieved by any method known in the art. Conventional methods include screen printing, stencil printing, syringe dispensing and pick-and-place equipment.
  • the present compositions can be formed into sheets and cut into any desired shape.
  • the compositions can advantageously be used to for thermal interface pads and positioned between electronic components.
  • a 4.95 g dispersion composition consisted of 31 wt % (wt % based on unfunctionalized colloidal SiO 2 ) methacryloxypropyl-trimethoxysilane (“MAPTMS”) functionalized colloidal SiO 2 (20 nm) acryloxy-terminated polydimethylsiloxanes (Gelest, DMSU22, MW ⁇ 1000–1200). Additionally, 2 g of MAPTMS, 0.13 g of iodonium salt (GE silicones, UV9380c) and 45.6 g of alumina (Showa Denka AS 10) were blended into the dispersion composition. The alumina added was 86.5 wt % of total formulation. The dispersion composition was cured at 120° C.
  • MATMS methacryloxypropyl-trimethoxysilane
  • a dispersion composition was blended of 1.82 g of octakis (dimethylsiloxy-T8-silsequioxane) (T 8 OsiMe2H , Gelest), 0.73 g of 1,5-hexamethyl-trisiloxane (M H DM H GE Silicones), 1.53 g of 1,3-divinyltetramethyldisiloxane (GE Silicone), 1.04 g of vinyl-terminated polydimethylsiloxanes (Gelest, MW 9400) DMSV22, a suitable catalyst and 20 g of alumina (Showa Denka, AS-40 and Sumitomo AA04).
  • the alumina was added in approximately ⁇ 80 wt % of the total formulation.
  • the dispersion composition was cured at 80° C.
  • a dispersion composition was blended containing 7 g of GE Silicone product FCS 100 (containing 40 wt % MAPTMS-functionalized colloidal SiO 2 in 1,6-hexanediol diacrylate), 0.14 g of an iodonium salt (GE silicone, UV9380c) and 43 g of alumina (Showa Denka, AS50 and Sumitomo AA04).
  • the alumina added was 86 wt % of the total formulation.
  • the thermal conductivity of the dispersion was measured and found to be 3.35 W/m-K + / ⁇ 0.20 W/m-K at room temperature and 3.25 W/m-K +/ ⁇ 0.15 at 100° C.
  • cSiO 2 are based cSiO 2 plus functional groups unless otherwise specified.
  • the wt % of the functional groups is between 5–30% of the cSiO2 depending on the particular functionality as well degree of functionalization.
  • Microfillers are alumina of average particle sizes between 10–38 microns.
  • c has an average sample to sample variation of 5–10%.
  • the wt. pts. of cSIO 2 are based on silicone dioxide content alone, and did not take into account of contribution from functional groups.
  • a final dispersion is consisted of 56 wt % phenyltrimethoxysilane functionalized colloidal silica (based on SiO2content and functional groups), 1 wt % of iodonium salt (GE Silicones UV9392c) as a catalyst and 0.5 wt % of benzoyl pinacol (Aldrich) in cycloaliphatic epoxy resin (UVR6105, DOW).
  • the dispersion was cured at 156° C. for 5 minutes, and was measured to have a thermal conductivity of 0.37 W/m-K at 25° C.
  • Typical epoxies without nanoparticles have thermal conductivities of 0.2–0.25 W/m-K at 25° C.
  • a final dispersion consisted of 22 wt % colloidal silica functionalized by phenyltrimethoxysilane and further end-capped by hexamethyldisilazine (HMDZ) in vinyl-terminated polydimethyl-co-diphenyl-siloxanes (GELEST, PDV1625).
  • the final formulation gives a flowable material.
  • the above composition was cured at 150° C. for 1 hour to give a material with bulk thermal conductivity of 0.17 W/m-K.
  • the above composition was cured at 150° C. for 1 hour.
  • the bulk thermal conductivity is 0.17 W/m-K at 25° C., same as Example 5.
  • Example 5 An appropriate amount of the final dispersion as described in Example 5 was dispensed manually via a syringe in an X pattern on an 8 ⁇ 8 mm aluminum coupon. A second aluminum coupon was then placed on top, and the resulting sandwiched structure was placed in an 150° C. oven for 1 hour to complete the cure.
  • the bond-line-thickness for the TIM layer is 16.8 microns.
  • the effective thermal conducitivty of the TIM layer is 0.18 W/m-K at 25° C.
  • the total thermal resistance across the TIM layer is 94 mm 2 -K/W.
  • a similar 3-layer sandwiched structure was built with the formulation described in Example 6.
  • the bond line thickness is 23 microns, and the effective conductivity of the TIM layer is 0.13 W/m-K at 25° C.
  • the total thermal resistance across the TIM layer is 173 mm 2 -K/W.

Abstract

Thermal interface compositions contain nanoparticles blended with a polymer matrix. Such compositions increase the bulk thermal conductivity of the polymer composites as well as decrease thermal interfacial resistances that exist between thermal interface materials and the corresponding mating surfaces. Formulations containing nanoparticles also show less phase separation of micron-sized particles than formulations without nanoparticles.

Description

TECHNICAL FIELD
The present disclosure relates to use of nanoparticles to increase the thermal conductivity of polymer matrices.
BACKGROUND OF THE INVENTION
Many electrical components generate heat during periods of operation. If this heat is not removed from the electrical component in an efficient manner, it will build up. Malfunction or permanent damage to the electrical components may then result. Therefore, thermal management techniques are often implemented within electrical circuits and systems to facilitate heat removal during periods of operation.
Thermal management techniques often involve the use of some form of heat sink to conduct heat away from high temperature areas in an electrical system. A heat sink is a structure formed from a high thermal conductivity material (e.g., typically a metal) that is mechanically coupled to an electrical component to aid in heat removal. In a relatively simple form, a heat sink can include a piece of metal (e.g., aluminum or copper) that is in contact with the electrical circuit during operation. Heat from the electrical circuit flows into the heat sink through the mechanical interface between the units.
In a typical electrical component, a heat sink is mechanically coupled to the heat producing component during operation by positioning a flat surface of the heat sink against a flat surface of the electrical component and holding the heat sink in place using some form of adhesive or fastener. As can be appreciated, the surface of the heat sink and the surface of the component will rarely be perfectly planar or smooth, so air gaps will generally exist between the surfaces. As is generally well known, the existence of air gaps between two opposing surfaces reduces the ability to transfer heat through the interface between the surfaces. Thus, these air gaps reduce the effectiveness and value of the heat sink as a thermal management device. To address this problem, polymeric compositions have been developed for placement between the heat transfer surfaces to decrease the thermal resistance there between. The bulk thermal conductivity of current thermal interface materials is largely limited by the low thermal conductivity of polymer matrices (˜0.2 W/m-K for polymers typically found in thermal interface materials or TIMs). By some estimates (“Thermally Conductive Polymer Compositions,” D. M. Bigg., Polymer Composites, June 1986, Vol. 7, No.3), the maximum bulk thermal conductivity attainable by electrically insulating polymer composites is only 20–30 times that of the base polymer matrices. This number changes little regardless of the filler type, once the thermal conductivity of the filler exceeds 100 times that of the base polymer matrix. Consequently, the thermal conductivity of polymeric materials is low compared to the thermal conductivity of the heat sink, resulting in an inefficient transfer of heat from the heat producing component to the heat sink. In addition, effective heat transfer capability is further reduced by interfacial imperfections due to 1) micro or nanovoids, and 2) a filler-depleted layer caused by filler settlement or the inability of micro-sized filler to penetrate into surface irregularities that are smaller than the filler size.
A need therefore exists for improved compositions to effectively transfer heat between a heat sink and a heat producing component.
SUMMARY
Thermal interface compositions in accordance with this disclosure contain nanoparticles which are functionalized with at least one organo-functional group blended into an organic matrix. In certain embodiments, the thermal interface composition also includes micron sized filler particles.
Electrical components are also described herein which include a heat producing component and a heat sink or heat spreader each in contact with a thermal interface composition that contains organo-functionalized nanoparticles blended with an organic matrix.
Methods of increasing the efficiency of heat transfer in accordance with this disclosure include the steps of interposing a thermal interface composition that contains organo-functionalized nanoparticles blended with an organic matrix between a heat producing component and a heat sink or heat spreader.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a schematic representation of an electrical component in accordance with this disclosure.
DETAILED DESCRIPTION
The present invention provides a thermal interface composition containing functionalized nanoparticles blended with an organic matrix. The nanoparticles may be either convalently linked into the matrices, or dispersed through the matrices via non-covalent forces. Matrices containing nanoparticles in accordance with this disclosure will have higher thermal conductivities than matrices without nanoparticles. The functionalized nanoparticles thus increase the bulk thermal conductivity of the matrix, while maintaining a viscosity that allows easy processing and manipulation.
The polymer composites in accordance with certain embodiments described hereinafter composed of micro-sized filler and organic matrices containing nanoparticles can achieve higher thermal conductivity than comparable blend of micro-sized filler and organic matrices alone. This allows a higher maximum attainable bulk thermal conductivity. Furthermore, nanoparticles can penetrate into surface pores and irregularities inaccessible to micro-sized fillers, thereby reducing the effects of interfacial resistance.
An increased thermal conductivity in the polymer matrix is also advantageous in reducing interfacial resistance in cases where filler settlement occurs and an ensuing “skin layer” (layer consisting of few to no microfillers) appears. The reduction in heat transfer will be much less severe if the skin layer has higher thermal conductivity than otherwise attainable. A further benefit of incorporation of nanoparticle is that these small particles may prevent or decrease the rate of micron-sized filler settlement, thus reducing the likelihood of the formation of a filler depleted layer in the interface material.
Any nanoparticle that can be functionalized and which has a higher thermal conductivity than the organic matrix can be used to prepare the present compositions. Suitable nanoparticles include but are not limited to colloidal silica, polyhedral oligomeric silsequioxane (“POSS”), nano-sized metal oxides (e.g. alumina, titania, zirconia), nano-sized metal nitrides (e.g. boron nitrides, aluminum nitrides) and nano-metal particles (e.g., silver, gold, or copper nanoparticles). In particularly useful embodiments, the nanoparticles are organo-functionalized POSS materials or colloidal silica. Colloidal silica exists as a dispersion of submicron-sized silica (SiO2) particles in an aqueous or other solvent medium. The colloidal silica contains up to about 85 weight % of silicon dioxide (SiO2) and typically up to about 80 weight % of silicon dioxide. The particle size of the colloidal silica is typically in a range between about 1 nanometers (“nm”) and about 250 nm, and more typically in a range between about 5 nm and about 150 nm.
The nanoparticles are functionalized to improve their compatibility with the organic matrix. The precise chemical nature of the functional groups added to the nanoparticles will thus depend on a variety of factors including the chemical nature of the particular nanoparticles chosen and the chemical makeup of the matrix. Additionally, the functional groups may be reactive, unreactive or a combination of the two. A reactive functional group is one that can react either with the organic matrix in which the nanoparticles are dispersed; or with the mating surfaces on which the final compositions are dispensed. Ensuing chemical reactions will attach nanoparticles through covalent bonds to the organic matrices or the mating surfaces. Suitable functional agents include organoalkoxysilane, organochlorosilane, organo-acetate silane and organosilazanes, containing alkyl, alkenyl, alkynyl, silyl, siloxyl, acrylate, methacrylate, epoxide, aryl, hydride, amino, hydroxyl and other functional groups. Reaction schemes for adding functional groups to nanoparticles are within the purview of those skilled in the art. The functionalized nanoparticles can advantageously be prepared as a dispersion in a compatible solvent to facilitate combination with the organic matrix. Particularly useful dispersions have a solids content of between 20 and 50 percent, however any solids content that allows the dispersion to be pourable or flowable can be used.
In particularly useful embodiments, the functionalized nanoparticles are organofunctionalized POSS materials or colloidal silica functionalized with an organoalkoxysilane.
Organoalkoxysilanes used to functionalize the colloidal silica are included within the formula:
(R1)a Si(OR2)4-a
    • where R1 is independently at each occurrence a C1-18 monovalent hydrocarbon radical optionally further functionalized with alkyl acrylate, alkyl methacrylate, epoxide, vinyl, allyl, styrenic, silyl or siloxyl groups, groups, or C6-14 aryl radical; R2 is independently at each occurrence a C1-18 monovalent hydrocarbon radical or a hydrogen radical; and “a” is a whole number equal to 1 to 3 inclusive. Preferably, the organoalkoxysilanes included in the present disclosure are 2-(3,4-epoxy cyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane (MAPTMS), 1-hexenyl triethoxysilane, n-octyltriethoxy silane, n-dodecyl triethoxysilane and 2-(3-vinyl-tetramethyl disiloxyl)-ethyl trimethoxysilane. A combination of functionalities is possible. Typically, the organoalkoxysilane is present in a range between about 2 weight % and about 60 weight % based on the weight of silicon dioxide contained in the colloidal silica. The resulting organofunctionalized colloidal silica can be treated with an acid or base to neutralize the pH. An acid or base, as well as other catalysts promoting condensation of silanol and alkoxysilane groups may also be used to aid the functionalization process. Such catalyst include organo-titanium and organo-tin compounds such as tetrabutyl titanate, titanium isopropoxybis(acetylacetonate), dibutyltin dilaurate, dibutyl-tin diacetate, or combinations thereof.
The functionalization of colloidal silica can be performed by adding the organoalkoxysilane functionalization agent to a commercially available aqueous dispersion of colloidal silica in the weight ratio described above to which an aliphatic alcohol has been added. The resulting composition comprising the functionalized colloidal silica and the organoalkoxysilane functionalization agent in the aliphatic alcohol is defined herein as a pre-dispersion. Suitable aliphatic alcohols include, but are not limited to, isopropanol, t-butanol, 2-butanol, 1-methoxy-2-propanol and combinations thereof. The amount of aliphatic alcohol is typically in a range between about 1 fold and about 25 fold of the amount of silicon dioxide present in the aqueous colloidal silica pre-dispersion. In some cases, stabilizers such as 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (i.e. 4-hydroxy TEMPO) can be added to the pre-dispersion. In some instances, small amounts of acid or base can be added to adjust the pH of the transparent pre-dispersion.
The resulting pre-dispersion is typically heated in a range between about 50° C. and about 140° C. for a period in a range between about 1 hour and about 5 hours to facilitate the condensation of alkoxysilanes with OH group on the surface of colloidal silica, and to achieve functionalization of colloidal silica.
The functionalized nanoparticles are combined with an organic matrix to form the present compositions. The organic matrix can be any polymeric material. Suitable organic matrices include, but are not limited to polydimethylsiloxane resins, epoxy resins, acrylate resins, other organo-functionalized polysiloxane resins, polyimide resins, fluorocarbon resins, benzocyclobutene resins, fluorinated polyallyl ethers, polyamide resins, polyimidoamide resins, phenol resol resins, aromatic polyester resins, polyphenylene ether (PPE) resins, bismaleimide triazine resins, fluororesins and any other polymeric systems known to those skilled in the art. (For common polymers, see “Polymer Handbook:, Branduf, J.; Immergut, E. H; Grulke, Eric A; Wiley Interscience Publication, New York, 4th ed.(1999); “Polymer Data Handbook Mark, James Oxford University Press, New York (1999)). Preferred curable thermoset matrices are acrylate resins, epoxy resins, polydimethyl siloxane resins and other organo-functionalized polysiloxane resins that can form cross-linking networks via free radical polymerization, atom transfer, radical polymerization ring-opening polymerization, ring-opening metathesis polymerization, anionic polymerization, cationic polymerization or any other method known to those skilled in the art. Suitable curable silicone resins include, for example, the addition curable and condensation curable matrice as described in “Chemistry and Technology of Silicone”, Noll, W.; Academic Press 1968. Where the polymer matrix is not a curable polymer, the resulting thermal interface composition can be formulated as a gel, grease or phase change materials that can hold components together during fabrication and thermal transfer during operation of the device. In particularly useful embodiments, the organic matrix is functionalized to improve compatibility with the functionalized nanoparticles.
To facilitate combining the functionalized nanoparticles with the organic matrix, one or more solvents can be optionally added to the composition. Suitable aliphatic solvents include, but are not limited to, isopropanol, 1-methoxy-2-propanol, 1-methoxy-2-propyl acetate, toluene, xylene, n-methyl pyrolidone, dichlorobenzene and combinations thereof.
The manner in which the functionalized nanoparticles are combined with the organic matrix is not critical. Where the nanoparticles are formulated into a pre-dispersion, the organic matrix and optional solvent can be added to the pre-dispersion.
The composition can be treated with acid or base or with ion exchange resins to remove acidic or basic impurities. This composition can advantageously be subjected to vacuum in a range between about 0.5 Torr and about 250 Torr and at a temperature in a range between about 20° C. and about 140° C. to substantially remove any low boiling components such as solvent, residual water, and combinations thereof. The result is a dispersion of functionalized nanoparticles in an organic matrix, herein referred to as a final dispersion. Substantial removal of low boiling components is defined herein as removal of at least about 90% of the total amount of low boiling components.
Optionally, the pre-dispersion or the final dispersion of the functionalized colloidal silica can be further functionalized. Low boiling components are at least partially removed and subsequently, an appropriate capping agent that will react with residual hydroxyl functionality of the functionalized colloidal silica is added in an amount in a range between about 0.05 times and about 10 times the amount of silicon dioxide present in the pre-dispersion or final dispersion. Partial removal of low boiling components as used herein refers to removal of at least about 10% of the total amount of low boiling components, and preferably, at least about 50% of the total amount of low boiling components. Capped functionalized colloidal silica is defined as having at least 10%, preferably at least 20%, more preferably at least 35% of the free hydroxyl groups present in the total composition functionalized by reaction with a capping agent. Capping the functionalized colloidal silica effectively can improve room temperature stability of the final dispersion in certain cases.
Preferred capping agents include hydroxyl reactive materials such as silylating agents. Examples of a silylating agent include, but are not limited to, hexamethyldisilazane (HMDZ), tetramethyldisilazane, divinyltetramethyldisilazane, diphenyltetramethyldisilazane, N-(trimethylsilyl)diethylamine, 1-(trimethylsilyl)imidazole, trimethylchlorosilane, pentamethylchlorodisiloxane, pentamethyldisiloxane, and combinations thereof. The final dispersion is then heated in a range between about 20° C. and about 140° C. for a period of time in a range between about 0.5 hours and about 48 hours. The resultant mixture is then filtered. If the pre-dispersion was reacted with the capping agent, at least one organic matrix composition is added to form the final dispersion. The mixture of the functionalized colloidal silica in the organic material is concentrated at a pressure in a range between about 0.5 Torr and about 250 Torr to form the final concentrated dispersion. During this process, lower boiling components such as solvent, residual water, byproducts of the capping agent and hydroxyl groups, excess capping agent, and combinations thereof are substantially removed.
Optionally, the total final dispersion composition can be blended with a micron-sized filler. The addition of micron-sized fillers can increase the thermal conductivity of the composition substantially. Accordingly, the effect of the functionalized nanoparticles on the thermal conductivity of the polymeric matrix is multiplied greatly by the addition of the micro-fillers. By way of example, if a polymeric matrix has a thermal conductivity of 0.2 W/m-K, the addition of 80–90 wt % of a suitable micro-filler can raise the thermal conductivity to 2.0 W/m-K. However, by adding functionalized nanoparticles in accordance with this disclosure, the initial thermal conductivity of the polymeric matrix can be raised even to 0.3 W/m-K and higher, the addition of the same amount of micron-sized-filler will raise the thermal conductivity to approximately 3 W/m-K, a fifty percent increase compared to compositions not containing the nanoparticles. The addition of micro-particles alone to reach a thermal conductivity of 3 W/m-K in many instances will result in a composition that is very viscous, not easily processable and which will not flow as necessary for preparation of electronic devices, especially flip/chip devices. Using nanoparticles in accordance with the present disclosure on the other hand provides increased thermal conductivity while maintaining sufficiently low viscosities to allow easy processing.
The fillers are micron-sized thermally conductive materials, and can be reinforcing or non-reinforcing. Fillers can include, for example, fumed silica, fused silica, finely divided quartz powder, amorphous silicas, carbon black, graphite, diamond, metals (such as silver, gold, aluminum, and copper), silicone carbide, aluminum hydrates, metal nitrides (such as boron nitride, and aluminum nitrides), metal oxides (such as aluminum oxide, zinc oxide, titanium dioxide or iron oxide) and combinations thereof. When present, the filler is typically present in a range between about 10 weight % and about 95 weight %, based on the weight of the total final composition. More typically, the filler is present in a range between about 20 weight % and about 90 weight %, based on the weight of the total final dispersion composition.
The presence of nanoparticles in the present compositions also improves the stability of the composition when micro-fillers are present. The nanoparticles have been found to inhibit settling of the micro-particles to the bottom of a container containing the composition compared to compositions containing the same amount of micro-filler, but no nanoparticles.
A curing catalyst can be added to the final dispersion to accelerate curing of the final composition. Typically, the catalyst is present in a range between about 10 parts per million (ppm) and about 10% by weight of the total curable composition. Examples of cationic curing catalysts include, but are not limited to, onium catalysts such as bisaryliodonium salts (e.g. bis(dodecylphenyl)iodonium hexafluoroantimonate, (octyloxyphenyl, phenyl)iodonium hexafluoroantimonate, bisaryliodonium tetrakis(pentafluorophenyl)borate), triarylsulphonium salts, and combinations thereof. Examples of radical curing catalysts, include, but are not limited to various peroxides (e.g. tert-butyl peroxy benzoate), azo compounds (e.g. 2–2′-azo bis-isobutyl nitrile) and nitroxides (e.g. 4-hydroxy TEMPO). For additional curable silicone resins, the preferred catalysts are various Group 8–10 transition metals (e.g., ruthenium, rhodium, platinum) complexes. For condesnation curable silicones, the preferred catalysts are organo-tin or organo-titanium complexes. Detailed structures of the catalysts are known to those skilled in the art.
Optionally, for cationic curable matrices, an effective amount of a free-radical generating compound can be added as the optional reagent such as aromatic pinacols, benzoinalkyl ethers, organic peroxides, and combinations thereof. The free radical generating compound facilitates decomposition of onium salt at lower temperature.
For epoxy resins, hardeners such as carboxylic acid-anhydride curing agents and an organic compound containing hydroxyl moiety can be added as optional reagents with the curing catalyst. In these cases, curing catalysts may be selected from, but are not limited to, amines, alkyl-substituted imidazole, imidazolium salts, phosphines, metal salts, triphenyl phosphine, alkyl-imidazole, and aluminum acetyl acetonate and combinations thereof. For expoxy resins, curing agents such as multi-function amines can be optionally incorporated as cross-linking agents. Exemplary amines may include, but are not limited to ethylene diamine, propylene diamine, 1,2-phenylenediamine, 1,3-phenylene diamine, 1,4-phenylene diamine, and any other compounds containing 2 or more amino groups.
For epoxy resins, exemplary anhydride curing agents typically include methylhexahydrophthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride, bicyclo[2.2.1] hept-5-ene-2,3-dicarboxylic anhydride, methylbicyclo [2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, phthalic anhydride, pyromellitic dianhydride, hexahydrophthalic anhydride, dodecenylsuccinic anhydride, dichloromaleic anhydride, chlorendic anhydride, tetrachlorophthalic anhydride, and the like. Combinations comprising at least two anhydride curing agents may also be used. Illustrative examples are described in “Chemistry and Technology of the Epoxy Resins” B. Ellis (Ed.) Chapman Hall, New York, 1993 and in “Epoxy Resins Chemistry and Technology”, edited by C. A. May, Marcel Dekker, New York, 2nd edition, 1988.
For addition curable silicone resins, cross-linking agents such as multi-functional Si—H containing silicone fluids can be incorporated, so that the Si—H to vinyl molar ratio in the final formulation ranges between 0.5–5.0 and preferably between 0.9–2.0.
For addition curable silicone resins, inhibitors can be optionally included to modify the curing profile and achieve the desired shelf life. Inhibitors include but are not limited to phosphine compounds, amine compounds, isocyanurates, alkynyl alcohol, maleic esters and any other compounds known to those skilled in the art.
A reactive organic diluents may also be added to the total curable composition to decrease the viscosity of the composition. Examples of reactive diluents include, but are not limited to, 3-ethyl-3-hydroxymethyl-oxetane, dodecylglycidyl ether, 4-vinyl-1-cyclohexane diepoxide, di(Beta-(3,4-epoxycyclohexyl)ethyl)-tetramethyldisiloxane, various dienes (e.g., 1,5-hexadiene), alkenes (e.g., n-octene), alkenes, styrenic compounds, acrylate or methacrylate containing compounds (e.g., methacryloxypropyltrimethoxysilane) and combinations thereof. An unreactive diluent may also be added to the composition to decrease the viscosity of the formulation. Examples of unreactive diluants include, but are not limited to, low boiling aliphatic hydrocarbons (e.g., octane), toluene, ethylacetate, butyl acetate, 1-methoxy propyl acetate, ethylene glycol, dimethyl ether, and combinations thereof.
Adhesion promoters can also be employed with the total final dispersion such as trialkoxyorganosilanes (e.g., γ-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, bis(trimethoxysilylpropyl)fumarate) used in an effective amount which is typically in a range between about 0.01% by weight and about 2% by weight of the total final dispersion.
Flame retardants can be optionally used in the total final dispersion in a range between about 0.5 weight % and about 20 weight % relative to the amount of the total final dispersion. Examples of flame retardants include phosphoramides, triphenyl phosphate (TPP), resorcinol diphosphate (RDP), bisphenol-a-disphosphate (BPA-DP), organic phosphine oxides, halogenated epoxy resin (tetrabromobisphenol A), metal oxide, metal hydroxides, and combinations thereof.
The final dispersion composition can be hand-mixed or mixed by standard mixing equipment such as dough mixers, chain can mixers, planetary mixers, twin screw extruder, two or three roll mill and the like. The blending of the dispersion components can be performed in batch, continuous, or semi-continuous mode by any means used by those skilled in the art.
The curing process can be performed by any process known to those skilled in the art. Curing can be done by methods such as thermal cure, UV light cure, microwave cure, e-beam cure and combinations thereof. Curing typically occurs at a temperature in a range between about 20° C. and about 250° C., more typically in a range between about 20° C. and about 150° C. Curing typically occurs at a pressure in a range between about 1 atmosphere (“atm”) and about 5 tons pressure per square inch, more typically in a range between about 1 atmosphere and about 100 pounds per square inch (“psi”). In addition, curing may typically occur over a period in a range between about 30 seconds and about 5 hours, and more typically in a range between about 90 seconds and about 60 minutes. Optionally, the cured composition can be post-cured at a temperature in a range between about 100° C. and about 150° C. over a period in a range between about 1 hour and about 4 hours.
The addition of functionalized nanoparticles is used to increase the bulk thermal conductivity of base polymer matrix to provide improved thermal conductivity when placed between any two objects, especially between parts of an electrical component. In addition, the present thermal interface compositions reduce the interfacial resistance to heat flow that is inherently present at the surfaces of any two components between which heat is to be transferred, as described, above. The present thermal interface compositions can be used in devices in electronics such as computers, semiconductors, or any device where heat transfer between components is needed. As shown schematically in FIG. 1, for example, the present thermal interface compositions 2 can be interposed between a semiconductor chip 3 and a heat sink 1 to fill any air gaps and facilitate heat transfer. The layer 2 of the present thermal interface composition can be as thin as 20–150 microns and still provide the desired effect. Application of the present thermal interface compositions may be achieved by any method known in the art. Conventional methods include screen printing, stencil printing, syringe dispensing and pick-and-place equipment.
In another aspect, the present compositions can be formed into sheets and cut into any desired shape. In this embodiment, the compositions can advantageously be used to for thermal interface pads and positioned between electronic components.
Although preferred and other embodiments of the invention have been described herein, further embodiments may be perceived by those skilled in the art without departing from the scope of the invention as defined by the following claims.
EXAMPLE 1
A 4.95 g dispersion composition consisted of 31 wt % (wt % based on unfunctionalized colloidal SiO2) methacryloxypropyl-trimethoxysilane (“MAPTMS”) functionalized colloidal SiO2 (20 nm) acryloxy-terminated polydimethylsiloxanes (Gelest, DMSU22, MW˜1000–1200). Additionally, 2 g of MAPTMS, 0.13 g of iodonium salt (GE silicones, UV9380c) and 45.6 g of alumina (Showa Denka AS 10) were blended into the dispersion composition. The alumina added was 86.5 wt % of total formulation. The dispersion composition was cured at 120° C. The thermal conductivity of the dispersion composition was measured and found to be 2.6 W/m-K+/−0.05 at room temperature and 2.55 W/m-K at 100° C. Comparatively, the thermal conductivity of acrylates alone is approximately ˜1.4–1.9 w/m-K at 100° C. when filled with 86.5 wt % alumina (sized average size=38 microns). See Table 1.
EXAMPLE 2
A dispersion composition was blended of 1.82 g of octakis (dimethylsiloxy-T8-silsequioxane) (T8 OsiMe2H, Gelest), 0.73 g of 1,5-hexamethyl-trisiloxane (MHDMH GE Silicones), 1.53 g of 1,3-divinyltetramethyldisiloxane (GE Silicone), 1.04 g of vinyl-terminated polydimethylsiloxanes (Gelest, MW 9400) DMSV22, a suitable catalyst and 20 g of alumina (Showa Denka, AS-40 and Sumitomo AA04). The alumina was added in approximately ˜80 wt % of the total formulation. The dispersion composition was cured at 80° C. The thermal conductivity of the dispersion composition was measured and found to be 1.99 W/m-K +/−0.15 at room temperature, and 1.70 W/m-K +/−0.10 at 100° C. Comparatively, the thermal conductivity for polydimethylsiloxane (“PDMS”) is approximately 1.00 W/m-K, when filled with 80 wt % alumina (average size=10 μm for AS40 and 0.4 μm for AA04). See, Table 1.
EXAMPLE 3
A dispersion composition was blended containing 7 g of GE Silicone product FCS 100 (containing 40 wt % MAPTMS-functionalized colloidal SiO2 in 1,6-hexanediol diacrylate), 0.14 g of an iodonium salt (GE silicone, UV9380c) and 43 g of alumina (Showa Denka, AS50 and Sumitomo AA04). The alumina added was 86 wt % of the total formulation. The thermal conductivity of the dispersion was measured and found to be 3.35 W/m-K+/−0.20 W/m-K at room temperature and 3.25 W/m-K +/−0.15 at 100° C. Comparatively, the thermal conductivity of acrylates is approximately ˜1.4–1.9 w/m-K at 100° C. when filled with 86.5 wt % alumina (average size=10 μm for AS50 and 0.4 μm for Sumitomo). See, Table 1.
TABLE 1
Thermal
Polymer Matrix (wt. pts) conductivity
Colloidal SiO2 a Micro-fillers (100° C.,
Organic (size) (wt. pts.)b W/m-K)c
78 (acrylates)  22 (20 nm)d 644 2.55
60 (acrylates) 40 (20 nm) 644 3.25
100 (acrylates) 0 644 1.4–1.9
64 (silicones) 36 (POSS.-T8 HSiMe2) 400 1.7
100 (silicones) 0 400 1.0
44 (epoxy) 56 (20 nm) 0 0.37
100 (epoxy) 0 0 0.24
acolloidal SiO2 wt. pts. are based cSiO2 plus functional groups unless otherwise specified. The wt % of the functional groups is between 5–30% of the cSiO2 depending on the particular functionality as well degree of functionalization.
bMicrofillers are alumina of average particle sizes between 10–38 microns.
chas an average sample to sample variation of 5–10%.
dthe wt. pts. of cSIO2 are based on silicone dioxide content alone, and did not take into account of contribution from functional groups.
EXAMPLE 4
A final dispersion is consisted of 56 wt % phenyltrimethoxysilane functionalized colloidal silica (based on SiO2content and functional groups), 1 wt % of iodonium salt (GE Silicones UV9392c) as a catalyst and 0.5 wt % of benzoyl pinacol (Aldrich) in cycloaliphatic epoxy resin (UVR6105, DOW). The dispersion was cured at 156° C. for 5 minutes, and was measured to have a thermal conductivity of 0.37 W/m-K at 25° C. Typical epoxies without nanoparticles have thermal conductivities of 0.2–0.25 W/m-K at 25° C.
EXAMPLE 5
A final dispersion consisted of 22 wt % colloidal silica functionalized by phenyltrimethoxysilane and further end-capped by hexamethyldisilazine (HMDZ) in vinyl-terminated polydimethyl-co-diphenyl-siloxanes (GELEST, PDV1625). The wt % of the colloidal silica plus the condensed functional groups is ˜27%. 5.33 g of this final dispersion was mixed with 0.04 g of a platinum catalyst package ([Pt]=7.5 ppm in the final formulation) and 0.14 g of a polydimethyl-co-methylhydride-siloxanes (GE Silicone, 88466). The final formulation gives a flowable material. The above composition was cured at 150° C. for 1 hour to give a material with bulk thermal conductivity of 0.17 W/m-K.
EXAMPLE 6
A stock solution consisting of 10.06 g vinyl-terminated polydimethyl-co-diphenyl-siloxanes (GELEST, PDV1625), 0.38 g of polydimethyl-co-methylhydride-siloxanes (GE Silicone, 88466), 1.10 g of phenyltrimethoxysilane and 0.10 g of a catalyst package (target ([Pt]=7.5 ppm in the final formulation) was made up. 2.76 g of this stock solution was mixed with 0.44 g of fused silica (Denka, avg size=5 microns) and 0.35 g of doubly treated fumed silica (GE Silicone, 88318). The mixture was a non-flowable thick paste.
The above composition was cured at 150° C. for 1 hour. The bulk thermal conductivity is 0.17 W/m-K at 25° C., same as Example 5.
EXAMPLE 7
An appropriate amount of the final dispersion as described in Example 5 was dispensed manually via a syringe in an X pattern on an 8×8 mm aluminum coupon. A second aluminum coupon was then placed on top, and the resulting sandwiched structure was placed in an 150° C. oven for 1 hour to complete the cure. The bond-line-thickness for the TIM layer is 16.8 microns. The effective thermal conducitivty of the TIM layer is 0.18 W/m-K at 25° C. The total thermal resistance across the TIM layer is 94 mm2-K/W.
A similar 3-layer sandwiched structure was built with the formulation described in Example 6. The bond line thickness is 23 microns, and the effective conductivity of the TIM layer is 0.13 W/m-K at 25° C. The total thermal resistance across the TIM layer is 173 mm2-K/W.
Although preferred and other embodiments of the invention have been described herein, further embodiments may be perceived by those skilled in the art without departing from the scope of the invention as defined by the following claims.

Claims (28)

1. A thermal interface composition comprising a blend of a polymer matrix and nanoparticles, said nanoparticles being selected from the group consisting of colloidal silica and POSS, wherein said composition is thermally conductive.
2. A thermal interface composition as in claim 1, wherein the nanoparticles are organo-functionalized nanoparticles.
3. A thermal interface composition as in claim 2, wherein the organo-functionalized nanoparticles comprise an organoalkoxysilane, vinyl, allyl, styrenic, silyl or siloxyl of the formula (R1)aSi(OR2)4-a, wherein R1 is independently at each occurrence a C1-18 monovalent hydrocarbon radical optionally further functionalized with alkyl acrylate, alkyl methacrylate, epoxide, vinyl, allyl, styrenic, silyl or siloxyl groups or C6-14 aryl radical; R2 is independently at each occurrence a C1-18 monovalent hydrocarbon radical or a hydrogen radical; and “a” is a whole number equal to 1 to 3 inclusive.
4. A thermal interface composition as in claim 3, wherein the organoalkoxysilane is selected from the group consisting of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane, 1-hexenyl triethoxysilane, n-octyl triethoxysilane, n-dodecyl triethoxysilane, 2-(3-vinyl tetramethyl disiloxyl)-ethyl trimethoxy silane and combinations thereof.
5. A thermal interface composition as in claim 1, wherein the polymer matrix comprises a curable polymeric composition.
6. A thermal interface composition as in claim 5, wherein the curable polymeric composition is selected from the group consisting of epoxy resins, acrylate resins, organopolysiloxane resins, polyimide resins, polyimide resins, fluorocarbon resins, benzocyclobutene resins, and fluorinated polyallyl ethers, polyamide resins, polyimidoamide resins, cyanate ester resins, phenol resol resins, aromatic polyester resins, polyphenylene ether (PPE) resins, bismaleimide triazine resins, and fluororesins.
7. A thermal interface composition as in claim 1, further comprising a micron-sized filler.
8. A thermal interface composition as in claim 7 wherein the micron-sized filler is selected from the group consisting of fumed silica, fused silica, finely divided quartz powder, amorphous silicas, carbon black, graphite, diamond, metals, silicone carbide, aluminum hydrates, metal nitrides, metal oxides, and combinations thereof.
9. A thermal interface composition comprising a blend of a curable polymer matrix and organo-functionalized nanoparticles selected from the group consisting of organo-functionalized colloidal silica and organo-functionalized POSS.
10. A thermal interface composition as in claim 9, wherein the organo-functionalized nanoparticles comprise an organoalkoxysilane functionality derived from a compound selected from the group consisting of 2-(3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane, 1-hexenyl triethoxysilane, n-octyl triethoxysilane, n-dodecyl triethoxysilane, 2-(3-vinyl tetramethyl disiloxyl)-ethyl trimethoxysilane and combinations thereof.
11. A thermal interface composition as in claim 9 further comprising a micron-sized filler selected from the group consisting of fumed silica, fused silica, finely divided quartz powder, amorphous silicas, carbon black, graphite, diamond, metals, silicone carbide, aluminum hydrates, metal nitrides, metal oxides, and combinations thereof.
12. A method of increasing heat transfer comprising:
positioning a heat producing component in contact with a thermal interface composition comprising a blend of a polymer matrix and nanoparticles; said nanoparticles being selected from the group consisting of colloidal silica and POSS; and positioning a heat sink in contact with the thermal interface composition.
13. A method as in claim 12 wherein the step of positioning the heat producing component in contact with a thermal interface composition comprises positioning a heat producing component in contact with a blend of a curable polymer matrix and colloidal silica functionalized with at least one organoalkoxysilane.
14. A method as in claim 12 wherein the step of positioning the heat producing component in contact with a thermal interface composition comprises positioning a heat producing component in contact with a blend of a curable polymer matrix and POSS functionalized with at least one organoalkoxysilane.
15. A method as in claim 12 wherein the step of positioning heat producing component in contact with a thermal interface composition comprises positioning a heat producing component in contact with a blend of a curable polymer matrix and nanoparticles functionalized with at least one organoalkoxysilane selected from the group consisting of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane 1-hexenyl triethoxysilane, n-octyl-triethoxysilane, n-dodecyl triethoxysilane, 2-(3-vinyl tetramethyl disiloxyl)-ethyl trimethoxysilane and combinations thereof.
16. A method as in claim 12 further comprising the step of curing the thermal interface composition.
17. A method as in claim 12 wherein the step of positioning heat producing component in contact with a thermal interface composition comprises positioning a pre-formed pad made from the thermal interface composition in contact with the heat producing component.
18. A method of increasing heat transfer comprising:
positioning a heat producing component in contact with a thermal interface composition comprising a blend of (i) a polymer matrix; (ii) organo-functionalized nanoparticles selected from the group consisting of colloidal silica and POSS; and and (iii) a micron-sized filler; and
positioning a heat sink in contact with the thermal interface composition.
19. An electronic component comprising:
a heat producing component;
a heat sink; and
a thermal interface composition interposed between the heat producing component and the heat sink, the thermal interface composition comprising a blend of a polymer matrix and nanoparticles, said nanoparticles being selected from the group consisting of colloidal silica and POSS.
20. An electronic component as in claim 19, wherein the heat producing component is a semiconductor chip.
21. An electronic component as in claim 19, wherein the polymer matrix comprises a curable polymer.
22. An electronic component as in claim 19, wherein the polymer matrix is selected from the group consisting of epoxy resins, acrylate resins, organopolysiloxane resins, polyimide resins, fluorocarbon resins, benzocyclobutene resins, fluorinated polyallyl ethers, polyamide resins, acrylic resins, polyimidoamide resins, phenol resol resins, aromatic polyester resins, polyphenylene ether (PPE) resins, bismaleimmide triazine resins, fluororesins and any other polymeric systems known to there skilled in the art.
23. An electronic component as in claim 19, wherein the nanoparticles are functionalized with at least one organoalkoxysilane selected from the group consisting of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane, 1-hexenyl triethyoxy silane, n-octyltriethoxysilane, n-dodecyl triethyoxysilane, 2-(3-vinyl-tetramethyl-disiloxyl)-ethyl trimethoxysilane and combinations thereof.
24. An electronic component as in claim 19, wherein the thermal interface composition further comprises a micron-sized filler.
25. An electronic component as in claim 19, wherein the thermal interface composition comprises a pre-formed pad.
26. A thermal interface composition comprising a blend of polymer matrix and nanoparticles, said nanoparticles being selected from the group consisting of colloidal silica and POSS.
27. A thermal composition as in claim 26, wherein the polymer matrix comprises a curable polymeric composition selected from the group consisting of epoxy resins, acrylate resins, organopolysiloxane resins, polyimide resins, polyimide resins, fluorocarbon resins, benzocyclobutene resins, and fluorinated polyallyl ethers, polyamide resins, polyimidoamide resins, cyanate ester resins, phenol resol resins, aromatic polyester resins, polyphenylene ether (PPE) resins, bismaleimide triazine resins, and fluororesins.
28. A thermal interface composition as in claim 26, further comprising a micron-sized filler.
US10/426,485 2003-04-29 2003-04-29 Organic matrices containing nanomaterials to enhance bulk thermal conductivity Expired - Fee Related US7013965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/426,485 US7013965B2 (en) 2003-04-29 2003-04-29 Organic matrices containing nanomaterials to enhance bulk thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/426,485 US7013965B2 (en) 2003-04-29 2003-04-29 Organic matrices containing nanomaterials to enhance bulk thermal conductivity

Publications (2)

Publication Number Publication Date
US20050161210A1 US20050161210A1 (en) 2005-07-28
US7013965B2 true US7013965B2 (en) 2006-03-21

Family

ID=34794149

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/426,485 Expired - Fee Related US7013965B2 (en) 2003-04-29 2003-04-29 Organic matrices containing nanomaterials to enhance bulk thermal conductivity

Country Status (1)

Country Link
US (1) US7013965B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045855A1 (en) * 2003-09-03 2005-03-03 Tonapi Sandeep Shrikant Thermal conductive material utilizing electrically conductive nanoparticles
US20050199373A1 (en) * 2004-03-12 2005-09-15 Claude Godet Heat sink for an electronic power component
US20050271971A1 (en) * 2002-10-15 2005-12-08 Mitsuru Ueda Photoresist base material, method for purification thereof, and photoresist compositions
US20060167139A1 (en) * 2005-01-27 2006-07-27 Nelson John K Nanostructured dielectric composite materials
US20060251901A1 (en) * 2005-05-09 2006-11-09 Armstrong Sean E Curable composition and substrates possessing protective layer obtained therefrom
US20060275608A1 (en) * 2005-06-07 2006-12-07 General Electric Company B-stageable film, electronic device, and associated process
US20070001319A1 (en) * 2005-06-20 2007-01-04 Michael Bauer Semiconductor device with semiconductor device components embedded in a plastics composition
US20070144124A1 (en) * 2005-12-23 2007-06-28 Boston Scientific Scimed, Inc. Spun nanofiber, medical devices, and methods
US20070190451A1 (en) * 2004-04-05 2007-08-16 Idemitsu Kosan Co., Ltd. Calixresorcinarene compounds, photoresist base materials, and compositions thereof
US20070287024A1 (en) * 2006-06-07 2007-12-13 Honeywell International, Inc. Abrasive powder coatings and methods for inhibiting tin whisker growth
US20090062483A1 (en) * 2005-12-23 2009-03-05 Boston Scientific Scimed, Inc. Nanoparticle precursor structures, nanoparticle structures, and composite materials
US20090057877A1 (en) * 2007-08-29 2009-03-05 Maxat Touzelbaev Semiconductor Device with Gel-Type Thermal Interface Material
US20090191414A1 (en) * 2005-09-29 2009-07-30 Dow Corning Toray Co., Ltd. Thermoconductive Silicone Elastomer, Thermoconductive Silicone Elastomer Composition and Thermoconductive Medium
US20090236079A1 (en) * 2008-03-24 2009-09-24 Auburn University Nanoparticle-enhanced phase change materials (nepcm) with great potential for improved thermal energy storage
US20090275688A1 (en) * 2004-08-30 2009-11-05 Dow Corning Toray Company, Ltd. Thermoconductive Silicone Elastomer, Thermoconductive Silicone Elastomer Composition And Thermoconductive Medium
US20090280314A1 (en) * 2005-05-30 2009-11-12 Joachim Mahler Thermoplastic-thermosetting composite and method for bonding a thermoplastic material to a thermosetting material
US20100213415A1 (en) * 2009-02-26 2010-08-26 Nitto Denko Corporation Metal oxide fine particles, silicone resin composition and use thereof
US20100237513A1 (en) * 2006-06-30 2010-09-23 Nirupama Chakrapani Applications of smart polymer composites to integrated circuit packaging
US7833839B1 (en) 2007-09-15 2010-11-16 Globalfoundries Inc. Method for decreasing surface delamination of gel-type thermal interface material by management of the material cure temperature
US20110011558A1 (en) * 2009-07-15 2011-01-20 Don Dorrian Thermal conductivity pipe for geothermal applications
US20110086196A1 (en) * 2009-10-09 2011-04-14 Alcatel-Lucent Usa Inc. Thermal Interface Device
US8092044B1 (en) * 2008-11-21 2012-01-10 Tomar Electronics, Inc. LED light assembly and related methods
US8580027B1 (en) 2010-08-16 2013-11-12 The United States Of America As Represented By The Secretary Of The Air Force Sprayed on superoleophobic surface formulations
US8741432B1 (en) 2010-08-16 2014-06-03 The United States Of America As Represented By The Secretary Of The Air Force Fluoroalkylsilanated mesoporous metal oxide particles and methods of preparation thereof
US8796372B2 (en) 2011-04-29 2014-08-05 Rensselaer Polytechnic Institute Self-healing electrical insulation
US9005485B2 (en) 2011-03-22 2015-04-14 Nano And Advanced Materials Institute Limited High performance die attach adhesives (DAAs) nanomaterials for high brightness LED
US9179579B2 (en) * 2006-06-08 2015-11-03 International Business Machines Corporation Sheet having high thermal conductivity and flexibility
US10068830B2 (en) 2014-02-13 2018-09-04 Honeywell International Inc. Compressible thermal interface materials
US10121723B1 (en) * 2017-04-13 2018-11-06 Infineon Technologies Austria Ag Semiconductor component and method for producing a semiconductor component
US10155894B2 (en) 2014-07-07 2018-12-18 Honeywell International Inc. Thermal interface material with ion scavenger
US10174433B2 (en) 2013-12-05 2019-01-08 Honeywell International Inc. Stannous methanesulfonate solution with adjusted pH
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US10457001B2 (en) 2017-04-13 2019-10-29 Infineon Technologies Ag Method for forming a matrix composite layer and workpiece with a matrix composite layer
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US10781349B2 (en) 2016-03-08 2020-09-22 Honeywell International Inc. Thermal interface material including crosslinker and multiple fillers
US20210020541A1 (en) * 2015-10-26 2021-01-21 Infineon Technologies Austria Ag Thermal interface material having defined thermal, mechanical and electric properties
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
US11826993B2 (en) 2019-02-21 2023-11-28 Textron Innovations Inc. Thermally conductive curing process for composite rotorcraft structure fabrication

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033670B2 (en) * 2003-07-11 2006-04-25 Siemens Power Generation, Inc. LCT-epoxy polymers with HTC-oligomers and method for making the same
US7781063B2 (en) 2003-07-11 2010-08-24 Siemens Energy, Inc. High thermal conductivity materials with grafted surface functional groups
JP2005064291A (en) * 2003-08-14 2005-03-10 Nissan Motor Co Ltd Insulation sheet and semiconductor device assembly using the same
TWI253467B (en) * 2003-12-23 2006-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making same
US20050277721A1 (en) 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation High thermal conductivity materials aligned within resins
US20050274774A1 (en) * 2004-06-15 2005-12-15 Smith James D Insulation paper with high thermal conductivity materials
US7553781B2 (en) * 2004-06-15 2009-06-30 Siemens Energy, Inc. Fabrics with high thermal conductivity coatings
US7776392B2 (en) * 2005-04-15 2010-08-17 Siemens Energy, Inc. Composite insulation tape with loaded HTC materials
US20080050580A1 (en) * 2004-06-15 2008-02-28 Stevens Gary C High Thermal Conductivity Mica Paper Tape
US8216672B2 (en) * 2004-06-15 2012-07-10 Siemens Energy, Inc. Structured resin systems with high thermal conductivity fillers
US7553438B2 (en) * 2004-06-15 2009-06-30 Siemens Energy, Inc. Compression of resin impregnated insulating tapes
US7592045B2 (en) * 2004-06-15 2009-09-22 Siemens Energy, Inc. Seeding of HTC fillers to form dendritic structures
TW200633171A (en) * 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
US7846853B2 (en) * 2005-04-15 2010-12-07 Siemens Energy, Inc. Multi-layered platelet structure
US7651963B2 (en) * 2005-04-15 2010-01-26 Siemens Energy, Inc. Patterning on surface with high thermal conductivity materials
US7781057B2 (en) * 2005-06-14 2010-08-24 Siemens Energy, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
US8357433B2 (en) * 2005-06-14 2013-01-22 Siemens Energy, Inc. Polymer brushes
US7655295B2 (en) 2005-06-14 2010-02-02 Siemens Energy, Inc. Mix of grafted and non-grafted particles in a resin
US20070026221A1 (en) * 2005-06-14 2007-02-01 Siemens Power Generation, Inc. Morphological forms of fillers for electrical insulation
US7955661B2 (en) 2005-06-14 2011-06-07 Siemens Energy, Inc. Treatment of micropores in mica materials
US7851059B2 (en) * 2005-06-14 2010-12-14 Siemens Energy, Inc. Nano and meso shell-core control of physical properties and performance of electrically insulating composites
WO2007076014A2 (en) * 2005-12-23 2007-07-05 World Properties, Inc. Thermal management circuit materials, method of manufacture thereof, and articles formed therefrom
DE102006017115B4 (en) * 2006-04-10 2008-08-28 Infineon Technologies Ag Semiconductor device with a plastic housing and method for its production
US20080037222A1 (en) * 2006-02-17 2008-02-14 Ddcip Technologies, Inc. Heat dissipation assembly
US7547847B2 (en) * 2006-09-19 2009-06-16 Siemens Energy, Inc. High thermal conductivity dielectric tape
US8581393B2 (en) * 2006-09-21 2013-11-12 3M Innovative Properties Company Thermally conductive LED assembly
TWI342323B (en) * 2007-01-22 2011-05-21 Chang Chun Plastics Co Ltd Thermoset resin modified polyimide resin composition
US7680553B2 (en) * 2007-03-08 2010-03-16 Smp Logic Systems Llc Methods of interfacing nanomaterials for the monitoring and execution of pharmaceutical manufacturing processes
US7723419B1 (en) 2007-09-17 2010-05-25 Ovation Polymer Technology & Engineered Materials, Inc. Composition providing through plane thermal conductivity
JP5103364B2 (en) * 2008-11-17 2012-12-19 日東電工株式会社 Manufacturing method of heat conductive sheet
CN103140561B (en) * 2010-09-29 2016-08-10 英派尔科技开发有限公司 Phase transition energy storage in ceramic nano pipe synthetic
US8917510B2 (en) * 2011-01-14 2014-12-23 International Business Machines Corporation Reversibly adhesive thermal interface material
US8511369B2 (en) * 2011-04-18 2013-08-20 International Business Machines Corporation Thermally reversible crosslinked polymer modified particles and methods for making the same
US20120280168A1 (en) * 2011-05-03 2012-11-08 Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense Silver-nanowire thermo-interface material composite
US8915617B2 (en) 2011-10-14 2014-12-23 Ovation Polymer Technology And Engineered Materials, Inc. Thermally conductive thermoplastic for light emitting diode fixture assembly
US9314817B2 (en) 2012-02-29 2016-04-19 Georgia Tech Research Corporation Three-dimensional vertically aligned functionalized multilayer graphene
JP2014129466A (en) * 2012-12-28 2014-07-10 Hitachi Industrial Equipment Systems Co Ltd Insulation resin material for high voltage equipment, and high voltage equipment using the same
EP2763142A1 (en) * 2013-02-04 2014-08-06 Siemens Aktiengesellschaft Impregnating resin for an electrical insulation body, electrical insulation body and method for producing the electrical insulation body
US9085719B2 (en) 2013-03-18 2015-07-21 International Business Machines Corporation Thermally reversible thermal interface materials with improved moisture resistance
US9190342B2 (en) * 2013-08-23 2015-11-17 Lockheed Martin Corporation High-power electronic devices containing metal nanoparticle-based thermal interface materials and related methods

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092697A (en) * 1976-12-06 1978-05-30 International Business Machines Corporation Heat transfer mechanism for integrated circuit package
US4657986A (en) 1984-12-26 1987-04-14 Kanegafuchi Chemical Industry Co., Ltd. Curable resinous composition comprising epoxy resin and silicon-containing elastomeric polymer
US4837401A (en) 1984-12-12 1989-06-06 Kanegafuchi Chemical Industry, Co., Ltd. Curable polymer composition comprising organic polymer having silicon-contaiing reactive group
US4888247A (en) 1986-08-27 1989-12-19 General Electric Company Low-thermal-expansion, heat conducting laminates having layers of metal and reinforced polymer matrix composite
US4906711A (en) 1988-07-29 1990-03-06 General Electric Company Low viscosity epoxy resin compositions
US4952643A (en) 1987-05-25 1990-08-28 Kanegafuchi Chemical Industry Co., Ltd. Curable polymer composition
US5314984A (en) 1990-12-18 1994-05-24 General Electric Company Heat resistant resin compositions, articles and method
US5455302A (en) 1992-12-28 1995-10-03 Ge Plastics Japan Thermoplastic resin compositions
US5484874A (en) 1992-03-17 1996-01-16 Ge Plastics, Japan, Ltd. Polycarbonate resin compositions
US5840800A (en) 1995-11-02 1998-11-24 Dow Corning Corporation Crosslinked emulsions of pre-formed silicon modified organic polymers
US5910522A (en) * 1995-04-03 1999-06-08 Institut Fur Neue Materialien Gemeinnutzige Gmbh Composite adhesive for optical and opto-electronic applications
US5932668A (en) 1995-08-28 1999-08-03 Ge Bayer Silicones Gmbh & Co. Kg Liquid organopolysiloxane resins, a process for their preparation, low viscosity polydiorganosiloxane compositions containing liquid organopolysiloxane resins and their use
US5945217A (en) * 1997-10-14 1999-08-31 Gore Enterprise Holdings, Inc. Thermally conductive polytrafluoroethylene article
US6303730B1 (en) * 1997-02-19 2001-10-16 Institut Fur Neue Materialien Gemeinnutzige Gmbh Organic/inorganic composites with low hydroxyl group content, method for their production and application
US6428811B1 (en) * 1998-03-11 2002-08-06 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
WO2003060035A1 (en) 2001-12-20 2003-07-24 Cognitek Management Systems, Inc. Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof
US20030151030A1 (en) * 2000-11-22 2003-08-14 Gurin Michael H. Enhanced conductivity nanocomposites and method of use thereof
US6617377B2 (en) * 2001-10-25 2003-09-09 Cts Corporation Resistive nanocomposite compositions
US20030174994A1 (en) * 2002-02-19 2003-09-18 Garito Anthony F. Thermal polymer nanocomposites
US20030199624A1 (en) * 1996-09-03 2003-10-23 Tapesh Yadav Conductive nanocomposite films
US20030207129A1 (en) * 2001-01-26 2003-11-06 Nanogram Corporation Polymer-inorganic particle composites
US6662956B2 (en) * 1997-03-18 2003-12-16 Selecto, Inc. Nanocrystal-containing filtration media

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020123285A1 (en) * 2000-02-22 2002-09-05 Dana David E. Electronic supports and methods and apparatus for forming apertures in electronic supports
JP5535418B2 (en) * 2000-03-24 2014-07-02 ハイブリッド・プラスチックス・インコーポレイテッド Nanostructured chemicals as alloying agents in polymers

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092697A (en) * 1976-12-06 1978-05-30 International Business Machines Corporation Heat transfer mechanism for integrated circuit package
US4837401A (en) 1984-12-12 1989-06-06 Kanegafuchi Chemical Industry, Co., Ltd. Curable polymer composition comprising organic polymer having silicon-contaiing reactive group
US4657986A (en) 1984-12-26 1987-04-14 Kanegafuchi Chemical Industry Co., Ltd. Curable resinous composition comprising epoxy resin and silicon-containing elastomeric polymer
US4888247A (en) 1986-08-27 1989-12-19 General Electric Company Low-thermal-expansion, heat conducting laminates having layers of metal and reinforced polymer matrix composite
US4952643A (en) 1987-05-25 1990-08-28 Kanegafuchi Chemical Industry Co., Ltd. Curable polymer composition
US4906711A (en) 1988-07-29 1990-03-06 General Electric Company Low viscosity epoxy resin compositions
US5314984A (en) 1990-12-18 1994-05-24 General Electric Company Heat resistant resin compositions, articles and method
US5484874A (en) 1992-03-17 1996-01-16 Ge Plastics, Japan, Ltd. Polycarbonate resin compositions
US5455302A (en) 1992-12-28 1995-10-03 Ge Plastics Japan Thermoplastic resin compositions
US5910522A (en) * 1995-04-03 1999-06-08 Institut Fur Neue Materialien Gemeinnutzige Gmbh Composite adhesive for optical and opto-electronic applications
US5932668A (en) 1995-08-28 1999-08-03 Ge Bayer Silicones Gmbh & Co. Kg Liquid organopolysiloxane resins, a process for their preparation, low viscosity polydiorganosiloxane compositions containing liquid organopolysiloxane resins and their use
US6063889A (en) 1995-08-28 2000-05-16 Ge Bayer Silicones Gmbh & Co. Kg Liquid organopolysiloxane resins, a process for their preparation, low viscosity polydiorganosiloxane compositions containing liquid organopolysiloxane resins and their use
US5840800A (en) 1995-11-02 1998-11-24 Dow Corning Corporation Crosslinked emulsions of pre-formed silicon modified organic polymers
US20030199624A1 (en) * 1996-09-03 2003-10-23 Tapesh Yadav Conductive nanocomposite films
US20030207976A1 (en) * 1996-09-03 2003-11-06 Tapesh Yadav Thermal nanocomposites
US6303730B1 (en) * 1997-02-19 2001-10-16 Institut Fur Neue Materialien Gemeinnutzige Gmbh Organic/inorganic composites with low hydroxyl group content, method for their production and application
US6662956B2 (en) * 1997-03-18 2003-12-16 Selecto, Inc. Nanocrystal-containing filtration media
US5945217A (en) * 1997-10-14 1999-08-31 Gore Enterprise Holdings, Inc. Thermally conductive polytrafluoroethylene article
US6428811B1 (en) * 1998-03-11 2002-08-06 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
US20030151030A1 (en) * 2000-11-22 2003-08-14 Gurin Michael H. Enhanced conductivity nanocomposites and method of use thereof
US20030207129A1 (en) * 2001-01-26 2003-11-06 Nanogram Corporation Polymer-inorganic particle composites
US6617377B2 (en) * 2001-10-25 2003-09-09 Cts Corporation Resistive nanocomposite compositions
WO2003060035A1 (en) 2001-12-20 2003-07-24 Cognitek Management Systems, Inc. Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof
US20030174994A1 (en) * 2002-02-19 2003-09-18 Garito Anthony F. Thermal polymer nanocomposites

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Search Report dated Feb. 1, 2005.

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050271971A1 (en) * 2002-10-15 2005-12-08 Mitsuru Ueda Photoresist base material, method for purification thereof, and photoresist compositions
US7550097B2 (en) * 2003-09-03 2009-06-23 Momentive Performance Materials, Inc. Thermal conductive material utilizing electrically conductive nanoparticles
US20050045855A1 (en) * 2003-09-03 2005-03-03 Tonapi Sandeep Shrikant Thermal conductive material utilizing electrically conductive nanoparticles
US20050199373A1 (en) * 2004-03-12 2005-09-15 Claude Godet Heat sink for an electronic power component
US20070190451A1 (en) * 2004-04-05 2007-08-16 Idemitsu Kosan Co., Ltd. Calixresorcinarene compounds, photoresist base materials, and compositions thereof
US7956121B2 (en) * 2004-08-30 2011-06-07 Dow Corning Toray Company, Ltd. Thermoconductive silicone elastomer, thermoconductive silicone elastomer composition and thermoconductive medium
US20090275688A1 (en) * 2004-08-30 2009-11-05 Dow Corning Toray Company, Ltd. Thermoconductive Silicone Elastomer, Thermoconductive Silicone Elastomer Composition And Thermoconductive Medium
US7579397B2 (en) * 2005-01-27 2009-08-25 Rensselaer Polytechnic Institute Nanostructured dielectric composite materials
US7884149B2 (en) 2005-01-27 2011-02-08 Rensselaer Polytechnic Institute, Inc. Nanostructured dielectric composite materials
US20060167139A1 (en) * 2005-01-27 2006-07-27 Nelson John K Nanostructured dielectric composite materials
US20060251901A1 (en) * 2005-05-09 2006-11-09 Armstrong Sean E Curable composition and substrates possessing protective layer obtained therefrom
US20090280314A1 (en) * 2005-05-30 2009-11-12 Joachim Mahler Thermoplastic-thermosetting composite and method for bonding a thermoplastic material to a thermosetting material
US8507080B2 (en) * 2005-05-30 2013-08-13 Infineon Technologies Ag Thermoplastic-thermosetting composite and method for bonding a thermoplastic material to a thermosetting material
US20060275608A1 (en) * 2005-06-07 2006-12-07 General Electric Company B-stageable film, electronic device, and associated process
US7800241B2 (en) * 2005-06-20 2010-09-21 Infineon Technologies Ag Semiconductor device with semiconductor device components embedded in a plastics composition
US20070001319A1 (en) * 2005-06-20 2007-01-04 Michael Bauer Semiconductor device with semiconductor device components embedded in a plastics composition
US20090191414A1 (en) * 2005-09-29 2009-07-30 Dow Corning Toray Co., Ltd. Thermoconductive Silicone Elastomer, Thermoconductive Silicone Elastomer Composition and Thermoconductive Medium
US7999033B2 (en) * 2005-09-29 2011-08-16 Dow Corning Toray Company, Ltd. Thermoconductive silicone elastomer, thermoconductive silicone elastomer composition and thermoconductive medium
US20090062483A1 (en) * 2005-12-23 2009-03-05 Boston Scientific Scimed, Inc. Nanoparticle precursor structures, nanoparticle structures, and composite materials
US8455088B2 (en) 2005-12-23 2013-06-04 Boston Scientific Scimed, Inc. Spun nanofiber, medical devices, and methods
US8481643B2 (en) 2005-12-23 2013-07-09 Boston Scientific Scimed, Inc. Nanoparticle precursor structures, nanoparticle structures, and composite materials
US20070144124A1 (en) * 2005-12-23 2007-06-28 Boston Scientific Scimed, Inc. Spun nanofiber, medical devices, and methods
US7799426B2 (en) * 2005-12-23 2010-09-21 Boston Scientific Scimed, Inc. Nanoparticle structures comprising silicon oxide-based polymer, and composite materials
US7604871B2 (en) * 2006-06-07 2009-10-20 Honeywell International Inc. Electrical components including abrasive powder coatings for inhibiting tin whisker growth
US20100003398A1 (en) * 2006-06-07 2010-01-07 Honeywell International Inc. Abrasive powder coatings and methods for inhibiting tin whisker growth
US20070287024A1 (en) * 2006-06-07 2007-12-13 Honeywell International, Inc. Abrasive powder coatings and methods for inhibiting tin whisker growth
US8329248B2 (en) 2006-06-07 2012-12-11 Honeywell International Inc. Methods for inhibiting tin whisker growth using abrasive powder coatings
US9179579B2 (en) * 2006-06-08 2015-11-03 International Business Machines Corporation Sheet having high thermal conductivity and flexibility
US7952212B2 (en) * 2006-06-30 2011-05-31 Intel Corporation Applications of smart polymer composites to integrated circuit packaging
US20100237513A1 (en) * 2006-06-30 2010-09-23 Nirupama Chakrapani Applications of smart polymer composites to integrated circuit packaging
US20090057877A1 (en) * 2007-08-29 2009-03-05 Maxat Touzelbaev Semiconductor Device with Gel-Type Thermal Interface Material
US7678615B2 (en) * 2007-08-29 2010-03-16 Advanced Micro Devices, Inc. Semiconductor device with gel-type thermal interface material
US7833839B1 (en) 2007-09-15 2010-11-16 Globalfoundries Inc. Method for decreasing surface delamination of gel-type thermal interface material by management of the material cure temperature
US20090236079A1 (en) * 2008-03-24 2009-09-24 Auburn University Nanoparticle-enhanced phase change materials (nepcm) with great potential for improved thermal energy storage
US9027633B2 (en) * 2008-03-24 2015-05-12 Auburn University Nanoparticle-enhanced phase change materials (NEPCM) with improved thermal energy storage
US8092044B1 (en) * 2008-11-21 2012-01-10 Tomar Electronics, Inc. LED light assembly and related methods
US20100213415A1 (en) * 2009-02-26 2010-08-26 Nitto Denko Corporation Metal oxide fine particles, silicone resin composition and use thereof
US20110011558A1 (en) * 2009-07-15 2011-01-20 Don Dorrian Thermal conductivity pipe for geothermal applications
US20110086196A1 (en) * 2009-10-09 2011-04-14 Alcatel-Lucent Usa Inc. Thermal Interface Device
US9751264B2 (en) 2009-10-09 2017-09-05 Alcatel-Lucent Usa Inc. Thermal interface device
US8741432B1 (en) 2010-08-16 2014-06-03 The United States Of America As Represented By The Secretary Of The Air Force Fluoroalkylsilanated mesoporous metal oxide particles and methods of preparation thereof
US8580027B1 (en) 2010-08-16 2013-11-12 The United States Of America As Represented By The Secretary Of The Air Force Sprayed on superoleophobic surface formulations
US9005485B2 (en) 2011-03-22 2015-04-14 Nano And Advanced Materials Institute Limited High performance die attach adhesives (DAAs) nanomaterials for high brightness LED
US8796372B2 (en) 2011-04-29 2014-08-05 Rensselaer Polytechnic Institute Self-healing electrical insulation
US10174433B2 (en) 2013-12-05 2019-01-08 Honeywell International Inc. Stannous methanesulfonate solution with adjusted pH
US10068830B2 (en) 2014-02-13 2018-09-04 Honeywell International Inc. Compressible thermal interface materials
US10155894B2 (en) 2014-07-07 2018-12-18 Honeywell International Inc. Thermal interface material with ion scavenger
US10428257B2 (en) 2014-07-07 2019-10-01 Honeywell International Inc. Thermal interface material with ion scavenger
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
US20210020541A1 (en) * 2015-10-26 2021-01-21 Infineon Technologies Austria Ag Thermal interface material having defined thermal, mechanical and electric properties
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
US10781349B2 (en) 2016-03-08 2020-09-22 Honeywell International Inc. Thermal interface material including crosslinker and multiple fillers
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US10121723B1 (en) * 2017-04-13 2018-11-06 Infineon Technologies Austria Ag Semiconductor component and method for producing a semiconductor component
US10457001B2 (en) 2017-04-13 2019-10-29 Infineon Technologies Ag Method for forming a matrix composite layer and workpiece with a matrix composite layer
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11826993B2 (en) 2019-02-21 2023-11-28 Textron Innovations Inc. Thermally conductive curing process for composite rotorcraft structure fabrication
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Also Published As

Publication number Publication date
US20050161210A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US7013965B2 (en) Organic matrices containing nanomaterials to enhance bulk thermal conductivity
US7550097B2 (en) Thermal conductive material utilizing electrically conductive nanoparticles
KR101116506B1 (en) Organic matrices containing nanomaterials to enhance bulk thermal conductivity
US20050148721A1 (en) Thin bond-line silicone adhesive composition and method for preparing the same
EP1697985B1 (en) Combinations of resin compositions and methods of use thereof
ZA200601712B (en) Nano-filled composite materials with exceptionally high glass transition temperature
US20050049334A1 (en) Solvent-modified resin system containing filler that has high Tg, transparency and good reliability in wafer level underfill applications
WO2006107659A1 (en) Resin compositions and methods of use thereof
WO2004048266A1 (en) Functionalized colloidal silica, dispersions and methods made thereby
MXPA06002463A (en) No-flow underfill material having low coefficient of thermal expansion and good solder ball fluxing performance.
US20050266263A1 (en) Refractory solid, adhesive composition, and device, and associated method

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHONG, HONG;RUBINSZTAJN, SLAWOMIR;REEL/FRAME:014031/0385

Effective date: 20030428

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A. AS ADMINISTRATIVE AGENT,

Free format text: SECURITY AGREEMENT;ASSIGNORS:MOMENTIVE PERFORMANCE MATERIALS HOLDINGS INC.;MOMENTIVE PERFORMANCE MATERIALS GMBH & CO. KG;MOMENTIVE PERFORMANCE MATERIALS JAPAN HOLDINGS GK;REEL/FRAME:019511/0166

Effective date: 20070228

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A

Free format text: SECURITY AGREEMENT;ASSIGNORS:MOMENTIVE PERFORMANCE MATERIALS, INC.;JUNIPER BOND HOLDINGS I LLC;JUNIPER BOND HOLDINGS II LLC;AND OTHERS;REEL/FRAME:022902/0461

Effective date: 20090615

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE, PENNSYLVANIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC;REEL/FRAME:028344/0208

Effective date: 20120525

Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE,

Free format text: SECURITY AGREEMENT;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC;REEL/FRAME:028344/0208

Effective date: 20120525

AS Assignment

Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE, PENNSYLVANIA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:030185/0001

Effective date: 20121116

Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE,

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:030185/0001

Effective date: 20121116

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:030311/0343

Effective date: 20130424

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT, PENNSYLVANIA

Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:034066/0662

Effective date: 20141024

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT, PENNSYLVANIA

Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:034066/0570

Effective date: 20141024

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A

Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:034066/0570

Effective date: 20141024

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A

Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:034066/0662

Effective date: 20141024

AS Assignment

Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:034113/0331

Effective date: 20141024

Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:034113/0252

Effective date: 20141024

AS Assignment

Owner name: BOKF, NA, AS SUCCESSOR COLLATERAL AGENT, OKLAHOMA

Free format text: NOTICE OF CHANGE OF COLLATERAL AGENT - ASSIGNMENT OF SECURITY INTEREST IN INTELLECTUAL PROPERTY;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. AS COLLATERAL AGENT;REEL/FRAME:035136/0457

Effective date: 20150302

Owner name: BOKF, NA, AS SUCCESSOR COLLATERAL AGENT, OKLAHOMA

Free format text: NOTICE OF CHANGE OF COLLATERAL AGENT - ASSIGNMENT OF SECURITY INTEREST IN INTELLECTUAL PROPERTY - SECOND LIEN;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. AS COLLATERAL AGENT;REEL/FRAME:035137/0263

Effective date: 20150302

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.)

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180321

AS Assignment

Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BOKF, NA;REEL/FRAME:049194/0085

Effective date: 20190515

Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BOKF, NA;REEL/FRAME:049249/0271

Effective date: 20190515

AS Assignment

Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:050304/0555

Effective date: 20190515

AS Assignment

Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:054387/0001

Effective date: 20201102

Owner name: MOMENTIVE PERFORMANCE MATERIALS GMBH & CO KG, GERMANY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:054387/0001

Effective date: 20201102

Owner name: MOMENTIVE PERFORMANCE MATERIALS JAPAN HOLDINGS GK, JAPAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:054387/0001

Effective date: 20201102

AS Assignment

Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:054883/0855

Effective date: 20201222