Search Images Maps Play Gmail Drive Calendar Translate More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS9346973 B2
Publication typeGrant
Application numberUS 14/229,047
Publication date24 May 2016
Filing date28 Mar 2014
Publication number14229047, 229047, US 9346973 B2, US 9346973B2, US-B2-9346973, US9346973 B2, US9346973B2
InventorsAndrew K. Jones, Zenas W. Lim, Andrew McLean, Vinod K. Sikka, Michael Hurley
Original AssigneeRoss Technology Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Elastomeric coatings having hydrophobic and/or oleophobic properties
US 9346973 B2
Abstract
This disclosure deals with novel formulations to create highly durable hydrophobic, superhydrophobic, oleophobic and/or superoleophobic surfaces that can be nearly transparent. The formulations of this invention can be applied by -dip, spray and painting processes.
Images(9)
Previous page
Next page
Claims(29)
The invention claimed is:
1. A system for forming a coating comprising:
A) a first component which comprises
i) an elastomeric binder comprising one or more styrenic block copolymers, wherein said elastomeric binder comprises from about 1% to about 30% of said one or more styrenic block copolymers by weight;
ii) one or more independently selected first particles having a size of about 30 microns to about 225 microns, wherein the first component comprises from about 0.01% to about 5% of said first particles by weight; and
iii) one or more solvents; and
B) a second component which either comprises
i) one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles, and
ii) optionally, one or more solvents;
or comprises per 100 parts by weight:
i) 0.1 to 3.5 parts by weight of one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles either comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound directly or indirectly to said second particles, or comprise one or more siloxanes or silazanes associated with said second particles;
ii) 0.1 to 1.0 parts by weight of a fluorinated polyolefin; or
 0.06 to 0.6 parts by weight of a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer; and
iii) one or more solvents for a total of 100 parts by weight;
wherein a coating formed by
(a) applying the first component to at least a portion of a surface, wherein the portion of the surface has optionally been treated with a primer on all or part of the surface to which said first component is to be applied; and
(b) applying the second component to all or a portion of the surface coated with the first component in step (a),
results in a coating that has an elongation at break greater than about 200%, an arithmetical mean roughness value from about 3 microns to about 20 microns, or a ten point mean roughness from about 7 microns to about 100 microns, and a total luminous transmittance of about 75% to about 85% as measured by ASTM D1003-11 for a coating about 25 microns thick without added colorants; and
wherein said coating has either hydrophobic or superhydrophobic properties, and optionally is oleophobic or superoleophobic.
2. The system for forming a coating according to claim 1 comprising: an aerosol spray container containing the first component and a propellant and/or an aerosol spray containing the second component and a propellant.
3. A method of forming a hydrophobic coating on a portion of a surface comprising the steps:
(a) applying a first component to at least a portion of the surface, wherein the portion of the surface has optionally been treated with a primer on all or part of the surface to which said first component is to be applied; and
(b) applying a second component to all or a portion of the surface coated with the first component in step (a),
wherein the first component comprises
i) an elastomeric binder comprising one or more styrenic block copolymers, wherein said elastomeric binder comprises from about 1% to about 30% of said one or more styrenic block copolymers by weight;
ii) one or more independently selected first particles having a size of about 30 microns to about 225microns, wherein the first component comprises from about 0.2% to about 5% of said first particles by weight; and
iii) one or more solvents;
wherein the second component either comprises:
i) one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles, and
ii) one or more solvents;
or comprises per 100parts by weight:
i) 0.1to 3.5parts by weight of one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles either comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, directly or indirectly to said second particles, or comprise one or more siloxanes or silazanes associated with said second particles;
ii) 0.1 to 1.0 parts by weight of a fluorinated polyolefin; or
 0.06 to 0.6 parts by weight of a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer; and
iii) one or more solvents for a total of 100 parts by weight;
wherein said coating has either hydrophobic or superhydrophobic properties, and optionally is oleophobic or superoleophobic; and
wherein the coating formed by said method has an elongation at break greater than about 200%, an arithmetical mean roughness value from about 3 microns to about 20 microns, or a ten point mean roughness from about 7 microns to about 100 microns, and a total luminous transmittance of about 75% to about 85% as measured by ASTM D1003-11for a coating about 25 microns thick without added colorants.
4. The method of claim 3, wherein one or more of the styrenic block copolymers has a rubber phase crosslinked to a polystyrene phase.
5. The method of claim 4, wherein said rubber phase comprises 60%-80% of the styrenic block copolymers in the elastomeric binder by weight, based on the dry weight of the styrenic block copolymers present in the first component not including any contribution by the first particles or other materials present in the first component.
6. The method of claim 3, wherein one or more of the styrenic block copolymers has a rubber phase comprising polybutadiene, polyisoprene, polyolefin or a mixture of any of those rubber phase components, any one or more of which may optionally comprise 1% to 3% of maleic anhydride.
7. The method of claim 3, wherein said first component further comprises one or more colorants, UV stabilizers, antioxidants, rheological agents, and/or fillers.
8. The method of claim 3, wherein said first component further comprises up to 30% by weight of one or more tackifiers, wherein said one or more styrenic block copolymers and said one or more tackifiers together comprise up to about 30% by weight of said first component.
9. The method of claim 3, wherein said elastomeric binder comprises one or more triblock copolymers.
10. The method of claim 3, wherein said elastomeric binder comprises one or more styrenic block copolymers of styrene and ethylene/butylene with a polystyrene content of about 8% to about 36% by weight, or mixtures of any two or more of such triblock copolymers.
11. The method of claim 3, wherein one or more of said styrenic block copolymers present in the elastomeric binder comprise maleic anhydride or a first and a second maleated triblock copolymer of styrene and ethylene/butylene wherein:
said first maleated triblock copolymer of styrene and ethylene/butylene has a polystyrene content from about 8% to about 14%, with 0.4% to 1.6% substitution of maleic anhydride by weight of the first triblock copolymer; and
said second maleated triblock copolymer of styrene and ethylene/butylene has a polystyrene content of about 22% to about 32%, with 1.1% to 2.5% substitution of maleic anhydride by weight of the second triblock copolymer.
12. The method of claim 3, wherein said first particles are selected from the group consisting of: glass, ceramic, rubber, plastic, thermoplastic, wood, cellulose, metal oxides, silicon dioxide, silicates, tectosilicates, germanium dioxide, plastic particles, carbide particles, nitride particles, boride particles, spinel particles, diamond particles, fly ash particles, fibers, hollow glass spheres, hollow glass particles, and hollow plastic particles, wherein said first particles optionally comprise a colorant.
13. The method of claim 3, wherein said second particles comprise a metal oxide, an oxide of a metalloid, a silicate, or a glass, wherein said second particles have an average size in the range of from 1 nm to 100 nm or from 2 nm to 200 nm.
14. The method of claim 3, wherein said one or more moieties result from contacting the second particles with one or more silanizing agents of formula (I):

R4-nSi—Xn  (I)
where n is an integer from 1 to 3;
each R is independently selected from
(i) alkyl or cycloalkyl group optionally substituted with one or more fluorine atoms,
(ii) C1 to 20 alkyl optionally substituted with one or more substituents independently selected from fluorine atoms and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
(iii) C2 to 8 or C6 to 20 alkyl ether optionally substituted with one or more substituents independently selected from fluorine and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
(iv) C6 to 14 aryl, optionally substituted with one or more substituents independently selected from halo, alkoxy, and haloalkoxy substituents,
(v) C4 to 20 alkenyl or C4 to 20 alkynyl, optionally substituted with one or more substituents independently selected from halo, alkoxy, or haloalkoxy, or
(vi) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 or a C2 to 8 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4;
each X is independently selected from —H, —Cl, —I, —Br, —OH, —OR2, —NHR3, or —N(R3)2 group;
each R2 is an independently selected C1 to 4 alkyl or haloalkyl group; and
each R3 is an independently selected H, C1 to 4 alkyl, or haloalkyl group.
15. The method of claim 14, wherein R is —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4.
16. The method of claim 14, wherein n is 3.
17. The method of claim 3, wherein said second particles are treated with an agent selected from the group consisting of: (tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane; n-octadecyltrimethoxysilane; n-octyltriethoxysilane; nonafluorohexyldimethyl(dimethylamino)silane; dimethyl dichlorosilane; hexamethyldisilazane; octyltrimethoxysilane, and polydimethylsiloxane.
18. The method of claim 3, wherein said first component and said second component each further comprises an independently selected solvent and/or propellant.
19. The method of claim 3, wherein said elastomeric binder has an ultimate strength greater than about 20 Mega Pascals (MPa) according to ASTM D412.
20. The method according to claim 3, wherein applying according to step (b) is repeated to a portion of the coated surface if that portion of the coated surface loses said hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties, and wherein following the repetition of step (b), the coated surface regains hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties.
21. The method according to claim 3, wherein both steps (a) and (b) are repeated on a portion of the coated surface if that portion of the coated surface loses said hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties, and wherein following the repetition of steps (a) and (b), the coated surface regains hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties.
22. A hydrophobic coating prepared by the method according to claim 3.
23. The hydrophobic coating of claim 22, wherein said coating is superhydrophobic or superhydrophobic and superoleophobic.
24. The hydrophobic coating according to claim 22, wherein said coating has an ultimate strength greater than about 20 mega Pascals (MPa) according to ASTM D412.
25. The hydrophobic coating according to claim 22, wherein said coating has a modulus at 100% elongation of greater than 10 mega Pascals (MPa) according to ASTM D412.
26. The hydrophobic coating according to claim 22, having an elongation at break of greater than about 300%.
27. The hydrophobic coating according to claim 22, having a total luminous transmittance of about 75% to about 85% and a haze of about 85% to about 90% as measured by ASTM D1003-11 for a coating about 25 microns thick without added colorants.
28. The hydrophobic coating according to claim 22, wherein said coating is superhydrophobic and retains its superhydrophobicity after being subjected to greater than 20 cycles on a Taber Abraser using CS-0 or CS-10 wheels and a 250 gram load at room temperature, wherein the end of superhydrophobicity is determined to be the point when more than half of the water droplets applied to the portion of the surface subject to the action of the wheels do not roll off the surface when the surface is inclined at a 5 degree angle at room temperature.
29. The hydrophobic coating according to claim 22, wherein said coating is superhydrophobic and when said coating is applied to a planar surface, it continues to display superhydrophobic behavior after being subjected to a continuous shower test of about six liters of water per minute at about 20° C.-25° C. for greater than 0.3 hours, wherein the end of superhydrophobic behavior is determined to be the time when more than half of the water droplets applied to a portion of the surface subject to said shower do not roll off the surface when it is inclined at a 5 degree angle at room temperature,
wherein the shower test is conducted using a showerhead with 70 nozzles with a 1 mm diameter orifice arranged in 5 spokes of 5 nozzles and 15 spokes of 3nozzles about a central point on a circular showerhead, and wherein the showerhead delivers approximately 6 liters of potable tap water per minute using about 137900 Pa (Pascals) to 310275 Pa, and wherein the coating is placed about 1.5 meters below the showerhead.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/663,985, filed Jun. 25, 2012; U.S. Provisional Application No. 61/708,760, filed Oct. 2, 2012; and U.S. Provisional Application No. 61/768,290, filed Feb. 22, 2013, the entirety of each of which application is incorporated herein by reference.

BACKGROUND

The surfaces of objects that are exposed to the environment come into contact with a variety of agents, including dust, moisture, water, and oils. In industrial applications, surfaces may be exposed to a variety of agents in addition to water, such as aqueous salt solutions, solutions of aqueous acid or base, and chemical components that may be dissolved or suspended in aqueous compositions or other liquids, including those used in manufacturing processes. Not only are the surfaces of objects exposed to a variety of chemical agents, but the temperatures to which the surfaces are exposed can also affect their interaction with those agents and the performance of the coated surfaces of objects. For example, freezing liquids, such as water, can result in frozen deposits tightly attached to the surfaces that prevent access to the surfaces and in some instances prevent proper operation of equipment bound by the frozen liquid. In addition, elevated temperatures can accelerate processes such as corrosion or leaching.

SUMMARY

Embodiments of coatings and surface treatments are provided herein that can provide advantageous surface properties including, but not limited to, hydrophobicity or superhydrophobicity (collectively HP), oleophobicity or superoleophobicity (collectively OP), and resistance to ice formation, adherence and/or accumulation. Embodiments of the coatings described herein that are HP and OP, and which may also display anti-icing behavior, may be applied to a surface using two or more steps. Embodiments of methods of applying such coatings and surface treatments also are provided, together with embodiments of compositions for applying such coatings and surface treatments, and surfaces and/or objects so treated and coated are provided as well.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic showing an embodiment of a polystyrene and rubber elastomeric copolymer.

FIG. 2 is a schematic showing various spatial orientations of embodiments of polystyrene and rubber copolymers. S is styrene and B is a rubber phase (i.e. butylene).

FIG. 3 shows some solvents suitable for dissolving styrene (styrenic) block copolymers (SBCs). The scale represents suitable solvents that can be used as SBC copolymers. Letters to the left axis are indicators of: S (styrene), B butylene (polybutadiene), I (polyisoprene), and EB (ethylene/butylene). Those solvents indicated as “Good Solvents” are solvents that tend to dissolve or suspend SBC polymers.

FIG. 4 depicts a shower test apparatus. The upper panel shows the showerhead with 70 nozzles with a 1 mm diameter orifice arranged in 5 spokes of 5 nozzles and 15 spokes of 3 nozzles about a central point on a circular showerhead. For testing the showerhead delivers approximately 6 liters of potable tap water per minute using about 137900 Pa (Pascals) to 310275 Pa. The lower panel depicts a sample, which is placed about 1.5 meters below the showerhead and subject to the shower.

FIG. 5 shows a plot of “glove rubs,” which are an estimate of the surface resistance to the loss of either or both of HP or OP properties as a function of percentage of EXPANCEL first particles employed in a nearly transparent coating prepared without colorants. The glove rub estimates tend to trend in the same direction as loss of HP or OP properties due to handling, abrasion resistance, and/or the shower time. The weight percent of EXPANCEL particles is given as the percentage of the base coat formulation weight as opposed to a dry weight basis (see Example 1).

FIG. 6 shows the variation in the resistance to the loss of superhydrophobic behavior of an elastomeric binder system due to wear based on “glove rubs” and exposure to a shower of water using five different types of EXPANCEL particles. Duplicate samples containing EXPANCEL 031 DU 400 heated before or after the second component (referred to as “top coat”) comprising hydrophobic fumed silica in acetone is applied. See Example 2 for details.

FIG. 7 shows the effect of coating thickness on coating resistance to the loss of superhydrophobic behavior due to wear based on Taber Abraser testing using a 1,000 g load and CS-10 wheels on 10×10 cm plates treated with 2 or 4 ml of top coat (second component) applied over the base coating. See Example 5 for details.

FIG. 8 shows Thermogravimetric Analysis (TGA) data for a nearly transparent elastomeric coating incorporating EXPANCEL461 EXPANCEL DE 40 D 25 microspheres.

FIG. 9 shows TGA data for an embodiment of a non-transparent HP/OP elastomeric coating incorporating SoftSand™ rubber particles.

DETAILED DESCRIPTION

Embodiments of elastomeric coating methods, compositions, and treatments are provided that impart a variety of desirable characteristics to objects and their surfaces, including hydrophobicity (including superhydrophobicity), oleophobicity (including superoleophobicity), and/or anti-icing. As used herein, the term “hydrophobicity” and the abbreviation HP includes superhydrophobicity, and the term “oleophobicity” and the abbreviation OP includes superoleophobicity. The abbreviation “HP/OP” is used collectively herein to mean HP and/or OP and may also include anti-icing properties (including ice formation, adherence and/or accumulation). Treating surfaces with coatings having HP/OP characteristics can result in objects and surfaces with a variety of advantageous properties including, but not limited to, resistance to wetting, corrosion, swelling, rotting, cracking or warping, exfoliation, fouling, dust and/or dirt accumulation on surfaces (self cleaning), and resistance to surface ice formation, adherence and/or accumulation. Not only do embodiments of the coating compositions and treatments described herein provide properties including HP/OP, but the coatings also are durable in that they substantially retain those properties despite some amount of mechanical abrasion. In addition to providing durable HP/OP behavior, embodiments of the elastomeric coatings can also remain flexible and provide substantial resistance to cracking, peeling, and delamination from the coated surface over a wide range of temperatures. Further, embodiments of the coatings can readily be repaired where the surface has been abraded sufficiently to compromise the coating's properties including HP/OP behavior.

Embodiments of the HP/OP elastomeric coatings described herein may be applied in a process comprising two or more steps in which the first component applied comprises an elastomeric binding agent and optionally comprises first particles. Once applied, the coating formed by the first component is termed a “substrate coating,” a “base coating,” or a “base coat” particularly when dried. Following the application of the elastomer base coat, an amount of second component is applied to the base coat. The second component comprises second particles that are treated to cause the second particles, and the coatings into which they are suitably incorporated, to display advantageous properties including HP/OP and/or anti-icing behavior. The second component may be applied to an elastomeric base coat after the base coat is applied, but before it is dried and/or set. Alternatively, depending on the carrier/solvent used with the second component, the second component may be applied to the elastomer after the base coat is dried and/or set.

The use of second component coating compositions comprising solvents that can be applied to the elastomeric base coat after it has dried and set permits repair of coatings that have been abraded or otherwise damaged to the point where the desired HP/OP properties is/are no longer observed. Provided the base coat is intact, or the base coat has not been damaged to the point that material underlying the base coat is exposed, repair is accomplished by the reapplication of the second component which comprises second particles.

Where the HP/OP elastomeric coatings have been abraded so as to compromise the elastomer binder coating or its properties (e.g., abraded, worn too thin, or damaged to the point where the surface of the coated object or underlying material such as a primer is exposed), the coating may be reapplied to the abraded area (i.e., it may be repaired) by repeating the application of both the first and second components. Suitable repair/preparation of exposed/damaged surfaces and/or underlying primers may be required prior to the reapplication of the elastomeric coating. In contrast, other HP or OP coatings using non-elastomeric binder systems (e.g., polyurethane systems) may not be as readily repaired because the HP/OP behavior of the original coating that remains in place can prevent newly applied coating compositions from binding to the surface.

In one embodiment, a method of applying a HP/OP coating to a substrate comprises the steps of:

    • a) applying to the substrate a first component comprising: i) an elastomeric binder comprising one or more styrenic block copolymers, and optionally comprising ii) first particles having a size of about 1 micron to about 300 microns (e.g., 10 microns to about 100 microns), to provide a base coating; and
    • b) applying to the base coating a second component comprising second particles having a size of about 1 nanometer to 25 microns, where the second particles are associated with one or more siloxanes and/or have one or more independently selected alkyl, haloalkyl, or perfluoroalkyl groups covalently bound, either directly or indirectly, to the second particles, and wherein the second component optionally comprises an agent to suspend or assist in suspending the particles (e.g., a solvent such as hexane or tert-butyl acetate).
      To assist in the application process, embodiments of the first and second components may include any necessary solvents, liquids or propellants.

In some embodiments of the application method, the base coating is treated with the second component after drying and curing the base coating at room temperature (e.g., about 18 to about 23° C.) or at an elevated temperature (e.g., about 30° to about 100° C., about 30° to about 60° C., about 50° to about 100° C., or about 40° to about 90° C.). In other embodiments, the solvent used to apply the base coat is allowed to evaporate until the coating is no longer liquid and cannot be removed by contact (i.e., dry to the touch); however, the base coating is not fully dried and cured when treated with the second component containing second particles. In still other embodiments, the composition comprising second particles may be applied directly to the base coat before solvents used in the application of the base coating have fully, substantially, or partly evaporated.

Diverse elastomeric binders, first particles, and second particles may be employed in the methods and compositions described herein. In some embodiments, first particles may be filler particles. In some embodiments second particles may be considered nanoparticles. In some embodiments described herein, the coating formed by the application of the first and second components will be nearly transparent to visible light. In other embodiments, the coatings may be colored but nearly transparent to visible light that is not absorbed by the coating components and/or colorants. In still other embodiments, the coatings will have colorants (e.g., insoluble pigments or colored first and/or second particles) that will render them opaque or block the transmission of light. Embodiments of such coating components, materials, and compositions are described more fully below.

A skilled artisan will readily understand that the selection of first particles and second particles needs to include consideration of not only the desired properties of the coating and the ultimate conditions to which the coating will be subject in use, but also the process used to prepare the coating. Where, for example, particles must withstand elevated temperatures or specific solvents in the coating process, they should be selected so as to be suitable for use in the required temperature ranges or in the required solvents. For example, in those embodiments where coatings or the first and/or second particles are intended for use at elevated temperatures (e.g., above room temperature), the particles need to be compatible with the elevated temperatures that the coatings will be subjected to when in use and/or in processes employed to prepare the coatings. Similarly, the particles should be selected to be compatible with solvents used in the application process and with solvents the coatings will become exposed to in use.

In methods described herein, where second particles are applied to a base coat on a substrate, which may be coated with a primer, the methods can produce coatings having (i) a surface in contact with said substrate (or primer) and (ii) an exposed surface that is not in contact with the substrate (or primer) where these surfaces bear different amounts of first particles, second particles, or both first and second particles. In some embodiments the exposed surface can have a greater amount of first and/or second particles on, at, or adjacent to the exposed surface, compared to the amount of first and/or second particles at or adjacent to the surface of the coating that is in contact with the substrate (or primer). In one embodiment the coatings have a greater amount of second particles on, at, or adjacent to the exposed surface than the surface of the coating that is in contact with the substrate (or primer). In embodiments where a greater amount of first and/or second particles may be present at the exposed surface, the coatings may be considered composite coatings.

The amount of particles in any portion of a coating may be assessed by any means known in the art including, but not limited to, microscopy or electron microscopy. Using those techniques on cross or oblique sections of coatings, the amount (e.g., the number) of particles can be determined. In addition, where it is possible to remove coatings, or where the substrate permits (e.g., it is transparent), the surfaces can be examined directly using microscopy or electron microscopy to determine the amount of particles present at the exposed surface or adjacent to the substrate.

Embodiments of the coatings described herein are durable in that they can withstand some amount of abrasion without a substantial loss of HP/OP properties. To provide an endpoint for the loss of superhydrophobic (SH) behavior as a result of abrasion testing, substantially planar abraded surfaces are tested for their propensity to shed water droplets at an indicated angle of incline (5 degrees unless indicated otherwise). Typically, twenty droplets are placed on the surface to be assessed, which is inclined at the desired angle. The end of SH behavior is indicated when more than half (ten or more drops) stay in place. While such measurements provide a consistent endpoint, a skilled artisan will understand that, even when the endpoint is reached, the abraded surfaces may still be quite hydrophobic, e.g., having water contact angles greater than 130° or 140° in many instances.

Resistance to abrasion may be measured using any method known in the art including, but not limited to, mechanized or manual assessment with a Taber abrasion-testing instrument (e.g., a Taber “Abraser”) or a Crockmeter. Alternatively, a manual measure used to assess the durability of surfaces is a glove rub (GR) test. Each of those tests is described in more detail below.

For the purpose of this application, wherever Taber testing results are recited, the tests are conducted on a Taber Model 503 instrument using CS-0 or CS10 wheels with 250 g or 1,000 g loads as indicated. Unless indicated otherwise, a load of 1,000 g was employed, and tests were conducted at room temperature at a speed of 95 rpm.

Where resistance to the loss of HP is measured with a Crockmeter, a motorized American Association of Textile Chemists and Colorists (AATCC) CM-5 Crockmeter is employed. The finger of the Crockmeter is fitted with a 14/20 white rubber septum having an outside diameter of 13 mm and an inside diameter of 7 mm with a contact surface area of 94 mm2 (Ace Glass, Inc., Vineland, N.J., Catalog No. 9096-244). The septum is brought into contact with the coating with a force of 9N (Newtons). The end of superhydrophobic behavior is judged by the failure of more than half of the water droplets applied to the tested surface (typically 20 droplets) to run (roll) off when the surface is inclined at 5 degrees from horizontal. Abrasion resistance may also be measured using a manually operated AATCC Crockmeter.

Although an absolute correlation between Taber Abraser Testing, Crockmeter testing, and glove-rub testing is not provided, the manual glove-rub test is useful as an indication of the durability of the coated surface and its ability to be handled. Coatings applied to primed surfaces incorporating rigid particles (e.g., EXTENDO SPHERES) typically give a ratio of about 4.5 glove rubs/Taber Abraser cycles (250 g load) with CS-0 wheels and a ratio of about 7.5 glove rubs/Taber cycles with CS-10 wheels. Coatings incorporating flexible first particles (e.g., black rubber particles) typically give a ratio of about 7.6 glove rubs/Taber Abraser cycles (250 g load) with CS-0 wheels and a ratio of about 12.9 with CS-10 wheels. Results are given below for coatings of several thicknesses, where the thickness measurement includes the thickness of the primer layer. The number of strokes observed in Crockmeter testing is generally about one fourth of the number of “glove rubs” observed in the manual glove rub testing.

Nearly Transparent Coating with Clear Hollow Rigid Thermoplastic First Particles

CS-0 Wheel CS-10 Wheel
Ratio Ratio
Approximate GR/ GR/
Glove Rubs Thickness Taber Taber Thickness Taber Taber
to loss of SH (mils) Cycles cycle (mils) Cycles cycle
500 1.1 130 3.8 1 60 8.3
500 2.1 100 5.0 2 70 7.1
500 3.5 110 4.5 3.5 60 8.3
500 4 110 4.5 4.5 80 6.3

Nontransparent Coating with Flexible Black Rubber First Particles

CS-0 Wheel CS-10 Wheel
Ratio Ratio
Approximate GR/ GR/
Glove Rubs Thickness Taber Taber Thickness Taber Taber
to loss of SH (mils) Cycles cycle (mils) cycles cycle
700 2.7 100 7.0 2.6 60 11.7
700 4.9 90 7.8 4.8 50 14
700 7.5 90 7.8 7.2 50 14
700 9.5 90 7.8 8.5 60 11.7

In addition to resisting the loss of HP/OP properties from abrasion, the compositions provided herein also provide durability in the form of resistance to other conditions. The coatings also resist loss of those properties when subject to:

    • Submersion in water (the duration a coating resists wetting at different depths in water);
    • Flowing water (the ability of a coating or surface treatment to resist the impact of flowing water such as a shower of water);
    • Exposure to liquids other than water (chemical durability and resistance to acids, alkalis, salts, and certain organic solvents such as alcohols);
    • Ultraviolet (UV) radiation;
    • Boiling water; and
    • Salt water, in the form of immersion, spray, or fog.

The elastomer-based coatings described herein have a variety of properties in addition to resisting the loss of HP/OP from abrasion including, but not limited to, resisting ice formation and/or adherence on the coating and flexibility over a wide range of temperatures (e.g., −35° C. to 205° C.).

In one embodiment, the HP/OP elastomeric coatings comprising plastic, glass or rubber first particles (e.g., EXPANCEL spheres or micronized rubber) have a relative electrical permittivity at 100 MHz from about 0.2 to about 4 at about 22° C. (e.g., a permittivity from about 0.2 to about 1, from about 1 to about 2, from about 2 to about 3, or from about 3 to about 4) as measured by ASTM D150 using a single 0.11 mm thick film, or three layers of 0.11 mm film to achieve a 0.33 mm thickness.

In addition to their other properties, the HP/OP coatings described herein can be described by their characteristic roughness that may be measured by any means known in the art. In some embodiments, the surface roughness is measured using a Mahr Pocket Surf PS1 (Mahr Federal Inc., Providence, R.I.). The roughness of a surface can be expressed using a variety of mathematical expressions including, but not limited to, its Arithmetical Mean Roughness and its Ten-Point Mean Roughness.

The coatings resulting from the application of the compositions provided for herein have in some embodiments a surface with an arithmetical mean roughness in a range selected from: greater than about 3 microns to about 4 microns; from about 4 microns to about 6 microns; from about 4 microns to about 8 microns; from about 4 microns to about 12 microns; from about 4 microns to about 20 microns; from about 5 microns to about 10 microns; from about 5 microns to about 12 microns; from about 5 microns to about 20 microns; from about 6 microns to about 10 microns; or from about 6 microns to about 14 microns.

In other embodiments, the coatings, resulting from the application of the compositions provided for herein, have in some embodiments a surface with a ten point mean roughness selected from: from about 7 microns to about 60 microns; from about 7 microns to about 70 microns; from about 7 microns to about 80 microns; from about 7 microns to about 100 microns; from about 8 microns to about 60 microns; from about 8 microns to about 80 microns; from about 8 microns to about 100 microns; from about 12 microns to about 60 microns; from about 12 microns to about 100 microns; from about 15 microns to about 60 microns; or from about 15 microns to about 100 microns.

A more complete discussion of the coating compositions, their methods of preparation and application, and their properties follows. A skilled artisan will understand that the description and examples set forth herein are provided as guidance, and are not limiting to the scope of the methods and compositions described herein.

1.0 Definitions

For the purposes of this disclosure, a HP material or surface is one that results in a water droplet forming a surface contact angle exceeding about 90° at room temperature (which is about 18° C. to about 23° C. for purposes of this disclosure). Similarly, for the purposes of this disclosure, a SH material or surface is one that results in a water droplet forming a surface contact angle exceeding 150° but less than the theoretical maximum contact angle of 180° at room temperature. As SH surface behavior encompasses water contact angles from about 150° to about 180°, SH behavior is considered to include what is sometimes referred to as “ultrahydrophobic” behavior. For the purpose of this disclosure the term hydrophobic (HP) shall include superhydrophobic (SH) behavior unless stated otherwise, and any and all embodiments, claims, and aspects of this disclosure reciting hydrophobic behavior may be limited to either hydrophobic behavior that is not superhydrophobic (contact angles from 90°-150°) or superhydrophobic behavior (contact angles of 150° or greater).

For the purposes of this disclosure an OP material or surface is one that results in a droplet of light mineral oil forming a surface contact angle exceeding about 90°. Similarly, for the purposes of this disclosure a SOP material or surface is one that results in a droplet of light mineral oil forming a surface contact angle exceeding 150° but less than the theoretical maximum contact angle of 180° at room temperature. For the purpose of this disclosure the term oleophobic (OP) shall include superoleophobic (SOP) behavior unless stated otherwise, and any and all embodiments, claims, and aspects of this disclosure reciting oleophobic behavior may be limited to either oleophobic behavior that is not superoleophobic (contact angles from) 90°-150° or superoleophobic behavior (contact angles of 150° or greater).

Anti-icing (AI) surfaces are surfaces that are resistant to ice formation and/or accretion in dynamic testing, or that prevent ice that forms from adhering to the surface (i.e., ice that forms can be removed with less force than from untreated metal surfaces).

For the purpose of this disclosure, HP/OP denotes hydrophobic behavior (including superhydrophobic behavior) or properties and/or oleophobic (including superoleophobic behavior) behavior or properties. HP/OP behavior may be understood to include anti-icing properties and any embodiment recited as having HP/OP behavior may be recited as having anti-icing properties, unless stated otherwise in this disclosure.

Durability, unless stated otherwise, refers to the resistance to loss of superhydrophobic or superoleophobic properties due to mechanical abrasion.

Alkyl as used herein denotes a linear or branched alkyl radical or group. Alkyl groups may be independently selected from C1 to C20 alkyl, C2 to C20 alkyl, C4 to C20 alkyl, C6 to C18 alkyl, C6 to C16 alkyl, or C6 to C20 alkyl. Unless otherwise indicated, alkyl does not include cycloalkyl.

Cycloalkyl as used herein denotes a cyclic alkyl radical or group. Cycloalkyl groups may be independently selected from: C4 to C20 alkyl comprising one, two, or more C4 to C8 cycloalkyl functionalities; C6 to C20 alkyl comprising one, two, or more C4 to C8 cycloalkyl functionalities; C6 to C20 alkyl comprising one, two, or more C4 to C8 cycloalkyl functionalities; C5 to C18 alkyl comprising one, two, or more C4 to C8 cycloalkyl functionalities; C6 to C18 alkyl comprising one, two, or more C4 to C8 cycloalkyl functionalities; or C6 to C16 alkyl comprising one, two or more C4 to C8 cycloalkyl functionalities. Where two or more cycloalkyl groups are present they may be present as fused rings or in a spiro configuration. One or more hydrogen atoms of the cycloalkyl groups may be replaced by fluorine atoms.

Haloalkyl as used herein denotes an alkyl group in which some or all of the hydrogen atoms present in an alkyl group have been replaced by halogen atoms. Halogen atoms may be limited to chlorine or fluorine atoms in haloalkyl groups.

Fluoroalkyl as used herein denotes an alkyl group in which some or all of the hydrogen atoms present in an alkyl group have been replaced by fluorine atoms.

Perfluoroalkyl as used herein denotes an alkyl group in which fluorine atoms have been substituted for each hydrogen atom present in the alkyl group.

Rubber phase as used herein denotes a portion of styrene block copolymers having synthetic rubber attributes. In SBCs rubber phases are typically flanked or joined by polystyrene units that may function as end blocks. Typical synthetic rubbers include an isoprenoid or a polyolefin such as polybutadiene, polyisoprene, or ethylene/butylene.

For the purpose of this disclosure, unless stated otherwise, when content is indicated as being present on a “weight basis,” the content is measured as the percentage of the weight of the components indicated to the total weight of the composition (including recited/required solvents). Optional solvents are not included in the weight of the composition.

“Colorant” as used herein is a material added to the coating composition to cause a change in color, i.e., become colored. Colorants can be dyes which bind at least a portion of the material to be colored, insoluble pigments that are dispersed in at least a portion of the material to be colored, colored chemicals that are dispersed or dissolved in at least a portion of the material to be colored, or inks, which may be any combination of dyes, pigments and colored chemicals. In some embodiments, first or second particles may comprise colorants or may be prepared from materials that are colored.

2.0 Elastomeric Binders

Elastomers are polymers that are elastic (i.e., have viscoelasticity), and which generally have a low Young's modulus and high yield strain compared with other materials. Elastomers may be thermoset materials, which require vulcanization (e.g., covalent crosslinking) during curing, or thermoplastic materials (thermoplastic elastomers), in which the crosslinks are weaker dipole or hydrogen bonds.

Elastomeric binder systems employed to make elastomeric coatings (elastomer based coatings) having HP/OP properties are typically comprised of copolymers of polystyrene and a rubber (a rubber phase) known as Styrenic Block Copolymers (SBCs). SBCs are a class of thermoplastic elastomers consisting of a two-phase structure of hard polystyrene end blocks and soft rubber midblocks. The polystyrene end blocks associate to form domains that lock the molecules into place without vulcanization. Since this is a reversible process, the material can be processed on conventional thermoplastic equipment or dissolved in a suitable solvent for application as a coating. Polystyrene end blocks impart strength and the rubber phase midblocks impart elasticity. FIG. 1 shows a schematic of a typical SBC copolymer, where the rubber phase is linked to the polystyrene phase. In SBCs the rubber phase can be a synthetic rubber such as, for example, ethylene/butylene (EB e.g., —[CH2CH2CH2CH2CH(CH2CH3)CH2]n—) ethylene/propylene (EP, e.g., —[CH2CH2CH(CH3)CH2]n—), polybutadiene, polyisoprene, or polyolefin (see FIG. 1). FIG. 2 shows that the copolymers can have various spatial orientations such as linear, radial, or star like.

SBC compositions, when used as a base coating, produce highly durable HP/OP coatings as measured by a variety of different methods, including those described herein. Moreover, the coatings are compatible with and adhere tightly to a broad range of materials, permitting a large number and type of objects and substrates to be coated.

SBC elastomers offer a variety of advantages and properties for the preparation of base coats used to prepare HP/OP coatings. As they can be dissolved/suspended in a number of solvents, they may be formulated into compositions that are amenable to application using standard equipment including conventional spray guns and aerosol canisters (e.g., an aerosol spray container comprises a valve assembly, a dip tube, and an actuator). As a base coating composition for use in a multi-step (e.g., two-step, three-step, four-step . . . ) HP/OP coating process, SBC elastomer formulations offer flexibility during application and in the application of the second component of the HP/OP coating process. The elastomeric first component can be applied to form a base coating and the second component, which comprises second particles whose application renders the coating HP/OP, can be applied to the base coating when it is wet, tacky, dry to touch, or even completely dried and cured.

A variety of SBCs may be employed to prepare the HP/OP coatings described herein. In an embodiment the SBC-containing binder compositions comprise a rubber phase comprising ethylene/butylene (EB e.g., —[CH2CH2CH2CH2CH(CH2CH3)CH2]n—). In another embodiment, the SBC-containing binder compositions comprise a rubber phase comprising (poly)butadiene (e.g., styrene-butadiene-styrene (SBS) elastomeric polymers. In other embodiments, the rubber phases of suitable SBC polymer compositions comprise ethylene/propylene (EP e.g., —[CH2CH2CH(CH3)CH2]n—), polybutadiene, polyisoprene or polyolefin. In another embodiment, binder compositions used for the preparation of durable HP/OP coatings comprise a mixture of any two, three, or four SBC elastomers having rubber phases comprising: ethylene/butylene butadiene, ethylene/propylene polybutadiene, polyisoprene or polyolefin.

Elastomeric coatings with an elongation at break that is greater than about 500%, 600%, 700%, 750%, or about 800% are generally desirable as binders for preparing the durable HP/OP coatings (e.g., coatings prepared with “Kraton G” elastomers), although elastomeric coating compositions with lower elongation at break values can be employed. The rubber component in the SBC copolymers of such elastomer compositions typically varies from about 69% to about 87%, but the rubber component may be about 65% to about 90%, about 67% to about 75%, about 75% to about 87%, or about 70% to about 80% (based on the weight of the SBC copolymer(s)). Among the commercially available SBC elastomer compositions that can be employed as binders for the HP/OP coating compositions described herein are those developed by KRATON® Polymers U.S. LLC. (Houston, Tex.). Various elastomeric polymers, compositions, and their properties are described, for example, in the KRATON® Polymers' Fact Sheet K0151 Americas available on the world wide web at: docs.kraton.com/kraton/attachments/downloads/82021AM.pdf.

In one embodiment the elastomers employed as binders may be ethylene butylene (EB) elastomeric polymers which have styrene domains (endblocks) and ethylene/butylene rubber phase midblocks. Such EB elastomers may comprise about 65% to 75% rubber phase midblocks, (e.g., about 65%, about 70% or about 75% rubber phase midblocks) and have an elongation at break of 500 to 800% using ASTM D412 on films cast from toluene solution with the grip separation speed set at 10 inches per minute. Some properties of KRATON® EB elastomers are detailed in Table 1.

In one embodiment the elastomers employed as binders may be styrene-butadiene-styrene (SBS) elastomeric polymers. Such SBS elastomers comprise about 60% to 74% butadiene by weight, and have an elongation at break of from 800 to 900% using ASTM D412 on films cast from toluene solution with the grip separation speed set at 10 inches per minute. Some properties of KRATON® styrene-butadiene-styrene (SBS) elastomeric polymers (KRATON® D SBS) are detailed in Table 2.

TABLE 1
EB Based Polymers*
G1633 G1650 G1651 G1652 G1654 G1657 G1660 G1726
(SEBS) (SEBS) (SEBS) (SEBS) (SEBS) (SEBS) (SEBS) (SEBS)
Property Linear Linear Linear Linear Linear Linear Linear Linear
Tensile Strength, 35 >28 31 >28 23 32 2
MPa1,2
300% Modulus 5.6 4.8 2.4 5.5
MPa1,2
Elongation at 500 >800 500 800 750 800 200
Break, %1,2
70 70 70 70 47 68 70
Specific Gravity 0.91 0.91 0.91 0.91 0.91 0.89 0.91 0.91
Brookfield
Viscosity, cps at
25° C.
25% w4 8,000 >50,000 1,800 >50,000 4,200 8,000 200
10% w4 50 1,800 30 410 65 50 10
—Melt Index g/10 min. <1 <1 <1 <1 <1 <8 <1 65
(5 kg) 200° C.
230° C. <1 <1 <1 5 <1 22 <1 <100
Styrene/Rubber 30/70 30/70 30/70 30/70 33/67 13/87 31/69 30/70
Ratio Fluffy Powder/ Powder/ Powder/ Powder/ Dense Powder Dense
Physical Form Crumb Fluffy Fluffy Fluffy Fluffy Pellet Pellet
Crumb Crumb Crumb Crumb
Diblock, % <1 <1 <1 <1 29 70
Comments FDA FDA FDA FDA FDA FDA FDA FDA
*polymers recited in this table supplied by KRATON ®
1ASTM method D412 tensile tester grip separation speed 10 in./min.
2Typical properties determined on film cast from toluene solution.
(3) Typical values on polymer compression molded at 177° C.
(4) Neat Polymer concentration in toluene

TABLE 2
SBS Elastomeric Polymers*
D0243
(SBS) D1101 D1102 D1116 D1118 D1133 D1152 D1153
Di- (SBS) (SBS) (SBS) (SBS) (SBS) (SBS) (SBS)
Property block Linear Linear Radial Diblock Linear Linear Linear
Tensile Strength, 2 32 32 32 2 21 32 28
MPa1.2
300% Modulus, 1.0 2.8 2.8 2.4 1.2 2.1 2.8 2.9
MPa1.2
Elongation at 880 880 900 600 800 900 800
Break,
%1.2
Set at Break, 10 10 10 40 20 10
%1.2
Hardness, 70 69 66 63 64 74 66 70
Shore A (10 sec.)3
Specific Gravity 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.96
Brookfield 315 4,000 1,100 9,000 630 4,800 1,000 1,650
Viscosity, cps at
25° C. (25% w)
Brookfield 2,500 420
Viscosity, cps at
25° C. (15% w)
Melt Index 20 <1 14 <1 10 <1 8 3
g/10 min.
(200° C./5 kg)
Styrene/Rubber 33/67 31/69 28/72 23/77 33/67 36/64 29/71
Ratio
Physical Form Porous Porous Porous Porous Porous Porous Porous Porous
Pellet Pellet Pellet Pellet Pellet Pellet Pellet Pellet
Powder Powder Powder Powder
Diblock, % 75 16 17 16 78 34 15 <1
D1155 D1184 D1186 D1189 D1191 D1192 DX405
(SBS) (SBS) (SBS) (SBS) (SBS) (SBS) (SBS)
Property Linear Radial Radial Radial Radial Linear Linear
Tensile Strength, 28 28 25
MPa1.2
300% Modulus, 2.9 5.5 3
MPa1.2
Elongation at 800 820 800
Break,
%1.2
Set at Break, 10 10
%1.2
Hardness, 87 68 74 68 68 66 53
Shore A (10 sec.)3
Specific Gravity 0.94 0.94 0.94 0.94 0.94 0.94 0.94
Brookfield 600 >20,000 TBD5 >20,000 1,500 v
Viscosity, cps at
25° C. (25% w)
Brookfield 1,100 1,200 TBD 1,100 2,000
Viscosity, cps at
25° C.
(15% w)
Melt Index 14 <1 <1 <1 <1 <1 3
g/10 min.
(200° C./5 kg)
Styrene/Rubber 40/60 31/69 30/70 31/69 33/69 30/70 24/76
Ratio
Physical Form Porous Porous Porous Porous Porous Porous Porous
Pellet Pellet Pellet Pellet Pellet Pellet Pellet
Powder Powder Powder Powder Powder
Diblock, % <1 16 10 16 18 <1 <1
*polymers recited in this table supplied by KRATON ®
1ASTM method D412 grip separation speed 10 in./min.
2Typical properties determined on film cast from toluene solution
3Typical values on polymer compression molded at 177° C.
4Neat polymer concentration in toluene
5TBD—To Be Determined

In another embodiment the elastomers employed as binders may be maleated styrene-ethylene/butylene-styrene (SEBS) elastomeric polymers. Such maleated SEBS elastomers comprise about 65% to about 90% (e.g., about 70% or about 87%) rubber midblocks by weight, and have an elongation at break of 500 to 750% using ASTM D412 on films cast from toluene solution with the grip separation speed set at 10 inches per minute. Maleated SEBS polymers typically have from about 0.8% to about 2.2% (e.g., 0.9% to 2.1% or 1% to 1.7%) of substitution. Some properties of KRATON® styrene-ethylene/butylene-styrene (SEBS) elastomeric polymers (KRATON® FG Polymers) are detailed in Table 3.

TABLE 3
Maleated SEBS Polymers
FG Polymer Grades*
FG1901 (SEBS) FG1924 (SEBS)
Property Linear Linear
Tensile Strength, MPa1 34 23
300% Modulus, MPa1
Elongation at Break, %1 500 750
Hardness, Shore A (10 sec)2 71 49
Specific Gravity 0.91 0.89
Brookfield Viscosity, 25% w 5,000 19,000
(toluene solutions) cps at 25° C. 110 270
10% w
Melt Index g/10 min (5 kg)
200° C. 5 11
230° C. 22 40
Styrene/Rubber Ratio 30/70 13/87
Physical Form Dense Pellet Dense Pellet
Comments FDA3 1.0% bound
1.7% bound functionality
functionality
*polymers recited in this table supplied by KRATON ®
1ASTM method D412-tensile tester grip separation speed 10 in./min.
2Typical values on polymer compression molded at 177° C.

In one embodiment the elastomeric binder comprises triblock copolymers of styrene and ethylene/butylene with a polystyrene content of: about 8% to about 14%, about 12% to about 20%, about 18% to about 28%, about 22% to about 32%, about 26% to about 36%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 16%, about 18%, about 19%, about 20%, about 22%, about 24%, about 26%, about 28%, about 30%, about 32%, about 34%, about 36% or mixtures of any two or more, three or more, or four or more of such triblock copolymers. Any one or more of such triblock copolymers may optionally comprise 1% to 3%, 1.4% to 2.0%, 1% to 1.4%, 1.6% to 3%, or 2% to 3% of bound maleic anhydride (maleated copolymers) and may be linear triblock copolymers. In one such embodiment the binder comprises two different maleated triblock copolymers of styrene and ethylene/butylene with a polystyrene: a first triblock copolymer of styrene and ethylene/butylene with a polystyrene having 0.4% to 1.6% (e.g., 0.5% to 1.5%, 0.6% to 1.4,% or 0.7% to 1.3%) substitution by maleic anhydride by weight of the first triblock copolymer (and optionally less than 0.3% maleic anhydride free); and a second triblock copolymer of styrene and ethylene/butylene with a polystyrene having 1.1% to 2.5% (e.g., 1.3 to 2.3 or 1.4 to 2.4%) substitution by maleic anhydride by weight of the second triblock copolymer. In such an embodiment the first and/or second triblock copolymers may be linear or branched copolymers (e.g., arborols or dendrimers), and the second triblock copolymers may be present in a weight ratio from about 4:1 to about 6.5:1 (e.g., the first copolymer to second copolymer ratio is about 4:1 to about 5.5:1, about 5:1 to about 6:1, or about 5.5:1 to about 6.5:1).

Persons skilled in the art will also recognize other elastomeric binders that may be used in place of or in addition to the elastomeric binders described in this disclosure.

In addition to comprising elastomeric polymers (e.g., SBCs), first particles and solvents, elastomeric binder systems that serve as first components optionally comprise a tackifier. Tackifiers may be present in any suitable amount, including in a range selected from about or from about 0.5% to about 30%; 1% to about 5%, from about 2% to about 8%, from about 3% to about 7%, from about 5% to about 10%, from about 10% to about 15%, from about 15% to about 20%, from about 20% to about 25%, or from about 25% to about 30%. Some suitable tackifiers, including totally synthetic (e.g., members of the Regalrez® family from Eastman Chemical) or modified resins or rosins are set forth in the section describing primers that follows.

First components, and primers discussed below, may further comprise light stabilizers and UV absorbers (UV stabilizers), fire retardants, and/or antioxidants. For example, Tinuvin® light stabilizing products (e.g., Tinuvin 328 and/or Tinuvin 770DF) produced by BASF®, and/or IRGANOX® antioxidant products (e.g., phenolic or hindered phenolic antioxidants such as IRGANOX® 1520 or IRGANOX® 150L) produced by BASF® may be included in the first component binder composition used to set down the base coat or in a primer. Where light/UV stabilizers, UV absorbers, fire retardants, and/or antioxidants are added to either or both of the first component or the primer, they are generally added in an amount less than 2% by weight (e.g., about 1%, 0.75%, 0.5%, 0.4%, 0.3%, 0.2% 0.1%, 0.075%, 0.06%, or 0.05%, or in a range selected from about 0.01% to about 2%, from about 0.05% to about 1.0%, or from about 0.75% to about 0.5% by weight), and take the place of a corresponding weight of any solvents that may be present.

In addition to the ease of application, elastomer based coatings that do not contain a colorant or significant amounts of opaque particles are nearly transparent to visible light. Typical light transmission (Total Luminous Transmittance or “TLT”) of an elastomeric binder coating prepared using SBCs having 15 micron thickness is approximately 90% (about 85% to about 92%) with a haze of about 61% (about 55% to about 65%). HP/OP coatings without added colorants that are about 25 microns thick prepared with clear first particles (e.g., EXPANCEL particles or other plastic or glass particles or hollow spheres) and fumed silica second particles treated with a silane (silanizing agent) can be nearly transparent. Such HP/OP coatings typically have a TLT of about 80% (about 75% to about 85%) with a haze of about 90% (about 85% to about 90%) as measure by ASTM D1003-11. For the measurements the instrument was calibrated against air and glass sample blanks and given a TLT of about 90% to about 91% and a haze of about 0.2%. Excluding or removing fine particulate materials such as talc used to increase the properties of commercially available elastomer compositions (e.g., flowability of bulk particulates) may increase TLT and haze values. Such fine particulates used in bulk elastomers may be removed by washing with a suitable solvent or by omitting the material from the elastomer compositions when they are prepared.

A variety of solvents may be employed to dissolve elastomeric binders for the preparation of coating compositions used to prepare the base coat of HP/OP coatings described herein. In some embodiments, the copolymers are dissolved in solvents selected from: methyl ethyl ketone (MEK), ethyl acetate, toluene, 1-chloro-4-(trifluoromethyl)-benzene, xylene or mixed xylenes (including technical grade xylenes), isopropyl acetate, 1,1,1,-trichloroethane, methyl isobutyl ketone (MIBK), tertbutyl acetate (t-butyl acetate), cyclohexane, methyl-cyclohexane, or mixtures comprising any two, three, four or more thereof. In one embodiment the solvent(s) are selected from those found in the solubility chart shown in FIG. 3, or mixtures of any two, three, four or more thereof. In another embodiment, the solvent comprises greater than 50%, 60%, 70%, 80%, 90%, 95%, 98% or 99% of a xylene (1,2-xylene, 1,3-xylene, or 1,4-xylene) or a mixture of any two or all three xylenes and optionally ethyl benzene (e.g., a technical grade of xylene comprising 34%-47% 1,3-xylene, 9%-21% 1,4-xylene, 4%-16% 1,2-xylene, 9%-10% ethylbenzene, 0%-1% toluene, and 0%-1% benzene).

In any of the foregoing embodiments, particularly where coatings are to be nearly transparent, the elastomeric binder components comprise at most insubstantial amounts (e.g., less than about 0.5% by weight of the polymers present in the binder) of colorants or particulates that are insoluble in solvents that dissolve the elastomeric polymers and/or that would block the transmission of visible light. One source of such particulates is materials added for the flowability of bulk polymers in the form of powders, pellets, or flakes (e.g., talc added to bulk SBCs).

3.0 Particles Employed In Hp/Op Oleophobic Coatings

3.1 First Particles

Embodiments of the coatings disclosed herein may comprise particles that are added to the binder compositions to improve the mechanical properties of the coating, e.g., the durability of the HP/OP coatings. A wide variety of such particles, which are also known as extenders or fillers, may be added to the binders. Those particles are denoted herein as “first particles” because the coatings described herein may have one or more additional types of particles. Such first particles that can be employed in the HP/OP coatings described herein include, but are not limited to, particles comprising: wood (e.g., wood dust), glass, metals (e.g., iron, titanium, nickel, zinc, tin), alloys of metals, metal oxides, metalloid oxides (e.g., silica), plastics (e.g., thermoplastics), carbides, nitrides, borides, spinels, diamonds, and fibers (e.g., glass fibers).

Numerous variables may be considered in the selection of first particles. These variables include, but are not limited to, the effect the first particles have on the resulting coatings, their size, their hardness, their compatibility with the binder, the resistance of the first particles to the environment in which the coatings will be employed, and the environment the first particles must endure in the coating and/or curing process, including resistance to temperature and solvent conditions. In addition, if light is used for curing the coatings or they are intended for extended exposure to sunlight, the particles must be resistant to the required light exposure conditions (e.g., resistant to UV light employed in curing or sunlight).

In embodiments described herein, first particles have an average size in a range selected from about 1 micron (μm) to about 300 μm or from about 30 μm to about 225 μm. Within the broader ranges, embodiments include ranges of first particles having an average size of from about 1 μm to about 5 μm, from about 5 μm to about 10 μm, from about 10 μm to about 15 μm, from about 15 μm to about 20 μm, from about 20 μm to about 25 μm, from about 1 μm to about 25 μm, from about 5 μm to about 25 μm, from about 25 μm to about 50 μm, from about 50 μm to about 75 μm, from about 75 μm to about 100 μm, from about 100 μm to about 125 μm, from about 125 μm to about 150 μm, from about 150 μm to about 175 μm, from about 175 μm to about 200 μm, from about 200 μm to about 225 μm, and from about 225 μm to about 250 μm. Also included within this broad range are embodiments employing particles in ranges from about 10 μm to about 100 μm, from about 10 μm to about 200 μm, from about 20 μm to about 200 μm, from about 30 μm to about 50 μm, from about 30 μm to about 100 μm, from about 30 μm to about 200 μm, from about 30 μm to about 225 μm, from about 50 μm to about 100 μm, from about 50 μm to about 200 μm, from about 75 μm to about 150 μm, from about 75 μm to about 200 μm, from about 100 μm to about 225 μm, from about 100 μm to about 250 μm, from about 125 μm to about 225 μm, from about 125 μm to about 250 μm, from about 150 μm to about 200 μm, from about 150 μm to about 250 μm, from about 175 μm to about 250 μm, from about 200 μm to about 250 μm, from about 225 μm to about 275 μm, or from about 250 μm to about 300 μm.

First particles may be incorporated into the elastomer binders at various ratios depending on the binder composition and the first particle's properties. In some embodiments, the first particles may have a content range selected from about 0.01% to about 60% or more by weight. Included within this broad range are embodiments in which the first particles are present, by weight, in ranges from about 0.02% to about 0.2%, from about 0.05% to about 0.5%, from about 0.075% to about 0.75%, from about 0.1% to about 1%, from about 0.5% to about 2.5%, from about 2% to about 5%, from about 5% to about 10%, from about 10% to about 15%, from about 15% to about 20%, from about 20% to about 25%, from about 25% to about 30%, from about 30% to about 35%, from about 35% to about 40%, from about 40% to about 45%, from about 45% to about 50%, from about 50% to about 55%, from about 55% to about 60%, and greater than 60%. Also included within this broad range are embodiments in which the first particles are present, by weight, in ranges from about 4% to about 30%, from about 5% to about 25%, from about 5% to about 35%, from about 10% to about 25%, from about 10% to about 30%, from about 10% to about 40%, from about 10% to about 45%, from about 15% to about 25%, from about 15% to about 35%, from about 15% to about 45%, from about 20% to about 30%, from about 20% to about 35%, from about 20% to about 40%, from about 20% to about 45%, from about 20% to about 55%, from about 25% to about 40%, from about 25% to about 45%, from about 25% to about 55%, from about 30% to about 40%, from about 30% to about 45%, from about 30% to about 55%, from about 30% to about 60%, from about 35% to about 45%, from about 35% to about 50%, from about 35% to about 60%, from about 40% to about 60%, from about 0.01% to about 5%, from about 0.03% to about 1%, from about 0.05% to about 0.15%, from about 0.1% to about 2.5%, from about 0.2% to about 5%, from about 0.05% to about 10%, from about 0.1% to about 10%, from about 0.05% to about 15%, or from about 0.05% to about 20%, on a weight basis.

In those embodiments where it is desirable to have coatings that are transparent, substantially transparent, or colored but transparent, it is generally desirable to employ particles that are transparent. In one set of embodiments, plastic (e.g., thermoplastic) microspheres are employed in the binder systems to develop surface texture. In another set of embodiments, glass microspheres are employed in the binder systems to develop surface texture.

In one embodiment, substantially spherical thermoplastic particles are added to the elastomeric binder composition to develop surface texture (e.g., EXPANCEL microspheres or EXPANCEL particles). Such microspheres consist of a polymer shell encapsulating a gas. The average diameter of these hollow spheres typically ranges from 6 to 45 μm and have a density of 1000 to 1300 kg/m3 (8.3-10.8 lbs/US Gallon). Upon heating, the microspheres expand and the volume of the microspheres can increase more than 40 times (with the diameter changing, for example, from 10 to 40 μm), resulting in a density below 30 kg/m3 (0.25 lbs/US Gallon). Typical expansion temperatures range from 80 to 190° C. (176-374° F.). When heating the microspheres the pressure of the gas inside the shell increases and the thermoplastic shell softens, resulting in a dramatic increase of the volume of the microspheres. Cooling the microspheres results in the shell stiffening again and produces lighter (lower density) expanded microspheres. Some thermoplastic microspheres produced under the EXPANCEL brand (AkzoNobel, distributed by Eka Chemicals, Inc., 2240 Northmont Parkway, Duluth, Ga. 30096, USA) are suitable for use in preparing HP/OP, particularly those that are substantially transparent. See Table 4.

TABLE 4
EXPANCEL particles and properties
Density of
Main Solid content EXPANCEL
types Varieties Description [%] [kg/m3]
Unex- EXPANCEL Wet. unexpanded 60-80 1000-1300
panded WU microspheres
micro- EXPANCEL Wet. unexpended 60-80 1000-1300
spheres WUF microspheres
EXPANCEL Dry, unexpanded >99 ~1000
DU microspheres
EXPANCEL Dry, treated, >99 ~1000
OUT unexpanded
microspheres
EXPANCEL Wet, salted,  40 1200
SL unexpanded
microspheres
EXPANCEL Wet, unexpanded  44 1200
SLU microspheres
EXPANCEL Dry, unexpanded 65 1000
MB microspheres (EXPANCEL)
mixed with a
matrix, e.g. EVA
Ex- EXPANCEL Wet, expanded  15 ~30
panded WE microspheres
micro- EXPANCEL Dry, expanded >89 25-70
spheres DE microspheres
EXPANCEL Dry, treated, >99 25
DET expanded
microspheres

Where HP/OP coatings capable of withstanding higher temperatures are desired, and particularly coatings that are substantially transparent, glass microspheres may be employed in place of thermoplastic microspheres. Such glass microspheres include those produced by 3M™ (St. Paul, Minn.) or Sphere One, Inc. (Chattanooga, Tenn.).

3.1.1 Exemplary Sources of First Particles

First particles may be prepared from the diverse materials described above. Alternatively, first particles may be purchased from a variety of suppliers. Some commercially available first particles that may be employed in the formation of the HP/OP coatings described herein include those in Table 5.

TABLE 5
First Particles
Particle
First First Particle First Size Crush
particle (Filler) First Particle Particle Range Strength Source
No. ID Type Details (g/cc) (μm) Color (psi) Location
1 K1 Glass Bubbles GPSa 0.125  30-120 White 250 3M ™j
2 K15 Glass Bubbles GPSa 0.15  30-115 White 300 3M ™j
3 S15 Glass Bubbles GPSa 0.15 25-95 White 300 3M ™j
4 S22 Glass Bubbles GPSa 0.22 20-75 White 400 3M ™j
5 K20 Glass Bubbles GPSa 0.2  20-125 White 500 3M ™j
6 K25 Glass Bubbles GPSa 0.25  25-105 White 750 3M ™j
7 S32 Glass Bubbles GPSa 0.32 20-80 White 2000 3M ™j
8 S35 Glass Bubbles GPSa 0.35 10-85 White 3000 3M ™j
9 K37 Glass Bubbles GPSa 0.37 20-85 White 3000 3M ™j
10 S38 Glass Bubbles GPSa 0.38 15-85 White 4000 3M ™j
11 S38HS Glass Bubbles GPSa 0.38 15-85 White 5500 3M ™j
12 K46 Glass Bubbles GPSa 0.46 15-80 White 6000 3M ™j
13 S60 Glass Bubbles GPSa 0.6 15-65 White 10000 3M ™j
14 S60/HS Glass Bubbles GPSa 0.6 11-60 White 18000 3M ™j
15 A16/ Glass Bubbles Floated 0.16  35-135 White 500 3M ™j
500 Series
16 A20/ Glass Bubbles Floated 0.2  30-120 White 1000 3M ™j
1000 Series
17 H20/ Glass Bubbles Floated 0.2  25-110 White 1000 3M ™j
1000 Series
18 D32/ Glass Bubbles Floated 0.32 20-85 White 4500 3M ™j
4500 Series
19 Expancel 551 Plastic Micro- Dry 0.042 ± 0.004 30-50 AkzoNobeli
DE spheres Expanded
40 d42
20 Expancel 551 Plastic Micro- Dry 0.042 ± 0.002 30-50 AkzoNobeli
DE 40 d42 ± 2 spheres Expanded
21 Expancel 461 Plastic Micro- Dry  0.07 ± 0.006 15-25 AkzoNobeli
DE 20 d70 spheres Expanded
22 Expancel 461 Plastic Micro- Dry  0.06 ± 0.005 20-40 AkzoNobeli
DE 40 d60 spheres Expanded
23 Expancel 461 Plastic Micro- Dry 0.025 ± 0.003 35-55 AkzoNobeli
DET 40 d25 spheres Expanded
24 Expancel 461 Plastic Micro- Dry 0.025 ± 0.003 60-90 AkzoNobeli
DET 80 d25 spheres Expanded
25 Expancel 920 Plastic Micro- Dry 0.030 ± 0.003 35-55 AkzoNobeli
DE 40 d30 spheres Expanded
26 Expancel 920 Plastic Micro- Dry 0.025 ± 0.003 35-55 AkzoNobeli
DET 40 d25 spheres Expanded
27 Expancel 920 Plastic Micro- Dry 0.030 ± 0.003 55-85 AkzoNobeli
DE 80 d30 spheres Expanded
28 H50/10000 Glass Bubbles Floated 0.5 20-60 White 10000 3M ™j
EPX Series
29 iMK Glass Bubbles Floated 0.6  8.6-26.7 White 28000 3M ™j
Series
30 G-3125 Z-Light CMb 0.7  50-125 Gray 2000 3M ™j
Spheres ™
31 G-3150 Z-Light CMb 0.7  55-145 Gray 2000 3M ™j
Spheres ™
32 G-3500 Z-Light CMb 0.7  55-220 Gray 2000 3M ™j
Spheres ™
33 G-600 Zeeo- CMb 2.3  1-40 Gray >60000 3M ™j
Spheres ™
34 G-800 Zeeo- CMb 2.2  2-200 Gray >60000 3M ™j
Spheres ™
35 G-850 Zeeo- CMb 2.1  12-200 Gray >60000 3M ™j
Spheres ™
36 W-610 Zeeo- CMb 2.4  1-40 White >60000 3M ™j
Spheres ™
37 SG Extendo- HSc 0.72  30-140 Gray 2500 Sphere Onef
sphere ™
38 DSG Extendo- HSc 0.72  30-140 Gray 2500 Sphere Onef
sphere ™
39 SGT Extendo- HSc 0.72  30-160 Gray 2500 Sphere Onef
sphere ™
40 TG Extendo- HSc 0.72  8-75 Gray 2500 Sphere Onef
sphere ™
41 SLG Extendo- HSc 0.7  10-149 Off 3000 Sphere Onef
sphere ™ White
42 SLT Extendo- HSc 0.4 10-90 Off 3000 Sphere Onef
sphere ™ White
43 SL-150 Extendo- HSc 0.62 70 Cream 3000 Sphere Onef
sphere ™
44 SLW-150 Extendo- HSc 0.68  8-80 White 3000 Sphere Onef
sphere ™
45 HAT Extendo- HSc 0.68  10-165 Gray 2500 Sphere Onef
sphere ™
46 HT-150 Extendo- HSc 0.68  8-85 Gray 3000 Sphere Onef
sphere ™
47 KLS-90 Extendo- HSc 0.56  4-05 Light 1200 Sphere Onef
sphere ™ Gray
48 KLS-125 Extendo- HSc 0.56  4-55 Light 1200 Sphere Onef
sphere ™ Gray
49 KLS-150 Extendo- HSc 0.56  4-55 Light 1200 Sphere Onef
sphere ™ Gray
50 KLS-300 Extendo- HSc 0.56  4-55 Light 1200 Sphere Onef
sphere ™ Gray
51 HA-300 Extendo- HSc 0.68  10-146 Gray 2500 Sphere Onef
sphere ™
52 XI0M 512 Thermo- MPRd 0.96  10-100 White 508 XIOM
plastic Corp.k
53 XIOM 512 Thermo- MPRd 0.96  10-100 Black 508 XIOM
plastic Corp.k
54 CORVEL ™ Thermo- Nylon 1.09 44-74 Black ROHM &
Black 78-7001 plastic Powder HASSg
Coating
55 Micro-glass Fibers MMEGFe 1.05 16X120 White Fibertech
3082
56 Micro-glass Fibers MMEGFe 0.53 10X150 White Fibertech
9007D Silane-
Treated
57 Tiger Drylac Polyester Tiger
Series 49 crosslinked Drylac
with TGIC USA, Inc.l
(triglycidyl
isocyanurate)
58 Soft- Rubber based 90, 180, or Various SoftPoint
Sand ® 300 colors Indust.
Copley, OH
aGPS—general purpose series
bceramic microspheres
chollow spheres
dmodified polyethylene resins
emicroglass milled E-glass filaments
fChattanooga, TN
gPhiladelphia, PA
hBridgewater, MA
iDistributed by Eka Chem., Inc., Duluth, GA
jSt. Paul, MN
kWest Babylon, NY
lSt. Charles, IL

3.2 Second Particles

The coatings disclosed herein employ second particles (e.g., nanoparticles), which are particles that bear, or are associated with, hydrophobic and/or oleophobic compounds or moieties (i.e., moieties that are covalently or non-covalently bound). The hydrophobic moieties can be introduced by treating the particles to include moieties such as siloxanes, fluorinated hydrocarbons (e.g., partly or fully fluorinated hydrocarbons) or nonfluorinated hydrocarbons. In an embodiment, second particles suitable for the preparation of elastomer-based HP/OP coatings have a size from about 1 nanometer (nm) to about 25 μm and are capable of binding covalently to one or more chemical moieties (groups or components) that provide the second particles, and the coatings into which they are incorporated, hydrophobicity, and when selected to include fluoroalkyl groups, hydrophobicity and oleophobicity.

In one embodiment the second particles have a surface area over 100, 150, 200, 250, or 300 square meters per gram (m2/g) of particulate. In another embodiment, where the particles are fumed silica, the surface area can be about or greater than 150, 175, 200, 225 or 250 m2/g.

Second particles having a wide variety of compositions may be employed in the durable HP/OP coatings described and employed herein. In some embodiments the second particles will be particles comprising metal oxides (e.g., aluminum oxides such as alumina, zinc oxides, nickel oxides, zirconium oxides, iron oxides, or titanium dioxides), or oxides of metalloids (e.g., metalloid oxides such as oxides of B, Si, Sb, Te and Ge) such as glass, silica (e.g., fumed silica), silicates, aluminosilicates, or particles comprising combinations thereof.

In some embodiments, the second particles may have an average size in a range selected from about 1 nm up to about 25 μm or more. Included within this broad range are embodiments in which the second particles have an average size in a range selected from: about 1 nm to about 10 nm, from about 10 nm to about 25 nm, from about 25 nm to about 50 nm, from about 50 nm to about 100 nm, from about 100 nm to about 250 nm, from about 250 nm to about 500 nm, from about 500 nm to about 750 nm, from about 750 nm to about 1 μm, from about 1 μm to about 5 μm, from about 5 μm to about 10 μm, from about 10 μm to about 15 μm, from about 15 μm to about 20 μm, from about 20 μm to about 25 μm, from about 1 nm to about 100 nm, from about 2 nm to about 200 nm, from about 10 nm to about 200 nm, from about 20 nm to about 400 nm, from about 10 nm to about 500 nm; from about 40 nm to about 800 nm, from about 100 nm to about 1 μm, from about 200 nm to about 1.5 μm, from about 500 nm to about 2 μm, from about 500 nm to about 2.5 μm, from about 1 μm to about 10 μm, from about 2 μm to about 20 μm, from about 2.5 μm to about 25 μm, from about 500 nm to about 25 μm, from about 400 nm to about 20 μm, from about 100 nm to about 15 μm, from about 1 nm to about 50 nm, from about 1 nm to about 400 nm, from about 1 nm to about 500 nm, from about 2 nm to about 120 nm, from about 5 nm to about 100 nm, from about 5 nm to about 200 nm; from about 5 nm to about 400 nm; from about 10 nm to about 300 nm; or from about 20 nm to about 400 nm.

In the above-mentioned embodiments, the lower size of second particles may be limited to particles greater than about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, or about 60 nm; and the upper size of second particles may be limited to particles less than about 20 μm, about 10 μm, about 5 μm, about 1 μm, about 0.8 μm, about 0.6 μm, about 0.5 μm, about 0.4 μm, about 0.3 μm, about 0.2 μm, or about 100 nm.

Any combination of particle size, particle composition, surface area, and/or percent composition in the coatings recited herein may be employed in preparing elastomer-based HP/OP coatings. Limitations on the upper and lower size of second particles may be used alone or in combination with any of the above-recited size limits on particle composition, surface area, percent composition in the coatings, and the like.

In some embodiments, the coatings may contain first particles in any of the above-mentioned ranges subject to either the proviso that the coatings do not contain only particles (e.g., first or second particles) with a size of 25 μm or less, or the proviso that the coatings do not contain more than an insubstantial amount of second particles with a size of 25 μm or less (recognizing that separation processes for particles greater than 25 μm may ultimately provide an unintended, insubstantial amount of particles that are 25 μm or less). An insubstantial amount of particles is less than 3% by weight or number of those particles, but it can also be less than 0.5%, 1%, or 2% wherever recited.

In other embodiments, second particles have an average size greater than 30 μm and less than 250 μm, and coatings comprising those particles do not contain more than insubstantial amounts of particles (e.g., first and second particles) with a size of 30 μm or less. In yet other embodiments, the coatings do not contain only particles (e.g., first and second particles) with a size of 40 μm or less, or particles with a size of 40 μm or less in substantial amounts. In addition, in still other embodiments, the coatings do not contain only particles (e.g., first and second particles) with a size of 50 μm or less, or particles with a size of 50 μm or less in substantial amounts.

In other embodiments, such as where the second particles are prepared by fuming (e.g., fumed silica or fumed zinc oxide), the second particles may have an average size in a range selected from about 1 nm to about 50 nm, from about 1 nm to about 100 nm, from about 1 nm to about 400 nm, from about 1 nm to about 500 nm, from about 2 nm to about 120 nm, from about 5 nm to about 100 nm, from about 5 nm to about 200 nm, from about 25 nm to about 100 nm, from about 30 nm to about 200 nm, from about 5 nm to about 400 nm, from about 10 nm to about 300 nm, from about 20 nm to about 400 nm, or from about 50 nm to about 400 nm.

As indicated above, second particles are treated to introduce one or more moieties (e.g., groups or components) that impart HP/OP properties to the particles, either prior to incorporation into the compositions that will be used to apply coatings or after incorporation into the coatings. In some embodiments, the second particles are treated with a silanizing agent, a silane, a siloxane or a silazane, to introduce hydrophobic/superhydrophobic and/or oleophobic/superoleophobic properties to the particles (in addition to any such properties already possessed by the particles).

In one embodiment, second particles are silica, silicates, alumina (e.g., Al2O3), titanium oxide, or zinc oxide that are treated with one or more silanizing agents, e.g., compounds of formula (I) (below). In other embodiments, second particles are comprised of silica, silicates, alumina (e.g., Al2O3), titanium oxide, or zinc oxide that are treated with a siloxane. In another embodiment, the second particles are silica, silicates, glass, alumina (e.g., Al2O3), titanium oxide, or zinc oxide, treated with a silanizing agent, a siloxane or a silazane. In another embodiment, the second particles may be a fumed metal or metalloid (e.g., particles of fumed silica or fumed zinc oxide).

In embodiments where a silanizing agent is employed, the silanizing agent may be a compound of the formula (I):
R4-nSi—Xn  (I)

where n is an integer from 1 to 3;

    • each R is independently selected from
      • (i) alkyl or cycloalkyl group optionally substituted with one or more fluorine atoms,
      • (ii) C1 to 20 alkyl optionally substituted with one or more substituents independently selected from fluorine atoms and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
      • (iii) C2 to 8 or C6 to 20 alkyl ether optionally substituted with one or more substituents independently selected from fluorine and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
      • (iv) C6 to 14 aryl, optionally substituted with one or more substituents independently selected from halo or alkoxy, and haloalkoxy substituents,
      • (v) C4 to 20 alkenyl or C4 to 20 alkynyl, optionally substituted with one or more substituents independently selected from halo, alkoxy, or haloalkoxy, and
      • (vi) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 or a C2 to 8 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4;
    • each X is independently selected from —H, —Cl, —I, —Br, —OH, —OR2, —NHR3, or —N(R3)2 group;
    • each R2 is an independently selected C1 to 4 alkyl or haloalkyl group; and
    • each R3 is an independently selected H, C1 to 4 alkyl, or haloalkyl group.

In some embodiments, R is an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms.

In other embodiments, R is an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms.

In other embodiments, R is an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms.

In other embodiments, R is an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms and n is 3.

In other embodiments, R is an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms and n is 3.

In other embodiments, R is an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms and n is 3.

In other embodiments, R has the form —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4.

In any of the previously mentioned embodiments of compounds of formula (I), the value of n may be varied such that 1, 2 or 3 independently selected terminal functionalities are present. Thus, in some embodiments, n is 3. In other embodiments, n is 2. In still other embodiments, n is 1.

In any of the previously mentioned embodiments of compounds of formula (I), all halogen atoms present in any one or more R groups may be fluorine.

In any of the previously mentioned embodiments of compounds of formula (I), X may be independently selected from H, Cl, —OR2, —NHR3, —N(R3)2, or combinations thereof. In other embodiments, X may be selected from Cl, —OR2, —NHR3, —N(R3)2, or combinations thereof. In still other embodiments, X may be selected from —Cl, —NHR3, —N(R3)2 or combinations thereof.

Any coating described herein may be prepared with one, two, three, four or more compounds of formula (I) employed alone or in combination to modify the nano-particles, and/or other components of the coating including filler-particles. The use of silanizing agents of formula (I) to modify nano-particles, or any of the other components of the coatings, will introduce one or more R3-nXnSi—groups (e.g., R3Si—, R2X1Si-, or RX2Si—groups) where R and X are as defined for a compound of formula (I). The value of n is 0, 1, or 2, due to the displacement of at least one “X” substituent and formation of at least one bond between a nano-particle and the Si atom (the bond between the nano-particle and the silicon atom is indicated by a dash “-” (e.g., R3Si—, R2X1Si—, or RX2Si—groups).

In other embodiments, suitable silanizing agents for modifying the nano-particles used in the coating compositions generally comprise those with fluorinated or polyfluorinated alkyl groups (e.g., fluoroalkyl groups) or alkyl groups (hydrocarbon containing groups) including, but not limited to:

(tridecafluoro-1,1,2,2-tetrahydrooctyl)silane (SIT8173.0);

(tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (SIT8174.0);

(tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (SIT8175.0);

(tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane (SIT8176.0);

(heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane (SIH5840.5);

(heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane (SIH5841.7);

n-octadecyltrimethoxysilane (SIO6645.0); n-octyltriethoxysilane (SIO6715.0); and

3,3,4,4,5,5,6,6,6-nonafluorohexyldimethyl(dimethylamino)silane (SIN6597.4) where the designations given in parentheses are the product numbers from Gelest, Inc., Morrisville, Pa.

Another group of reagents that can be employed to prepare first or second particles with hydrophobic and/or oleophobic properties include

(tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane:

(tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane;

nonafluorohexyldimethylchlorosilane

(tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane;

3,3,4,4,5,5,6,6,6-nonafluorohexyldimethyl(dimethylamino)-silane:

nonafluorohexylmethyldichlorosilane;

nonafluorohexyltrichlorosilane;

nonafluorohexyltriethoxysilane; and

nonafluorohexyltrimethoxysilane.

In one embodiment, the coating compositions set forth herein comprise silica second particles treated with nonafluorohexyltrichlorosilane.

In addition to the silanizing agents recited above, a variety of other silanizing agents can be used to alter the properties of second particles and to provide hydrophobic and/or oleophobic properties. In some embodiments, second particles may be treated with an agent selected from dimethyldichlorosilane, hexamethyldisilazane, octyltrimethoxysilane, or tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane. In such embodiments, the second particles may be silica. Silica second particles treated with such agents may have an average size in a range selected from about 1 nm to about 50 nm, from about 1 nm to about 100 nm, from about 1 nm to about 400 nm, from about 1 nm to about 500 nm, from about 2 nm to about 120 nm, from about 5 nm to about 150 nm, from about 5 nm to about 400 nm, from about 10 nm to about 300 nm, from about 20 nm to about 400 nm, or from about 50 nm to about 250 nm.

Other agents can be used to modify second particles, including, but not limited to, one or more of: polydimethylsiloxane, gamma-aminopropyltriethoxysilane, Dynasylan® A (tetraethylorthosilicate), hexamethyldisilazane, and Dynasylan® F 8263 (fluoroalkylsilane), any one or more of which may be used alone or in combination with the silanizing agents recited herein.

Two attributes of silanizing agents that may be considered for the purposes of their reaction with second particles and the introduction of hydrophobic or oleophobic moieties are the leaving group (e.g., X groups of compounds of the formula (I)) and the terminal functionality (e.g., R groups of compounds of the formula (I)). A silanizing agent's leaving group(s) can determine the reactivity of the agent with the first or second particle(s), or other components of the coating, if applied after a coating has been applied. Where the first or second particles are a silicate or silica (e.g., fumed silica) the leaving group can be displaced to form Si—O—Si bonds. Leaving group effectiveness is ranked in the decreasing order as chloro>methoxy>hydro (H)>ethoxy (measured as trichloro>trimethoxy>trihydro>triethoxy). This ranking of the leaving groups is consistent with their bond dissociation energy. The terminal functionality determines the level of hydrophobicity that results from application of the silane to the surface.

3.2.1 Some Sources of Second Particles

Second particles such as those comprising fumed silica may be purchased from a variety of suppliers including, but not limited to, Cabot Corp., Billerica, Mass. (e.g., Nanogel TLD201, CAB-O-SIL® TS-720 (silica, pretreated with polydimethylsiloxane), and M5 (untreated silica)) and Evonik Industries, Essen, Germany (e.g., ACEMATT® silica such as untreated HK400, AEROXIDE® silica, AEROXIDE® TiO2 titanium dioxide, and AEROXIDE® Alu alumina).

Some commercially available second particles are set forth in Table 6 along with their surface treatment by a silanizing agent or polydimethyl siloxane.

TABLE 6
Some commercially available second particles
Nominal BET
Product Surface Level of Surface Area of Base Particle Product
Name Treatment Treatment Product (m2/g) Size (nm) Source
M-5 None None 200 Cab-O-Sil
Aerosil ® 200 None None 200 12 Evonik
Aerosil ® 255 None None 255 Evonik
Aerosil ® 300 None None 300  7 Evonik
Aerosil ® 380 None None 380  7 Evonik
HP-60 None None 200 Cab-O-Sil
PTG None None 200 Cab-O-Sil
H-5 None None 300 Cab-O-Sil
HS-5 None None 325 Cab-O-Sil
EH-5 None None 385 Cab-O-Sil
TS-610 Dimethyldichlorosilane Intermediate 130 Cab-O-Sil
TS-530 Hexamethyldisilazane High 320 Cab-O-Sil
TS-382 Octyltrimethoxysilane High 200 Cab-O-Sil
TS-720 Polydimethylsiloxane High 200 Cab-O-Sil
Aerosil ® R202 Polydimethylsiloxane 100 14 Evonik
Aerosil ® Hexamethyldisilazane 125-175 Evonik
R504 (HMDS) and
aminosilane
Aerosil ® HMDS based on 220 Evonik
R812S Aerosil ® 300
BET Surface Area is Brunauer, Emmett and Teller surface area

As purchased, the particles may be untreated (e.g., M5 silica) and may not possess any HP/OP properties. Such untreated particles can be treated to covalently attach one or more groups or moieties to the particles that give them HP/OP properties, for example, by treatment with the silanizing agents discussed above.

3.2.2 Dispersants for Second Particles

Second particles can be applied to a base coating of elastomeric binder after it has been applied to the surface of an object (or a part thereof) in the form of a second component having a composition comprising one or more independently selected second particles as described above (e.g., second particles having a size of about 1 nanometer (nm) to about 25 microns (μm) wherein said particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles; wherein said second component optionally comprises one or more solvents (liquid dispersants).

If the elastomeric coating has not dried, or has been subjected to a solvent that dissolves at least the outermost portion of the binder (e.g., renders it sufficiently tacky), second particles may be applied directly to the elastomeric binder by contacting the second particles with the binder. Second particles may be contacted with the surface by any suitable means, including spraying them on the surface using a stream of gas (e.g., air, nitrogen, or an inert gas), exposing the binder coating to particles suspended in a gas, or contacting the base coat of elastomeric binder with a fluidized bed of second particles.

Second particles can also be applied to a base coating of elastomeric binder in a second coating component that, in addition to the second particles, contains a solvent (dispersant) that dissolves, expands or swells the outermost portion of the binder sufficiently (e.g., renders it tacky) to permit the second particles to become bound in at least the outermost portion of the binder base coat. Where second components of the coating composition comprise a solvent, the second particles are dispersed in the solvent for application. Second particles, and particularly smaller second particles (e.g., 1-50 nm or 1-100 nm), may form aggregates in solvents used as dispersants.

Suitable solvents include those with a surface energy lower than water including, but not limited to: alcohols, ketones, acetone, methyl ethyl ketone (MEK), ethyl acetate, toluene, xylene, isopropyl acetate, 1,1,1,-trichloroethane, methyl isobutyl ketone (MIBK), tertbutyl acetate (t-butyl acetate), cyclohexane, methyl-cyclohexane, or mixtures comprising any two, three, four or more thereof. In an embodiment, the solvents are non-aqueous (e.g., they contain less than 10%, 5%, 4%, 3%, 2%, 1%, or 0.5% of water by weight or they contain only insubstantial amounts of water). Solvents that are miscible with water are employed in the second coating component in another embodiment. In another embodiment, the solvent comprises a non-aqueous water miscible solvent. In one embodiment, the solvent employed in the second coating component is acetone or is comprised of acetone. In another embodiment the solvent employed in the second coating component is NMP (N-methylpyrrolidone) or is comprised of NMP. In other embodiments, the solvent employed in the second coating composition comprises a mixture of acetone or NMP with water, particularly a minor proportion of water (e.g., less than about 5%, less than about 4%, less than about 2%, less than about 1%, or less than about 0.5% water).

In one embodiment, the second component of the coating composition (i.e., the top coat) comprises:

i) one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles; and

ii) optionally, one or more independently selected solvents, wherein when said one or more solvents are present, said second particles may be present in a weight percent range selected from (0.1-1, 1.0-2.0, 0.2-2.0, 0.5-1.5, 0.5-2.0, 0.75-2.5, 1.5-2.0, 1.5-2.5, 2.0-3.0, 2.0-3.5, or 2.5-3.5) based on the weight of the one or more solvents and second particles.

In another embodiment, the second component of the coating composition (i.e., the top coat) comprises:

(i) 0.1 to 3.5 parts by weight (e.g., 0.1-1, 1.0-2.0, 0.2-2.0, 0.5-1.5, 0.5-2.0, 0.75-2.5, 1.5-2.0, 1.5-2.5, 2.0-3.0, 2.0-3.5, or 2.5-3.5) of second particles that comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles, or one or more siloxanes or silazanes associated with the second particles;

(ii) a fluorinated polyolefin, (e.g., a polymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, such as Dyneon™ THV); and/or a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer; and

(iii) a solvent for a the remainder of a total of 100 parts by weight.

In another embodiment, the fluorinated polyolefin (e.g., a polymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, such as Dyneon™ THV), if present, comprises from 0.1 to 1.0 parts by weight (e.g., 0.1-0.5, 0.5-1.0, or 0.3-0.7 parts) of the composition.

In another embodiment, the Fluoroethylene-Alkyl Vinyl Ether (e.g., the constituent polymer found in Lumiflon™), if present, comprises 0.06 to 0.6 parts by weight (e.g., 0.06-0.0.1, 0.1-0.2, 0.2-0.4, or 0.4-0.6 parts) of the composition. In such an embodiment the FEVE may have an average molecular weight of about 1,000 to 3,000 (e.g., about 1,000-2,000, 2,000-3,000, 1,500-2,500, or about 1,000, about 1,500, about 2,000, about 2,500, or about 3,000 Dalton). Accordingly, one embodiment of the second component comprises per 100 parts by weight:

i) 0.1 to 3.5 parts by weight (e.g., 0.1-1, 1.0-2.0, 0.2-2.0, 0.5-1.5, 0.5-2.0, 0.75-2.5, 1.5-2.0, 1.5-2.5, 2.0-3.0, 2.0-3.5, or 2.5-3.5) of one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles, or one or more siloxanes or silazanes associated with said second particles;

ii) 0.1 to 1.0 parts by weight (e.g., 0.1-0.5, 0.5-1.0, or 0.3-0.7 parts) of a fluorinated polyolefin, (e.g., a polymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, such as Dyneon™ THV); and/or

    • 0.06 to 0.6 parts by weight (e.g., 0.06-0.0.1, 0.1-0.2, 0.2-0.4, or 0.4-0.6 parts) of a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer, having an average molecular weight of about 1,000 to 3,000 (e.g., about 1,000-2,000, 2,000-3,000, 1,500-2,500, or about 1,000, 1,500, 2,000, 2,500, or 3,000 Da); and

(iii) one or more solvent for a the remainder of a total of 100 parts by weight.

Where the solvent employed in second coating compositions dissolves or renders at least the outermost layer of the elastomeric binder “tacky,” second particles can be introduced into completely dried and cured base coats of elastomeric binder. That permits the repair of worn or abraded coatings that have lost HP/OP behavior over all or part of their surface.

4.0 Surface Preparation and Priming

To improve the adherence and performance of the coatings described herein the surface to be coated, in whole or in part, should be clean, free of contaminants and capable of supporting the coatings (e.g., not friable).

Performance of the coatings in terms of their durability can be significantly improved by the application of a primer. Any primer compatible with both the surface of the object and the elastomeric coating can be employed.

A variety of primer compositions may be employed. In one embodiment the primers comprise one or more polymers that are elastic (i.e., have viscoelasticity), such as those that comprise the binder used in the first component of the coating compositions described herein (e.g., SBCs). In one embodiment, the primer comprises one or more polymers that are elastic (i.e., have viscoelasticity, e.g., SBCs) and a tackifier. In one embodiment, the primer is a PLASTI DIP™ metal primer f938hp.

In one embodiment, when a tackifier is employed, it may be selected from resins (e.g. rosins and their derivates; terpenes and modified terpenes; aliphatic, cycloaliphatic and aromatic resins (C5 aliphatic resins, C9 aromatic resins, and C5/C9 aliphatic/aromatic resins); hydrogenated hydrocarbon resins (e.g., Regalrez™ 1094, Eastman Chemical Co., Kingsport Tenn.), and mixtures thereof and/or terpene-phenol resins). In one embodiment the tackifier is an ester of hydrogenated rosin (e.g., FORAL™ 105-E ester of hydrogenated rosin).

In other embodiments the primer is an elastomeric primer comprising triblock copolymers of styrene and ethylene/butylene and an ester of a hydrogenated thermoplastic rosin (e.g., FORAL™ 105-E, Eastman Chemical). The polystyrene content of the triblock copolymers will typically be from about 8% to about 14%, from about 12% to about 20%, from about 18% to about 28%, from about 22% to about 32%, from about 26% to about 36%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 16%, about 18%, about 19%, about 20%, about 22%, about 24%, about 26%, about 28%, about 30%, about 32%, about 34%, or about 36%. Mixtures of any two or more, three or more, or four or more of such triblock copolymers may also be employed in the primer composition, and any one or more of such triblock copolymers may optionally comprise 1% to 3%, 1.4% to 2.0%, 1% to 1.4%, 1.6% to 3%, or 2% to 3% bound maleic anhydride (maleated copolymers). Any of the foregoing triblock copolymers may be linear or branched (e.g., dendrimers or arborols).

In one embodiment wherein the elastomeric primer comprises triblock copolymers of styrene and ethylene/butylene and an ester of a hydrogenated thermoplastic rosin, the primer comprises two different maleated triblock copolymers of styrene and ethylene/butylene with a polystyrene: a first triblock copolymer of styrene and ethylene/butylene with a polystyrene having 0.4% to 1.6% (e.g., 0.5% to 1.5%, 0.6% to 1.4,% or 0.7% to 1.3%) substitution of maleic anhydride by weight of the first triblock copolymer (and optionally less than 0.3% free maleic anhydride); and a second triblock copolymer of styrene and ethylene/butylene with a polystyrene having 1.1% to 2.5% (e.g., 1.3 to 2.3 or 1.4 to 2.4%) substitution of maleic anhydride by weight of the second triblock copolymer. In such an embodiment the first and/or second triblock copolymers may be linear or branched copolymers (e.g., arborols or dendrimers), and the second triblock copolymers may be present in a weight ratio from about 4:1 to about 6.5:1 (e.g., the first copolymer to second copolymer ratio is about 4:1 to about 5.5:1, about 5:1 to about 6:1, or about 5.5:1 to about 6.5:1). The ratio of the total triblock copolymer (first and second) to the ester of a hydrogenated thermoplastic rosin is typically 1:5 to 2.5:5 (triblock copolymers: ester(s) of hydrogenated thermoplastic rosin). Ratios for all three components include 7:1:25, 7.2:1.3:25, 7.6:1.6:25, and 8:1.8:25 (first triblock copolymer: second triblock copolymer: ester of a hydrogenated thermoplastic rosin).

In any of the foregoing embodiments the primers may also comprise insubstantial amounts (e.g., less than about 2% by weight of the polymers present in the binder, such as less than 1.0%, 0.75%, 0.5%, 0.25%, or 0.1%) of colorants or particulates that are insoluble in the solvents that dissolve the elastomeric polymers and/or that would block the transmission of visible light in the dried cured coating (e.g., talc added for the flowability of particles of the polymers as produced).

In any of the foregoing embodiments the primers may also comprise first particles for texture development in the primer and/or the base coat (i.e., a base coat of elastomeric binder with or without first particles).

In another embodiment, when a tackifier is employed it may be a hydrocarbon resin. In one embodiment where hydrocarbon resins are employed, they may be selected from resins such as those prepared from petroleum based feedstocks (e.g., aliphatic (C5), aromatic (C9), DCPD (dicyclopentadiene) resins, or mixtures of these).

Elastomeric primers not only promote bonding to substrate surfaces such as metals, but also provide for improved adhesion to the base coat. In addition, such primers compensate for differences in the coefficient of thermal expansion between the HP/OP coating and the substrate.

In other embodiments, primers comprise polyurethane polymers. Such polyurethane containing primers (“polyurethane primers”) demonstrate excellent bonding to many substrates including metallic substrates. When employing a polyurethane primer, it is possible to incorporate first particles into the primer and/or the base coat (a base coat of elastomeric binder with or without first particles) for texture development. Thus, in addition to promoting adhesion, the primer can also serve to develop texture with increased surface area for improved adhesion of the base coat comprising an elastomeric binder, develop wear resistance, and develop hydrophobicity/oleophobicity. The HP/OP coatings applied over the elastomeric primers or two part polyurethane primers described herein display essentially equal resistance to the loss of hydrophobicity in Taber Abraser wear/abrasion resistance tests (as measured by Taber Abraser cycles) when abrasive (CS-10) and soft (CS-0) wheels are employed.

5.0 Coating Application Method:

The coatings described herein (including any underlying primer) can be applied to surfaces using any means known in the art including, but not limited to, brushing, painting, printing, stamping, rolling, dipping, spin-coating, spraying, or electrostatic spraying. In one embodiment, one or more of a primer, base coat and/or top coat are applied by spraying. In another embodiment, each of a primer (if present), base coat and top coat are applied by spraying.

In one embodiment the first and second coating compositions described herein are separately prepackaged in a delivery system/apparatus for spray applications, such as aerosol canisters (e.g., pre-pressurized aerosol cans). In such an embodiment, the first component and second component can be packaged in separate delivery systems/apparatus. A propellant is added to the system/apparatus that serves to drive the components out of their canisters for delivery. Propellants will typically be a gas at 25° C. and 1 atmosphere, but may be in a different phase (liquid) under pressure, such as in a pressurized aerosol delivery system. The propellant may be a gas (e.g., air or nitrogen) or a liquefiable gas having a vapor pressure sufficient to propel and aerosolize the first and/or second components as they exit their delivery system/apparatus). Some exemplary propellants include: liquefied petroleum gases, ethers (e.g., dimethyl ether (DME) and diethyl ether); C1-C4 saturated hydrocarbons (e.g., methane, ethane, propane, n-butane, and isobutene); hydrofluorocarbons (HFC) (e.g., 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,3,3,3,-heptafluoropropane (HFC-227HFC), difluoromethane (HFC-32), 1,1,1-trifluoroethane (HFC-143a), 1,1,2,2-tetrafluoroethane (HFC-134), and 1,1-difluoroethane (HFC-152a)), and mixtures comprising any two, three or more of the foregoing. In another embodiment, the propellant is a blend of n-butane and propane.

Generally, the surfaces will be rigid or semi-rigid, but the surfaces can also be flexible, for example in the instance of wires, tapes, rubberized materials, gaskets, and ribbons.

The coatings described herein can be applied to virtually any substrate to provide HP/OP properties. The choice of coatings and coating processes that will be used may be affected by the compatibility of the substrate and its surface to the coating process and the component of the coating compositions. Among the considerations are the compatibility of the substrate and its surface with any solvents that may be employed in the application of the coatings and the ability of a desired coating to adhere to the substrate's surface.

Coatings may take any desired shape or form, limited only by the manner and patterns in which they can be applied. In some embodiments, the coating will completely cover a surface. In other embodiments the coating will cover only a portion of a surface, such as one or more of a top, side or bottom of an object. In one embodiment, a coating is applied as a line or strip on a substantially flat or planar surface. In such an embodiment the line or strip may form a spill-resistant border.

The shape, dimensions and placement of HP/OP coatings on surfaces can be controlled by a variety of means including the use of masks, which can control not only the portions of a surface that will receive a coating, but also the portions of a surface that may receive prior treatments such as the application of a primer layer or cleaning by abrasion or solvents. For example, where sandblasting or a chemical treatment is used to prepare a portion of a surface for coating, a mask resistant to those treatments would be selected (e.g., a mask such as a rigid or flexible plastic, resin, or rubber/rubberized material). Masking may be attached to the surface through the use of adhesives, which may be applied to the mask agent, the surface, or both.

In another embodiment HP/OP coatings are applied to a ribbon, tape or sheet that may then be applied to a substrate by any suitable means including adhesive applied to the substrate, the ribbon or tape, or both. Ribbons, tapes and sheets bearing a superhydrophobic coating may be employed in a variety of applications, including forming spill proof barriers on surfaces. Ribbons, tapes, and sheets are generally formed of a substantially flat (planar) flexible material where one side (the top) is made hydrophobic or superhydrophobic. This includes metal sheets, ribbons, and tapes such as aluminum tape or other tapes (e.g., metal adhesive tape, plastic adhesive tape, paper adhesive tape, fiberglass adhesive tape), wherein one side is coated with an HP/OP coating and adhesive is applied to the other side. Once such HP/OP ribbons, tapes, and sheets are prepared, they can be applied to any type of surface including metal, ceramic, glass, plastic, or wood surfaces, for a variety of purposes.

In one embodiment, HP/OP coatings are applied to the surface of an object by a method comprising:

(a) applying a first component to all or part of the surface of an object; followed by

(b) applying a second component to all or the part of the surface of said object to which said first component was applied.

In another embodiment, HP/OP coatings are applied by a coating method comprising:

(a) applying a first component of a two-component coating composition to all or part of the surface of an object; followed by

(b) applying a second component of the two-component coating composition to all or the part of the surface of said object to which said first component was applied.

In such an embodiment, the first component and second component may be applied using one or more methods selected independently from brushing, painting, printing, stamping, rolling, dipping, spin-coating, or spraying. Such a process is at least a two-step process, but may include additional steps, such as a second application of the second component making it a three or more step process.

In an embodiment, one or both of the first and second components are applied to a surface by spraying in a method comprising:

(a) spraying a first component of a two-component coating composition (e.g., an elastomeric binder and first particles) on all or part of the surface of an object; followed by

(b) spraying a second component of said two-component coating composition (e.g., second particles and optionally a solvent) on all or part of the surface of an object to which said first component was applied. In one embodiment, the spraying may be conducted using first, second, or both components packaged in aerosol spray canisters.

In an embodiment of the above-described coating process, a base coat of elastomeric polymer binder and first particles (e.g., EXPANCEL particles) is applied as the first component. Once the base coat loses sufficient solvent so that it: does not run when a second component is applied; is close to being dry to touch (e.g., is tacky); becomes dry to touch; or is dry, a second coating component (e.g., second particles and an optional dispersant such as acetone) is applied. The solvent in the dispersant helps attach the functional second particles to the binder of the base coat. Other than allowing any solvent used as a dispersant to evaporate no additional curing cycle is needed.

The coating obtained is durable and delivers HP/OP behavior and can be applied to a variety of substrates including metals, ceramics, polymerics and fabrics and in a number of specific applications as set forth below.

6.0 Applications:

The elastomeric coating described herein may be employed in a variety of applications including, but not limited to, coatings for all or part of:

  • 1) electronic equipment and their electronic components or subassemblies (e.g., circuit boards), including, but not limited to: cell phones, laptop computers, electronic tablets (e.g., iPads), cameras, video games, Global Positioning System (GPS) devices, radios, MP3 and electronic music players, watches, video equipment, security systems, satellite dishes and other portable electronics;
  • 2) shoes (e.g., athletic shoes, casual shoes, dress shoes) and apparel for medical and recreational use;
  • 3) toys such as toy vehicles (e.g., trucks, cars), bikes, scooters, playground equipment (e.g., swings, slides, teeter-totters), water toys, and toys for use in bathtubs;
  • 4) cleaning products—toilet brushes, toilet plungers, mops, dust mops and cloths;
  • 5) furniture and cooking preparation and serving surfaces including both indoor and outdoor furniture (e.g., lawn/patio furniture and park furniture such as tables, chairs and benches) or employed as spill resistant borders on surfaces that are substantially horizontal.
  • 6) pet products (e.g., litter boxes, litter scoopers, drinking and food bowls, collars, litter particles, animal beds);
  • 7) farm tools and home and garden tools including shovels, spades, and rakes;
  • 8) outdoor and exercise equipment (e.g., skis, snow boards), balls, in-line skates, roller skates);
  • 9) appliances—portions or entire refrigerator plates (e.g., spill proof borders), freezer liners, parts in washing machines, dishwashers, dehumidifiers, humidifiers, and dryers;
  • 11) baby/toddler products (e.g., car seats, potty seats, bibs, silverware (made from plastics), cups, plates and diapers (or parts thereof);
  • 12) food and beverage containers (e.g., bottles and containers for beverages, water, food);
  • 13) sports equipment including balls (e.g., baseballs, tennis balls, footballs, soccer balls), gloves, backpacks, and tents;
  • 14) bedding (sheets, mattresses, pillows, blankets);
  • 15) food processing equipment and kitchen equipment including coatings and/or spill resistant borders for counters, backsplashes, the walls behind counters where food is prepared, and abattoirs (e.g., wall coatings and/or curtains used to section off a slaughter floor);
  • 16) superhydrophobic body spray;
  • 17) automotive parts (e.g., bumpers, internal plastic parts, engine parts, structural parts, fender well (wheel well) liners, and car seats, particularly for convertibles);
  • 18) protective equipment (e.g., helmets, pads, and uniforms);
  • 19) building products (e.g., rain spouts, doors, counters (polymer), flooring, ceilings, screens, and roofing);
  • 20) laboratory equipment (e.g., trays, storage bins, tools, petri dishes, funnels, tubing and animal cages);
  • 21) electrical equipment (e.g., electrical housings, electrical wiring, motors, switches, insulators, and circuit boards);
  • 22) communications equipment (e.g., satellite dishes, antennas, and communications towers);
  • 23) plastic and/or metal tubing and piping (e.g., PVC piping, copper piping, plastic and steel piping);
  • 24) lavatory/bathroom equipment and fixtures (e.g., urinals, toilets, toilet seats, air and/or heat hand drying equipment, potty seat bowls, counters, sinks, and soap dispensers);
  • 25) medical products including: beds and bed parts, bed pans, tubing, tubular products, catheters, stents, surgical tools and operating room equipment (such as robotic surgical tools), operating room equipment (e.g., tables, light fixtures), walls, floors, sinks, imaging equipment/machinery, laboratory testing equipment/machinery, and medical instruments (e.g., medical instruments used in surgical and nonsurgical applications);
  • 26) wound care products, spray-on bandages, regular bandages, and body affecting products (e.g., skin and/or hair spray; and
  • 27) aviation and boating equipment (e.g., airplane fuselage, wings and instrumentation), and boat bottoms, decks, and other places throughout a boat.

Use of the coating can be facilitated by providing the first and second components for preparing the coatings described herein in a form that permits facile application. In one embodiment the first and/or second components are prepackaged in solvent or propellant delivery systems such as aerosol canisters (e.g., aerosol cans).

7.0 Coating Evaluation

Coatings prepared using the elastomeric binder first component and second coating composition described herein can be evaluated using one or more criteria including, but not limited to:

  • 1. transparency and appearance, which are evaluated both quantitatively and qualitatively;
  • 2. durability of the SH/OP behavior (wear resistance of the coating) to an applied force using:
    • 2a. semi-quantitative glove rub test in which the thumb of a latex rubber gloved hand is stroked by hand over the surface of the coating that has been applied to a substantially planar surface until the coating no longer shows superhydrophobic behavior. This test is a proxy for the ability of the surface to be handled and retain its HP/OP properties. During the test, the area of the surface contacted with the rubber glove is approximately 25 mm×25 mm and the force applied approximately 300 g (or about 0.5 g/square mm). The end of superhydrophobic behavior is judged by the failure of more than half of the water droplets applied (typically 20) to the tested surface to run (roll) off when the surface is inclined at 5 degrees from horizontal. FIG. 4 shows an exemplary testing apparatus used to determine the end of SH/OP,
    • 2b. loss of superhydrophobic behavior can also be judged after the surface is subject to the action of a cylindrical rubber finger moved across the surface. The finger is rubbed across the surface using a motorized American Association of Textile Chemists and Colorists (AATCC) CM-5 Crockmeter fitted with a 14/20 white rubber septum (outside diameter of 13 mm and inside diameter of 7 mm with a contact surface area of 94 mm2) to contact the coating with a force of 9N (Ace Glass, Inc., Vineland, N.J., Catalog No. 9096-244). The end of superhydrophobic behavior is judged by the failure of more than half of the water droplets applied to the tested surface (typically 20 droplets) to run (roll) off when the surface is inclined at 5 degrees from horizontal,
    • 2c. loss of superhydrophobic behavior when the samples are subject to Taber Abraser testing using CS-10 (abrasive) and/or CS-0 (non-abrasive) wheels at the indicated loads and speeds to determine the point at which the surfaces lose superhydrophobicity. Unless indicated otherwise, a load of 1,000 g is employed. All Taber tests were conducted at a speed of 95 rpm unless stated otherwise. The end of superhydrophobic behavior is judged by the failure of more than half of the water droplets applied to the tested surface (typically 20) to run (roll) off when the surface is inclined at 5 degrees from horizontal,
    • 2d. time to the loss of superhydrophobicity under a shower of water. Water is applied from a showerhead placed 152.4 cm (60 inches) above a substantially planar test surface inclined at 5 degrees from the horizontal, the showerhead having 70 nozzles with a 1 mm diameter orifice arranged in 5 spokes of 5 nozzles and 15 spokes of 3 nozzles about a central point on the circular showerhead. The apparatus delivers a shower of 6 liters of water per minute using about 137900 to about 310275 Pa (about 20 to about 45 psi) over an approximately circular area of about 150 cm in diameter at the level of the test surface. The time to loss of superhydrophobic behavior is determined to be the period of time after which water droplets from the shower begin to “stick” to the surface (no longer freely run off the surface) of a sample placed in the shower;
  • 3. coating thickness and/or surface roughness, expressed as the average roughness (Ra) unless stated otherwise. Surface roughness has been found to be an indicator that positively correlates with abrasion resistance (increasing abrasion resistance with increasing roughness);
  • 4. the ability of coated surfaces to resist ice formation in dynamic testing and the adherence of ice to surfaces;
  • 5. electrical properties including resistance and permittivity′
  • 6. oleophobicity, using either the contact angle of light mineral oil with the coating or by assessing the interaction of droplets of various liquid hydrocarbons having different surface tensions employed in the ATCC 118-1997 Oil Repellancy test with the coating surface. For testing, a coating is applied to a 4×4 inch substantially planar plate. After the plate has dried and cured it is placed on a 5±1 degree slope relative to the horizontal and five droplets of a test hydrocarbon are applied beginning with Kaydol™ (available from CBM Group of N.C. Inc., 1308 N. Ellis Ave., Dunn N.C. 28334). When droplets stick to the coating or wet the coating, the Score (Oil Repellency Grade Number) is assigned. Thus, Kaydol™ droplets rolling off earns a value of 1 or greater, 65:35 Kaydol™: n-hexadecane droplets rolling off earns a value of 2 or greater, and so on. All test are conducted at room temperature.

Score (Oil Repellency
Grade Number) hydrocarbon
0 None (Fails Kaydol ™)
1 Kaydol ™ (mineral oil)
2 65:35 Kaydol ™:n-hexadecane
3 n-hexadecane
4 n-tetradecane
6 n-dodecane
6 n-decane
7 n-octane
8 n-heptane

The oleophobicity of first or second particles (e.g., fumed silica treated with a silane, silazane, silanol, siloxane, fluorinated versions thereof, etc.) can be tested in the same manner. In such tests the first and/or second particles are applied to a clean 4×4 inch aluminum plate by spraying a suspension containing 2% particles 98% acetone by weight to form a coating of particles that cover the aluminum plate. After the plate has dried, the above-listed hydrocarbon liquids are tested on the particle coatings in the same manner as they would be on an elastomeric coating, and the particles scored in the same manner.

8.0 Certain Embodiments

Embodiment 1, has is divided into two sub-embodiments, that are recited below as embodiments 1.1. and 1.2. In embodiment 1.1 the second component comprises second particles and one or more solvents, but does not require a fluoropolymer. In contrast, the second component of sub-embodiment 1.2 requires not only second particles, but also a fluorinated polyolefin and/or a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer, and one or more solvents. In subsequent embodiments, any reference to embodiment 1 refers to either embodiment 1.1 and/or 1.2.

Embodiment 1.1 A combination of components for forming a coating comprising:

    • A) a first component which comprises:
      • i) an elastomeric binder comprising one or more styrenic block copolymers, wherein said elastomeric binder comprises from about 1% to about 30% of said one or more styrenic block copolymers by weight (e.g., about 1% to about 5%, about 5% to about 10%, about 10% to about 15%, about 15% to about 25%, or about 25% to about 30% of said one or more styrenic block copolymers);
      • ii) optionally, one or more independently selected first particles having a size of about 30 microns to about 225 microns, wherein, when said first particles are present, the first component comprises from about 0.01% to about 5% of said first particles by weight (e.g., about 0.01% to about 5%, about 0.03% to about 1%, about 0.05% to about 0.15%, about 0.1% to about 2.5%, or about 0.2% to about 5% of said first particles by weight); and
      • iii) one or more independently selected solvents; and
    • B) a second component which comprises:
      • i) one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles; and
      • ii) optionally, one or more independently selected solvents, wherein when said one or more solvents are present, said second particles may be present in a weight percent range selected from (0.1-1, 1.0-2.0, 0.2-2.0, 0.5-1.5, 0.5-2.0, 0.75-2.5, 1.5-2.0, 1.5-2.5, 2.0-3.0, 2.0-3.5, or 2.5-3.5) based on the weight of the one or more solvents and second particles.
        Embodiment 1.2 A combination of components for forming a coating comprising:
    • A) a first component which comprises:
      • i) an elastomeric binder comprising one or more styrenic block copolymers, wherein said elastomeric binder comprises from about 1% to about 30% of said one or more styrenic block copolymers by weight (e.g., about 1% to about 5%, about 5% to about 10%, about 10% to about 15%, about 15% to about 25%, or about 25% to about 30% of said one or more styrenic block copolymers);
      • ii) optionally, one or more independently selected first particles having a size of about 30 microns to about 225 microns, wherein, when said first particles are present, the first component comprises from about 0.01% to about 5% of said first particles by weight (e.g., about 0.01% to about 5%, about 0.03% to about 1%, about 0.05% to about 0.15%, about 0.1% to about 2.5%, or about 0.2% to about 5% of said first particles by weight); and
      • iii) one or more independently selected solvents; and
    • B) a second component which comprises per 100 parts by weight:
      • i) 0.1 to 3.5 parts by weight (e.g., 0.1-1, 1.0-2.0, 0.2-2.0, 0.5-1.5, 0.5-2.0, 0.75-2.5, 1.5-2.0, 1.5-2.5, 2.0-3.0, 2.0-3.5, or 2.5-3.5) of one or more independently selected second particles having a size of about 1 nanometer to about 25 microns, wherein said second particles comprise one or more independently selected alkyl, haloalkyl, or perfluoroalkyl moieties bound, either directly or indirectly, to said second particles, or one or more siloxanes or silazanes associated with said second particles;
      • ii) 0.1 to 1.0 parts by weight (e.g., 0.1-0.5, 0.5-1.0, or 0.3-0.7 parts) of a fluorinated polyolefin, (e.g., a polymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, such as Dyneon™ THV);
      • and/or
      •  0.06 to 0.6 parts by weight (e.g., 0.06-0.0.1, 0.1-0.2, 0.2-0.4, or 0.4-0.6 parts) of a Fluoroethylene-Alkyl Vinyl Ether (FEVE) copolymer, having an average molecular weight of about 1,000 to 3,000 (e.g., about 1,000-2,000, 2,000-3,000, 1,500-2,500, or about 1,000, 1,500, 2,000, 2,500, or 3,000 Da);
      • and
      • iii) one or more independently selected solvents for a the remainder of a total of 100 parts by weight.
  • 2. The combination of embodiment 1, wherein one or more of the styrenic block copolymers has a rubber phase crosslinked to the polystyrene phase.
  • 3. The combination according to any of embodiments 1 to 2, wherein one or more of the styrenic block copolymers has a rubber phase comprising polybutadiene, polyisoprene, polyolefin or a mixture of any of those rubber phase components (e.g., linear triblock copolymers of styrene and ethylene/butylene with a polystyrene content of about 8% to about 36% by weight (e.g., about 8% to about 12%, about 12% to about 18%, about 18% to about 24%, about 24% to about 30%, about 30% to about 36%, about 10% to about 20%, or about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 17%, about 19%, about 20%, about 22%, about 24%, about 26%, about 28%, about 30%, about 32%, about 34%, about 36%) or mixtures of any two or more, three or more, or four or more of such triblock copolymers, any one or more of which may optionally comprise 1% to 3% or 1.4% to 2.0% maleic anhydride).
  • 4. The combination according to any of embodiments 2 to 3, wherein said rubber component comprises 60%-98%, 60%-70%, 70%-80%, 60%-90%, 80%-90%, 83%-93%, 85%-95%, or 89%-98%, of the elastomer by weight (based on the dry weight of the elastomer present in the first component not including any contribution by the first particles or other materials present in that component).
  • 5. The combination according to any of embodiments 1 to 4, wherein said first component further comprises one or more colorants, UV stabilizers, antioxidants, rheological agents, and/or fillers.
  • 6. The combination according to any of embodiments 1 to 5, wherein said first component further comprises up to 30% by weight of one or more tackifiers (e.g., 1%-5%, 2%-8%, 5%-10%, 10%-15%, 15%-20%, 20%-25%, or 25%-30%).
  • 7. The combination of embodiment 6, wherein said one or more styrenic block copolymers and said one or more tackifiers together comprise up to about 30% by weight of said first component (e.g., up to about 10, 15, 20, 25, or 30%).
  • 8. The combination according to any of embodiments 1 to 7, wherein said elastomeric binder comprises one, two, three, or more triblock copolymers.
  • 9. The combination according to any of embodiments 1 to 8, wherein said elastomeric binder comprises one or more styrenic block copolymers of styrene and ethylene/butylene with a polystyrene content of about 8% to about 36% by weight (e.g., about 8% to about 14%, about 12% to about 20%, about 18% to about 28%, about 22% to about 32%, about 26% to about 36%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 16%, about 18%, about 19%, about 20%, about 22%, about 24%, about 26%, about 28%, about 30%, about 32%, about 34%, about 36%), or mixtures of any two or more, three or more, or four or more of such triblock copolymers.
  • 10. The combination according to any of embodiments 1 to 9, wherein one or more of said styrenic block copolymers present in the elastomeric binder comprise maleic anhydride (e.g., maleated copolymers having 1% to 3%, 1.4% to 2.0%, 1% to 1.4%, 1.6% to 3%, or 2% to 3% maleic anhydride based on the weight of the copolymer).
  • 11. The combination according to any of embodiments 1 to 10, wherein at least one, or at least two, of said one or more styrenic block copolymers is a linear copolymer or a branched copolymer (e.g., a dendrimer or arborol).
  • 12. The combination according to any of embodiments 1 to 11, wherein the elastomeric binder comprises a first and a second maleated triblock copolymer of styrene and ethylene/butylene wherein:
    • said first maleated triblock copolymer of styrene and ethylene/butylene has a polystyrene content from about 8% to about 14%, with 0.4% to 1.6% (e.g., 0.5% to 1.5%, 0.6% to 1.4%, or 0.7% to 1.3%) substitution (content by weight) of maleic anhydride by weight of the first triblock copolymer (and optionally less than 0.3% maleic anhydride free); and
    • said second maleated triblock copolymer of styrene and ethylene/butylene has a polystyrene content of about 22% to about 32%, with 1.1% to 2.5% (e.g., 1.3% to 2.3% or 1.4% to 2.4%) substitution of maleic anhydride by weight of the second triblock copolymer.
  • 13. The combination of embodiment 12, wherein said first and/or second triblock copolymers are independently selected linear or branched (e.g., arborols or dendrimers) copolymers.
  • 14. The combination according to any of embodiments 12 to 13, wherein said first and second triblock copolymers may be present in a weight ratio from about 4:1 to about 6.5:1 (e.g., the first copolymer to second copolymer ratio is:about 4:1 to about 5.5:1; about 5:1 to about 6:1; or about 5.5:1 to about 6.5:1).
  • 15. The combination according to any of embodiments 1-14, wherein said first particles are selected from the group consisting of: glass, ceramic, rubber, plastic, thermoplastic, wood, cellulose, metal oxides, silicon dioxide, silicates, tectosilicates, germanium dioxide, plastic particles, carbide particles, nitride particles, boride particles (e.g., zirconium or titanium boride), spinel particles, diamond particles, fly ash particles, fibers and hollow glass spheres, hollow glass particles or hollow plastic particles (e.g., glass, polymer, plastic or thermoplastic particles, spheres, or microspheres), wherein said first particles optionally comprise a colorant (e.g., colored or pigmented glass particles, plastic particles, rubber particles, hollow glass or hollow plastic particles).
  • 16. The combination according to any of embodiments 1 to 15, wherein said first particles comprise hollow glass or plastic particles (e.g., glass, polymer, plastic or thermoplastic particles or microspheres), and wherein said first particles optionally comprise a colorant.
  • 17. The combination according to embodiment 16, wherein said hollow glass or hollow plastic particles have a size (average diameter) in a range selected from the group consisting of 5 to 50 microns, 6 to 45 microns, 5 to 20 microns, 20 to 35 microns, and 35 to 50 microns.
  • 18. The combination according to any of embodiments 15 to 17, wherein said hollow plastic particles have a density selected from the group consisting of less than 60 kg/m3, less than 50 kg/m3, less than 40 kg/m3, less than 30 kg/m3, or less than 25 kg/m3, and wherein said hollow glass particles have a density selected from the group consisting of less than 125 kg/m3, less than 150 kg/m3, less than 200 kg/m3, less than 250 kg/m3, less than 300 kg/m3, less than 350 kg/m3, less than 400 kg/m3, less than 450 kg/m3, less than 500 kg/m3, less than 550 kg/m3, less than 600 kg/m3, or 600 kg/m3.
  • 19. The combination according to any of embodiments 1 to 18, wherein the second particles have an average size in a range selected from the group consisting of from: about 1 nm to about 100 nm; about 10 nm to about 200 nm; about 20 nm to about 400 nm; about 10 nm to 500 nm; about 40 nm to about 800 nm; about 100 nm to about 1 micron; about 200 nm to about 1.5 microns; about 500 nm to about 2 microns; about 500 nm to about 2.5 microns; about 1 micron to about 10 microns; about 2 microns to about 20 microns; about 2.5 microns to about 25 microns; about 500 nm to about 25 microns; about 400 nm to about 20 microns; and about 100 nm to about 15 microns.
  • 20. The combination according to any of embodiments 1 to 19, wherein said second particles comprise a metal oxide, an oxide of a metalloid (e.g., silica), a silicate, or a glass.
  • 21. The combination according to any of embodiments 1 to 20, wherein said second particles are comprised of silica and have an average size in a range selected from: about 1 nm to about 50 nm; about 1 nm to about 100 nm; about 1 nm to about 400 nm; about 1 nm to about 500 nm; about 2 nm to about 120 nm; about 5 nm to about 150 nm; about 5 nm to about 400 nm; about 10 nm to about 300 nm; or about 20 nm to 400 nm.
  • 22. The combination according to any of embodiments 1 to 21, wherein said second particles have an average size in the range of from 1 nm to 100 nm or from 2 nm to 200 nm.
  • 23. The combination according to any of embodiments 1 to 22, wherein said second particles comprise one or more hydrophobic and/or oleophobic moieties.
  • 24. The combination according to any of embodiments 1 to 23, wherein said second particles comprise one or more alkyl, fluoroalkyl, and/or perfluoroalkyl moieties that are covalently bound to the second particles directly, or bound indirectly through one or more atoms bound to the second particles.
  • 25. The combination according to any of embodiments 1 to 24, wherein said one or more hydrophobic or oleophobic moieties result from contacting the second particles with one or more silanizing agents of formula (I):
    R4-nSi—Xn  (I)
    • where n is an integer from 1 to 3;
      • each R is independently selected from
        • (i) alkyl or cycloalkyl group optionally substituted with one or more fluorine atoms,
        • (ii) C1 to 20 alkyl optionally substituted with one or more substituents independently selected from fluorine atoms and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
        • (iii) C2 to 8 or C6 to 20 alkyl ether optionally substituted with one or more substituents independently selected from fluorine and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
        • (iv) C6 to 14 aryl, optionally substituted with one or more substituents independently selected from halo or alkoxy, and haloalkoxy substituents,
        • (v) C4 to 20 alkenyl or C4 to 20 alkynyl, optionally substituted with one or more substituents independently selected from halo, alkoxy, or haloalkoxy, and
        • (vi) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 or a C2 to 8 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4;
      • each X is independently selected from —H, —Cl, —I, —Br, —OH, —OR2, —NHR3, or —N(R3)2 group;
      • each R2 is an independently selected C1 to 4 alkyl or haloalkyl group; and
      • each R3 is an independently selected H, C1 to 4 alkyl, or haloalkyl group.
  • 26. The combination according to embodiment 25, wherein each R is selected independently from:
    • (a) an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms;
    • (b) an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms;
    • (c) an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms;
    • (d) an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms when n is 2 or 3;
    • (e) an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms when n is 2 or 3; and
    • (f) an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms when n is 2 or 3.
  • 27. The combination according to any of embodiments 25 to 26, wherein R is —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4.
  • 28. The combination according to any of embodiments 25 to 27, wherein n is 1, 2, or 3.
  • 29. The combination according to any of embodiments 25 to 28, wherein all halogen atoms present in any one or more R groups are fluorine atoms.
  • 30. The combination according to any of embodiments 25 to 29, wherein each X is independently selected from —H, —Cl, —OR2, —NHR3, and —N(R3)2.
  • 31. The combination according to any of embodiments 25 to 30, wherein each X is independently selected from —Cl, —OR2, —NHR3, and —N(R3)2.
  • 32. The combination according to any of embodiments 25 to 31, wherein each X is independently selected from —Cl, —NHR3, and —N(R3)2.
  • 33. The combination according to any of embodiments 1 to 32, wherein two, three, four, or more than four compounds of formula (I) are employed alone or in combination to modify at least one second particle; or wherein said second particles incorporated into said second component have an Oil Repellancy Grade Number greater than or equal to about 1, 2, 3, 4, 5, 6, 7, or 8 when measured as a coating applied to a metal plate in the absence of a binder.
  • 34. The combination according to any of embodiments 1 to 33, wherein said second particles are treated with a silanizing agent selected from the group consisting of: tridecafluoro-1,1,2,2-tetrahydrooctyl)silane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane; n-octadecyltrimethoxysilane; n-octyltriethoxysilane; and nonafluorohexyldimethyl(dimethylamino)silane.
  • 35. The combination according to any of embodiments 1 to 34, wherein said second particles are treated with a silanizing agent selected from the group consisting of dimethyldichlorosilane, hexamethyldisilazane, octyltrimethoxysilane, polydimethylsiloxane, and (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane.
  • 36. The combination according to any of embodiments 1 to 35, wherein said first component and/or said second component further comprise an independently selected solvent and/or propellant.
  • 37. The combination of embodiment 36, wherein said solvent is an organic solvent or a mixture of two or more organic solvents, and wherein either said organic solvent or said mixture of two or more organic solvents comprises less than 10%, 5%, 2%, or 1% of water by weight.
  • 38. The combination of embodiment 36 or 37, wherein said solvent or propellant comprises greater than 1%, greater than 2%, greater than 5%, up to 10%, up to 20%, or greater than 20% by weight of any one, two, three or more of each of air, nitrogen, an inert gas, an alkane, a ketone, an ether, a halogenated alkane, a halogenated alkene, an aromatic hydrocarbon, an alcohol, methane, ethane, propane, butane, pentane, hexane, heptane, ethylene, propene, acetone, methyl isobutyl ketone (MIKB), methyl ethyl ketone (MEK), dimethylether (DME), diethylether, methyl ethyl ether, methyl tert-butyl ether, chloromethane, dichloromethane, carbontetrachloride, trichlorofluoromethane, dichlorodifluoromethane, methanol, ethanol, propanol, butanol, benzene, toluene, xylene, 1-chloro-4-(trifluoromethyl)-benzene, carbon disulfide, and isomers of any of the foregoing, based upon the total weight of solvent or propellant present in the composition.
  • 39. The combination according to any of embodiments 1 to 38, wherein either the first component and/or second component further comprise a colorant or pigment.
  • 40. The combination according to any of embodiments 1 to 39, wherein said elastomeric binder has an ultimate strength greater than about 20, 21, 22, 23, 24, 26, 28, 30, 32, or 34 Mega Pascals (MPa) (e.g., greater than about 2,500, 2,750, 2,800, 2,900, 3,000, 3,200, 3,500, 3,750, 4,000, 4,250, 4,500, 4,750, or 4,900 psi) according to ASTM D412.
  • 41. A method of forming a hydrophobic coating on a portion of a surface comprising the following steps:
    • (a) applying a first component according to any of embodiments 1 to 40 to at least a portion of the surface, wherein the portion of the surface has optionally been treated with a primer (e.g, an elastomeric primer) on all or part of the surface to which said first component is to be applied; and
    • (b) applying a second component according to any of embodiments 1 (i.e., 1.1 or 1.2) to 40 to all or a portion of the portion coated in step (a),
    • wherein said coating has either hydrophobic or superhydrophobic properties, and optionally is also oleophobic or superoleophobic.
  • 42. The method of embodiment 41, wherein said steps of applying said first component and applying said second component are conducted by methods selected independently from painting, printing, stamping, rolling, dipping, spin-coating, spraying, and electrostatic spraying.
  • 43. A coating prepared by the method according to any of embodiments 41 to 42.
  • 44. The coating of embodiment 43, wherein said coating is superhydrophobic and/or superoleophobic.
  • 45. The coating according to any of embodiments 43 to 44, wherein said coating has an ultimate strength greater than about 20, 21, 22, 23, 24, or 26 mega Pascals (MPa) (e.g., greater than about 2,500, 2,750, 2,800, 2,900, 3,000, 3,200, 3,500, or 3,750 psi) according to ASTM D412.
  • 46. The coating according to any of embodiments 43 to 45, wherein said coating has a modulus at 100% elongation of greater than 10, 11, 12, or 13 mega Pascals (MPa) (e.g., greater than about 1,700, about 1,750, about 1,800, or about 1,850 psi) according to ASTM D412.
  • 47. The coating according to any of embodiments 43 to 46, having an elongation at break of greater than about 100%, 110%, 120%, 140%, 160%, 180%, 200%, 250%, 300%, 350%, 400%, or 420%.
  • 48. The coating according to any of embodiments 43 to 47, having a relative electrical permittivity at 100 MHz from about 0.2 to about 4 at about 22° C. (e.g., a relative electrical permittivity from about 0.2 to about 1, from about 1 to about 2, from about 2 to about 3, or from about 3 to about 4) as measured by ASTM D150 using a 0.11 mm thick film.
  • 49. The coating according to any of embodiments 43 to 48, having a Total Luminous Transmittance of about 75% to about 85% and a haze of about 85% to about 90% as measure by ASTM D1003-11 on a film about 25 microns thick.
  • 50. The coating according to any of embodiments 43-49, wherein said coating is superhydrophobic and retains its superhydrophobicity after being subjected to greater than 20, 25, 30, 40, 50, 60, 70, 80, 90, or 100 cycles on a Taber Abraser using CS-0 or CS-10 wheels and a 250 gram load at 95 rpm at room temperature, wherein the end of superhydrophobicity is determined to be the point when more than half of the water droplets applied to the portion of the surface subject to the action of the wheels do not roll off the surface when the surface is inclined at a 5 degree angle at room temperature.
  • 51. The coating according to embodiment 50, wherein said coating retains its superhydrophobicity after being subjected to greater than 20, 25, 30, 40, 50, 60, 70, 80, 90, or 100 cycles on a Taber Abraser using CS-0 or CS-10 wheels and a 1,000 gram load at 95 rpm at 20° C.-25° C., wherein the end of superhydrophobicity is determined to be the point when more than half of the water droplets applied to the portion of the surface subject to the action of the wheels do not roll off the surface when the surface is inclined at a 5 degree angle at room temperature.
  • 52. The coating according to any of embodiments 43 to 51, wherein said coating is superhydrophobic and when said coating is applied to a planar surface, it continues to display superhydrophobic behavior after being subjected to a continuous shower test of about six liters of water per minute at about 20° C.-25° C. for greater than 0.3, 0.5, 0.6, 1, 2, 3, or 3.5 hours, wherein the duration of superhydrophobic behavior is determined to be the time when more than half of the water droplets applied to a portion of the surface subject to said shower do not roll off the surface when it is inclined at a 5 degree angle at room temperature,
    • wherein the shower test is conducted using a showerhead with 70 nozzles with a 1 mm diameter orifice arranged in 5 spokes of 5 nozzles and 15 spokes of 3 nozzles about a central point on a circular showerhead, and wherein the showerhead delivers approximately 6 liters of potable tap water per minute using about 137900 Pa (Pascals) to 310275 Pa (20-45 psi cycle over 5 minutes), and wherein the coating placed about 1.5 meters below the showerhead.
  • 53. The coating of embodiment 52, wherein, when said coating is subjected to said continuous shower test for a period of time sufficient to lose superhydrophobic behavior, the coating regains superhydrophobic behavior following drying at 20° C. to 25° C. and one atmosphere of pressure, said shower testing and drying collectively comprising a single test cycle.
  • 54. The coating of embodiment 53, wherein said coating regains superhydrophobic behavior following more than 5, 10, 15, 20, 30, 40, 50, 75, 100, 150, or 200 of said test cycles.
  • 55. A method according to embodiment 41 or 42, wherein applying according to step (b) is repeated to at least a portion of the coated surface if that portion of the coated surface loses said hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties, and wherein following the repetition of step (b), the coated portion regains hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties.
  • 56. A method according to embodiment 41 or 42, wherein both steps (a) and (b) are repeated on at least a portion of the coated surface if that portion of the coated surface loses said hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties, and wherein following the repetition of steps (a) and (b), the coated portion regains hydrophobic, superhydrophobic, oleophobic and/or superoleophobic properties.
  • 57. A coated surface, or a portion thereof, resulting from the process of embodiment 55 or 56.
  • 58. A product comprising an aerosol spray container (e.g., a metal canister) containing a first component according to any of embodiments 1 to 40 and a propellant.
  • 59. The product of embodiment 58, wherein the aerosol spray container comprises a valve assembly, a dip tube, and an actuator.
  • 60. A product comprising an aerosol spray container (e.g., a metal canister) containing a second component according to any of embodiments 1 to 40 and a propellant.
  • 61. The product of embodiment 60, wherein the aerosol spray container comprises a valve assembly, a dip tube, and an actuator.
  • 62. A product comprising an aerosol spray container according to embodiment 58 or 59, and a second aerosol spray container according to embodiment 60 or 61.
9.0 EXAMPLES Example 1 An HP/OP Elastomeric Coating

One part by weight of elastomeric coating (24% by weight of solids) supplied as clear liquid from PLASTI DIP™ International, Inc. (Blaine, Minn.) is combined with two parts by weight of xylene and mixed. The mixture of elastomer and xylene is divided into six aliquots and the indicated amounts of EXPANCEL 461 DET d25 (0.01% to 0.5% by weight based on the total weight of the elastomer and xylene mixture) is added to separate aliquots. The aliquots are mixed to form first component compositions. The first component compositions are sprayed onto individual aluminum plates to form a base coat. The base coated aluminum plates are then top coated with a second component consisting of a 2% (w/w) dispersion in acetone of fumed silica particles modified to render them hydrophobic by reacting them with tridecafluoro tetrahydroctyl trichloro silane (fumed silica to silane ration is 2:1 by weight). Test data for plates is summarized in the table below and the data is plotted in FIG. 5. Coatings formed from PLASTI DIP™ elastomer have a tensile strength of 3,740 psi (ASTM D-638), salt spray resistance greater than 1,000 hours (ASTM B-117) and elongation at break of 430% (ASTM D-638) without added first or second particles.

Data on HP/OP Elastomeric Coatings from Example 1

Approximate Taber Abraser
EXPANCEL Glove Cycles to loss of SH behavior Shower
wt % Rubs CS-0 wheel CS-10 wheel ( ) (hr)*
0.01% 100 22 (13)
0.03% 325 72 (43) 1
0.06% 700 156 (93)  2
0.10% 750 167 (100) 3.5
0.30% 500 111 (67)  3.5
0.50% 400 89 (53) 3.5
Taber cycles estimated based upon a value of 4.5 glove rubs per Taber cycle using CS-0 wheels and 7.5 glove rubs per Taber cycle (sample rotation) using CS-10 wheels. The number in parentheses is for the CS-10 data estimate. Taber load was 250 g.
*Shower test was terminated at 3.5 hours.

Data in the table above and FIG. 5 show that the abrasion resistance (glove rub performance and estimated Taber cycles) reaches a maximum when about 0.1% of EXPANCEL particles are incorporated into the base coat. Shower time to loss of superhydrophobicity also increases with increasing amounts of EXPANCEL particles incorporated in the base coat. Shower time to loss of superhydrophobic behavior saturates beyond 0.1% addition.

Example 2

Six first component mixtures are prepared as in Example 1 using 0.1% of five different types of EXPANCEL particles (duplicate samples containing EXPANCEL 031 DU 400), and the first components are each applied to a different aluminum plate by spraying to form a base coat. The base coating on each plate is then top coated with a second component comprising a 2% (w/w) dispersion of fumed silica particles treated with tridecafluoro tetrahydroctyl trichlorosilane suspended in acetone. For samples containing EXPANCEL 031 DU 400) the aluminum plates were heated to 80° C. for 2-3 minutes either before or after the application of the second component to expand the EXPANCEL particles. Test data for the plates are summarized in the table of performance data, below, and plotted in FIG. 6.

Performance Data by Using 0.1% by Weight of Different EXPANCEL Particles in Elastomeric Coating

EXPANCEL Glove Taber Abraser Cycles to Shower
type Rubs loss of SH behavior (hr)
461 DET d25 800 178 (106) 4
461 DE 40 d25 500 111 (67)  2.5
461 DET 40 d25 650 144 (87)  4
920 DE 80 d30 400 89 (53) 2.5
031 DU 40 75 17 (10) 0.5
(heated before
top coating)
031 DU 40 75 17 (10) 0.5
(heated after
top coating)
Taber cycles estimated based upon a value of 4.5 glove rubs per Taber cycle using a 250 g load, CS-0 wheels and 7.5 glove rubs per Taber cycle (sample rotation) using CS-10 wheels. The number in parentheses is for the CS-10 data estimate.

Data in the table above and FIG. 6 show that incorporation of EXPANCEL 461 DET d25 and EXPANCEL 461 DET 40 d25 produces a combination of resistance to the loss of HP/OP when being handled (“handleability” assessed by glove rubs and resistance to Taber abrasion testing), and shower time to loss of superhydrophobicity. Unexpanded EXPANCELs 031 DU 40 did not show good performance. The shower times track closely and positively correlate with glove rubs and Taber cycles (higher glove rubs correspond to higher shower time).

Example 3 Scaled Preparation of Fumed Silica Second Particles

A series of aluminum plates primed with PLASTI DIP™ primer for metals according to the manufacturer's instructions are base coated as in Example 1, with 0.1% EXPANCEL 461 DET d25 particles added to the first component, which is applied by spraying. After the base coat has dried at room temperature, one set of plates is treated with a second component as in Example 1. The second component comprises 20 g of 20-80 nm fumed silica particles having a surface area of about 200m2/g (Evonik Industries, Horsham PA), treated in an Osterizer kitchen blender for 10minutes at room temperature with 10 g of tridecafluoro tetrahydroctyl trichloro silane. A second set of plates is also treated with a second component as in Example 1, using silica from the same supplier prepared in a larger batch using 5,000 g of the silica reacted with tridecafluoro tetrahydroctyl trichloro silane 2,500 g in a 10 kg reactor system at room temperature for 2-3 hours. In this example, after top coats are applied the plates are dried for 15 minutes at 170° F. (77° C.). Two plates treated with fumed silica prepared in the blender and two plates treated with fumed silica prepared in the reactor are subjected to thickness and surface roughness measurements. The point at which the plates lose superhydrophobic behavior is also determined using Taber Abraser equipped with CS-0 wheels at a 1,000 g load and using glove rub testing. Loss of superhydrophobic behavior is deemed to be the point at which more than half of the water droplets applied to the tested portion of a substantially planar surface inclined at 5 degrees from the horizontal do not roll off the plate.

Data on plates coated with fumed silica particles prepared in the blender is summarized in Table 7, and data on plates treated with fumed silica prepared in the reactor is shown in Table 8.

TABLE 7
Blender Grade NPT 74
Coating Coating
Thickness Thickness
(mils) Ra (mils) Ra
Sample #1 Sample #1 Sample #2 Sample #2
0.73 2.61 1.1 3.267
0.67 2.66 1.01 3.337
0.49 0.82
0.76 1.08
Avg 0.6625 2.635 1.0025 3.302
Glove Rubs 600
Taber Abraser 50
cycles to
loss of SH

TABLE 8
Reactor Grade NPT 74
Coating Coating
Thickness Thickness
(mils) Ra (mils) Ra
Sample #1 Sample #1 Sample #2 Sample #2
0.92 3.246 1.07 3.027
1.35 3.259 0.94 2.35
0.88 0.86
1.01 0.88
Avg 1.04 3.2525 0.9375 2.6885
Glove Rubs 900
Taber Abraser 30
cycles to
loss of SH

The data in Tables 7 and 8 indicate that superhydrophobic coatings prepared with fumed silicas produced in reactors on different scales display similar properties.

Example 4 Transparency and Haze

Glass plates are coated with a near transparent coating based on elastomeric binder systems as in Example 1 with the exception that the plate marked P does not include first particles (EXPANCEL particles) in the base coat (first component). The plate marked SE-1 contains 0.1% of EXPANCEL particles in the first component. Samples are tested for Haze value and Total Luminous Transmittance (TLT) values using the method described in ASTM D1003. The instrument is calibrated without a sample present using air as a standard. Calibration values are TLT=100 and Haze=0. Clear, clean, uncoated glass plates have average readings of TLT=90.6 and a haze reading of 0.18. Plates lacking first particles (P-coat) have about the same transparency as clear clean glass. The presence of EXPANCEL particles in the base coat reduces the transparency by about 10%. The coating haze increases from about 0.18 for glass to about 61% for coatings without first particles and to about 90% for coatings including EXPANCEL particles in the base coating. See Table 9.

TABLE 9
Average
Reading 1 Reading 2 Reading 3 Readings
P-Coat Sample
(no first particles)
Transmittance 90.50 90.30 90.40 90.4
Haze 60.70 62.40 60.80 61.30
SE-1 Sample
(first particles included
in the base coat)
Transmittance 80.00 79.10 80.10 79.73
Haze 88.60 90.80 89.30 89.57

Example 5 Effect of Coating Thickness

Six aluminum plates (10 cm×10 cm) are primed with PLASTI DIP™ primer for metal (product f938 hp). Pairs of the primed plates are spray coated with first component as in Example 1 (0.1% EXPANCELs) to achieve a base coat thicknesses of about 1, 1.5, or 2.6 ml respectively. One plate at each coating thickness is top coated with 2 ml of the second component as described in Example 1, and the second plate at each coating thickness is top coated with 4 ml of second component. Coating thicknesses, which include the primer thickness, and Taber Abraser data are summarized in Table 10A and data is plotted in FIG. 7.

TABLE 10A
Data summary for plates made with varying coating thicknesses
Volume of Passes of Final Tabers (CS-10)
Topcoat Base Thickness to end of super-
Sample (mL) Coat (mil) hydrophobicity Notes
1.1 2 1 0.55 35 some
tearing
2.1 2 3 1.5 35 no tearing
3.1 2 5 2.6 35 no tearing
1.2 4 1 0.9 45 some
tearing
2.2 4 3 2.2 50 no tearing
3.2 4 5 2.9 50 no tearing

Based on the data above, 2 ml of top coat (0.02 ml/cm2) produces no benefits in performance improvement at any thickness. However, when the top coat is increased to 4 ml (0.04 ml/cm2), it provides an adequate performance that increases with coating thickness. While not wishing to be bound by any theory, it appears that at the higher application rate the top coat penetrates to some depth into the base coat. When only 2 ml (0.02 ml/cm2) is applied the coating may be sufficient to just cover the base coat, but not enough to permit the second particles to penetrate at any significant level that will increase the durability of SH performance. In addition, when the base coat is very thin, tearing becomes the failure mode.

Example 6 Effect of Priming with Polyurethane Primer

Aluminum plates are primed with a two-part polyurethane coating (DESMOPHEN 670BA with DESMODUR N75 BA-XBMS, Bayer Material Science) prepared and applied per manufacturer's instructions. An elastomeric coating as described in Example 1 (0.1% of EXPANCEL 461 DET d25) is employed in the first component. Coated plates are measured for coating thickness (including primer thickness) and their ability to resist the loss of superhydrophobic behavior using a Taber Abraser fitted with CS-10 (abrasive) wheels and CS-0 (soft rubber) wheels at a 1,000 g load is recorded. All end points for loss for superhydrophobic behavior are measured for water droplet roll off with the plates inclined at 5 degrees from the horizontal (5 degree tilt angle). Test data is summarized in Table 10B.

TABLE 10B
Summary of data on Al plates primed
with two-part polyurethane as primer
Sample
1 2 3
Total Coating Total Coating Total Coating
and Primer and Primer and Primer
Thickness Thickness Thickness
(mils) (mils) (mils)
3.25 3.13 4.7
3.13 3.06 4.9
3 3.1 4.16
3.32 3.45 4.24
4.15 4.01 4.47
Avg Thickness 3.37 3.35 4.494
CS-10 Wheel CS-0 Wheel Glove Rubs
Tabers CS-10 40
Tabers CS-0 40
Glove Rubs >1000

Example 7 Nearly Transparent HP/OP Elastomeric Coating with Various First Particles

Elastomeric coatings are prepared on aluminum test plates as described in Example 1, with the exception that the first component contains first particles as indicated in Table 11. The test plates are assessed for loss of superhydrophobic behavior using glove rubs as a rapid test for assessment of handleability and abrasion resistance/durability. Test data for all coated plates are summarized in Table 11.

TABLE 11
Summary of data for non near transparent
elastomeric binder system based coatings
Taber
Abraser
Particle Amount Glove Predicted
Particle Particle Size weight Rubs cycles with
Designation Type (micron) (%) (#s) CS-0 wheel*
EXPANCEL Thermo- 10-40 0.01 100 22
DET plastic
Encapsu-
lated
with gas
EXPANCEL Thermo- 10-40 0.1 750 167
DET plastic
Encapsu-
lated
with gas
EXPANCEL Thermo- 10-40 0.5 400 89
DET plastic
Encapsu-
lated
with gas
Hollow Hollow 25-90 0.5 800 178
Glass glass
Spheres spheres
K25
Hollow Hollow 15-70 0.5 >400 >89
Glass glass
Spheres spheres
K46
*Projected based on GR/CS-0 = 4.5

Thermoplastic particles and hollow glass particles yield similar performance in increasing coating durability.

Example 8 Non-Transparent Elastomeric Coatings Prepared with Micronized Rubber First Particles

PLASTI DIP™ (24% solids by weight) elastomeric coating (5 parts by weight of the liquid as provided by the supplier) is combined with seven parts by weight of xylene and mixed. To the resulting mixture of elastomer and xylene, micronized rubber particles (Lehigh Technology, Tucker, Ga.) about 4% or about 7.7% by weight are added to separate aliquots (based on the weight of the elastomer and xylene combined). The particles are mixed into each aliquot to form first component compositions. The first component compositions are applied to separate aluminum plates to form base coats, and the base coats are top coated with a second component as described in Example 1.

Test data showing resistance to the loss of superhydrophobicity based on glove rub testing and Taber testing for the coatings incorporating rubber particles is provided in Table 12. That data shows the incorporation of elastomeric binder used in this example with micronized rubber particles produces highly durable surfaces that show increasing resistance to the loss of hydrophobicity with increasing amounts of rubber first particles incorporated into the binder up to at least 7.69%.

TABLE 12
Summary of data on non near transparent
elastomeric binder based coatings
Particle Amount Glove Taber Abraser
Particle Particle Size weight Rubs cycles with
Designation Type (μm) (%) (#s) CS-0*
Micronized Ground 70 4 1450 191
Rubber Rubber
particles
Micronized Ground 70 7.69 1800 237
Rubber Rubber
particles
*Projected based on GR/CS-0 wheel ratio of 7.6 for a 250 g load at 95 rpm.

Example 9 Non-Transparent Elastomeric Coating with Micronized Rubber Particles with and without Primer

Elastomeric coatings are prepared as in Example 8 employing 7.69% of micronized rubber by weight in the first component. The coatings are applied to clean but unprimed aluminum plates or aluminum plates that have been treated with an elastomeric metal primer (PLASTI DIP™ metal primer) per the manufacturer's instructions. All plates are substantially planar. The top coating step is the same as in Example 8 and Example 1. The coated plates are assessed for resistance to the loss of SH behavior using a Taber Abraser fitted with CS-0 wheels or CS-10 wheels (as indicated) using 1,000 g loads at 95 rpm, resistance to the loss of SH behavior using glove rubs, and coating thickness, which is measured including primer where present. The appearance of coating failures is also recorded for each plate and the data set forth in Table 13.

TABLE 13
Observations from Taber Abraser Testing
of Plates With and Without Primer
Coating Without Primer
Coating Thickness
without primer (mil) Comments
Taber CS-0  6 cycles 1.5 Rips and Tears
Taber CS-10 10 cycles 1.5 Rips and Tears
Glove Rubs 1200 1.5 No Rips or Tears
With primer
Coating With Elastomeric Primer
with elastomeric Coating Thickness
primer (mil) Comments
Taber CS-0 50 cycles 1.75 No Rips or Tears
Taber CS-10 40 cycles 1.65 No Rips or Tears
Glove Rubs 1600 1.75 No Rips or Tears

The data indicates that samples with and without primer resist the loss of superhydrophobicity with a very large number of glove rubs. Taber Abraser testing results in a loss of that property due to ripping and/or tearing of the coating in the absence of primer. Loss of superhydrophobic behavior is assessed using the above-described droplet run off test with plates inclined at 5 degrees from the horizontal. Priming of the metal surfaces increases the number of Taber cycles the test samples can withstand without losing superhydrophobic behavior by about 4 to about 8 fold, regardless of whether non-abrasive rubber (CS-0) or abrasive (CS-10) wheels are employed.

Example 10 Thermal Stability of Elastomeric Coatings

Elastomeric coatings incorporating EXPANCELs as in Example 1, or micronized rubber as in Example 8, are scraped from their plates and used for thermogravimetric analysis (TGA). TGA data for the coatings is plotted in FIGS. 10 and 11, respectively. Details of the test conditions are listed inside each of the graphs. Data from these charts show the following:

1. The coating containing EXPANCEL is stable up to 241° C. (465° F.)

2. The coating containing micronized rubber is stable up to 261° C. (502° F.)

Based upon the data presented above the coatings may be used up to temperatures of 200° C. or 400° F.

Example 11 HP/OP Coatings Employing Varying Proportions of a Styrenic Block Copolymer and Tackifier

Three styrenic block copolymers (SBCs), FG 1901, FG 1924 and RP 6670, each obtained from KRATON®, are dissolved in xylene at 20% by weight. Regalrez™ 1094 tackifier, obtained from Eastman Chemical Company, is dissolved in xylene at 20% by weight. Varying ratios of SBCs and tackifier solutions are mixed and UV stabilizers and antioxidants, 0.1% Irganox® 1520L, 0.056% Tinuvin® 328, and 0.056% Tinuvin® 770DF (% by weight), are added.

Each of the mixtures of SBCs and tackifier formed is used as a first component and HP/OP coatings are prepared as in Example 1, using 0.1% EXPANCEL particles as first particles. The HP/OP coatings were tested for durability using a Taber Abraser equipped with CS-10 wheels and a 1,000 g load. The results are shown in Table 14.

TABLE 14
FG 1901/ FG 1924/ RP 6670/
Regalrez 1094 Regalrez 1094 Regalrez 1094
Glove Taber Glove Taber Glove Taber
Ratio Rubs cycles Ratio Rubs cycles Ratio Rubs cycles
43/57 300 35 25/75 300 30 25/75 500 30
50/50 400 40 50/50 750 35 33/66 500 40
57/43 550 45  66/33* 800 20 50/50 750 45
66/33 1000 60 66/33 1500 50
 75/25* 350 35  75/25* 1000 50
 90/10* 600 25
100/0*  600 25
*Taber testing induced tearing.

Example 12 HP/OP Coatings Employing Maleated Styrene-Ethylene/Butylene-Styrene (SEBS) Block Copolymers

Coatings were prepared using first components comprising maleated SBCs (e.g., maleated SEBS block copolymers)

TABLE 15
Total Component
Parts by Weight Exemplary Composition
Base Coat (Total of 100 Components
Component parts) (By weight where given)
Maleated SBC 7 to 9 One or more maleated Styrene-
Ethylene/Butylene-Styrene
(SEBS) Block Copolymers
(e.g., Kraton FG 1901, FG 1924
and/or RP 6670♦)
Tackifier 3.5 to 7 Nonpolar hydrogenated hydrocarbon
resin (e.g., produced by
polymerization and hydrogenation
of monomeric hydrocarbons) or
esterified hydrogenated rosin.
e.g., Eastman Regalrez ™ 1094 or
Foral ™ 105E
Antioxidant(s) 0.05 to 0.2 Antioxidant(s) (e.g., phenolic or
hindered phenolic antioxidants
e.g., Irganox 1520L
First Particles 0.05 to 20 Expancel 461 DET 40 d25
(0.05-0.2%) SoftSand 5-15%
Glass bubbles (e.g., K1, S22, or
A16/500) 1%-10%
UV 0.05 to 0.5 e.g., Tinuvin ® 328 and/or 770DF
stabilizer(s)
Solvent Bring to 100 xylene (or mixed xylenes), acetone,
parts total n-hexane (or mixed hexanes),
including all 1-chloro-4-(trifluoromethyl)-
other components benzene or mixtures thereof
Top Coat
Component Parts by weight Source
Reactor Grade 0.05 to 6.0 Ross Technology -- see Example 3
NPT 74 (e.g., 2%)
Solvent Bring to 100 xylene (including mixed xylenes or
parts by weight technical grade), acetone, n-hexane
total including (or mixed hexanes), 1-chloro-4-
all other (trifluoromethyl)-benzene or
components mixtures thereof
♦RP 6670 is a maleated form of KRATON series A polymers, which are hydrogenated block copolymers having styrene copolymerized with ethylene/butylene in the midblock (S-(EB/S)-S). Styrenic block copolymers (SBCs FG 1901, FG 1924 and RP 6670, each obtained from KRATON ®), tackifier (Regalrez ™ 1094 or FORAL ™ 105E obtained from Eastman Chemical Company), UV stabilizers (e.g., Tinuvin ® 328 and/or 770DF from BASF), antioxidants (e.g., Irganox ® 1520L) and first particles are dissolved/suspended in solvent using solvent to adjust the total components by weight to 100 parts.

The HP/OP coatings were tested for durability using a Taber Abraser equipped with CS-10 wheels and a 1,000 g load. The results are shown in Table 14.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US8704399 Jan 19065 Nov 1907Charles F KadeAdjustable bracket.
US219170110 May 193827 Feb 1940Montgomery Ward & Co IncDisplay apparatus
US297638631 Mar 195821 Mar 1961Salton Lewis LElectric food warmers
US318542613 Apr 196225 May 1965Johan Bjerke AlfDismountable shelf supporting unit and bracket therefor
US321210618 Jul 196319 Oct 1965American Radiator & StandardCoatings
US32445413 Feb 19615 Apr 196629 West Fifteenth Street CorpWater-repellent compositions and methods of making same
US335402231 Mar 196421 Nov 1967Du PontWater-repellant surface
US35795401 Nov 196820 Mar 1984 Title not available
US371650227 Nov 197013 Feb 1973Inmont CorpElastomeric thermoplastic polyester polyurethane compositions stabilized against hydrolysis
US39314284 Jan 19746 Jan 1976Michael EbertSubstrate coated with super-hydrophobic layers
US39505881 Nov 197413 Apr 1976Minnesota Mining And Manufacturing CompanyCoating of silanol-reactive surfaces with di-silyl poly(perfluorooxyalkylenes)
US396334927 Aug 197415 Jun 1976American Hospital Supply CorporationMethod and apparatus for determining coagulation times
US396703022 Jan 197529 Jun 1976Union Carbide CorporationSiloxanes
US39751976 Jan 197517 Aug 1976Minnesota Mining And Manufacturing CompanyCoated aluminum substrates
US39765728 Jan 197524 Aug 1976Michael EbertAircraft fuel contaminant tester
US39801537 May 197414 Sep 1976Peter AndrewsMotor vehicle oil drop pan apparatus device for indirectly saving lives and accidents on a highway
US414272430 Apr 19766 Mar 1979Michael EbertWater maze game with super-hydrophobic surface
US415132724 Feb 197824 Apr 1979Lawton William RComplex amine/silane treated cellulosic materials
US419914217 Apr 197822 Apr 1980Michael EbertToys and games using super-hydrophobic surfaces
US43011973 Dec 197917 Nov 1981Ppg Industries, Inc.Siloxane release surfaces on glass
US43012136 Nov 197917 Nov 1981The Glacier Metal Co., Ltd.Steel backing bearing blank with bonded ceramic layer, coating of polyarylene sulphide thereon and method of making
US4308353 *4 Feb 198129 Dec 1981Asahi Kasei Kogyo Kabushiki KaishaThermoplastic styrene polymer and grafted block copolymer compositions
US431175529 Dec 198019 Jan 1982E. I. Du Pont De Nemours And CompanyNon-stick coated steel article
US4377665 *29 Oct 198122 Mar 1983Asahi Kasei Kogyo Kabushiki KaishaProcess for producing block copolymer resin
US4397988 *22 Apr 19829 Aug 1983Mobil Oil CorporationBlends of p-methylstyrene polymer and diene-styrene or diene-(p-methylstyrene) block copolymers
US441540519 Aug 198115 Nov 1983Yale UniversityMethod for engraving a grid pattern on microscope slides and slips
US445161930 Sep 198229 May 1984Minnesota Mining And Manufacturing CompanyMethod of hydrophilizing or hydrophobizing polymers
US44535335 Feb 198212 Jun 1984Schott GlaswerkeFrame for plates of glass, vitreous ceramic or similar material, particularly for cooker hobs
US447485223 May 19832 Oct 1984Thomas B. CraneHydrophobic colloidal oxide treated core material, method of production and composition comprised thereof
US449221725 Feb 19838 Jan 1985Jenaer Glaswerk Schott & Gen.Panel assembly, particularly a glass or vitreous ceramic heater or cooker panel assembly
US453645426 Aug 198320 Aug 1985Pdi, Inc.Flexible coating composition and method of applying same
US45811495 Jun 19858 Apr 1986Mobil Oil CorporationZwitterionic quaternary ammonium sulfonates and sulfates and lubricants and fuels containing same
US459153019 Apr 198427 May 1986T.V.S. S.P.A.Soft ceramic kitchenware internally coated with a non-stick resin
US461446412 Jul 198530 Sep 1986Christensen Harry NAdjustable jig for hole formation
US462490012 Jun 198525 Nov 1986Rhone-Poulenc Specialites ChimiquesAqueous polysiloxane emulsions for anti-adhesive/water-repellent coatings
US46469483 Oct 19853 Mar 1987Container Mfg. Inc.Measuring container with modified pour-spout and method and apparatus for filling the same
US46801739 Apr 198114 Jul 1987Norman D. BurgerAerosol dispensing system
US46877075 Dec 198618 Aug 1987Asahi Glass Company Ltd.Low reflectance transparent material having antisoiling properties
US471618322 Nov 198529 Dec 1987Raychem Corp.Styrene-diene block copolymer compositions
US473384323 Mar 198729 Mar 1988Knape & Vogt Manufacturing CompanyFlexible glass shelf bracket
US473842616 Sep 198719 Apr 1988Knape & Vogt Manufacturing CompanyResilient sleeve glass shelf bracket
US47451399 Feb 198717 May 1988Pdi, Inc.Elastomeric coatings containing glass bubbles
US474911029 Jan 19877 Jun 1988Toyoda Gosei Co., Ltd.Spray can
US475397710 Dec 198628 Jun 1988General Electric CompanyWater repellent for masonry
US47821123 Nov 19871 Nov 1988Toray Silicone Company, Ltd.Silicone water-based emulsion composition
US483501413 Oct 198730 May 1989Wacker-Chemie GmbhMethod for imparting water repellency to absorbent inorganic building materials
US483726012 May 19876 Jun 1989Toagosei Chemical Industry Co., Ltd.Cyanoacrylate compositions
US485517610 Dec 19878 Aug 1989Kabushiki Kaisha Toyota Chuo KenkyushoAnti-blurring optical member
US48709079 Aug 19883 Oct 1989Mckee Roy LTowel rack convenience shelf
US492326029 Aug 19898 May 1990White Consolidated Industries, Inc.Refrigerator shelf construction
US497191214 Jul 198720 Nov 1990Technicon Instruments CorporationApparatus and method for the separation of immiscible liquids
US49834593 Apr 19908 Jan 1991Ppg Industries, Inc.Chemically reacted glass surface
US501172711 Sep 198930 Apr 1991Kanegafuchi Kagaku Kogyo Kabushiki KaishaPolyimide resin laminate improved in slidability
US50119639 Feb 198930 Apr 1991Matsushita Electric Ind., Co., Ltd.Terminal perfluoroalkylsilane compounds
US503264126 Jun 198916 Jul 1991Kansai Paint Co., Ltd.Water-repellent film-forming composition
US504130410 Dec 199020 Aug 1991Bridgestone CorporationSurface treatment method
US505705020 Mar 199015 Oct 1991Mattel, Inc.Surface skimming toy
US508419110 Dec 199028 Jan 1992Minnesota Mining And Manufacturing CompanyWater- and oil-repellent treatment agent
US5104938 *2 Mar 198914 Apr 1992Japan Synthetic Rubber Co., Ltd.Thermoplastic polymer composition
US5112911 *28 Feb 199112 May 1992Sunstar Engineering, Inc.Moisture-crosslinkable primer composition
US512113419 Mar 19909 Jun 1992Xaar LimitedProviding a surface with solvent-wettable and solvent-non-wettable zone
US51566115 Feb 199020 Oct 1992Becton, Dickinson And CompanyBlood microsampling site preparation method
US5192603 *13 Sep 19919 Mar 1993Courtaulds Coatings Inc.Protection of substrates against aquatic fouling
US520236123 Dec 199113 Apr 1993Minnesota Mining And Manufacturing CompanyPressure-sensitive adhesive
US5212215 *26 Feb 199118 May 1993Nihon Tokushu Toryo Co., Ltd.Light anti-chipping coating
US522527410 Dec 19916 Jul 1993Matsushita Electric Industrial Co., Ltd.Adsorbed monomolecular film and method of manufacturing the same
US522876410 Aug 199220 Jul 1993General Electric CompanyRefrigerator shelf assembly
US522890520 Nov 199120 Jul 1993Ppg Industries, Inc.Water-borne treatment compositions for porous substrates
US52387461 Nov 199124 Aug 1993Matsushita Electric Industrial Co., Ltd.Fluorocarbon-based polymer lamination coating film and method of manufacturing the same
US524077411 Oct 199131 Aug 1993Matsushita Electric Industrial Co., Ltd.Fluorocarbon-based coating film and method of manufacturing the same
US527415918 Feb 199328 Dec 1993Minnesota Mining And Manufacturing CompanyDestructable fluorinated alkoxysilane surfactants and repellent coatings derived therefrom
US528470724 Dec 19918 Feb 1994Matsushita Electric Industrial Co., Ltd.Anti-contaminating adsorbed film covalently bonded to a substrate surface through -Si- groups
US529425227 Jul 199215 Mar 1994Gun Julio OComposition for producing a monomolecular film, on surfaces of various materials
US530023911 Mar 19935 Apr 1994Dow Corning Toray Silicone Co., Ltd.Water-repellent and oil-repellent treatment
US530870528 Sep 19903 May 1994Ppg Industries, Inc.Water repellent surface treatment
US531257324 Apr 199217 May 1994Renewed Materials Industries, Inc.Process for extruding mixtures of thermoplastic and thermoset materials
US531494022 Jun 199224 May 1994Stone Donald DHigh wet-friction elastomeric coatings including a thermoplastic rubber and petrolatum
US531679930 Oct 199231 May 1994Advanced Chemical Technologies, Inc.Method for applying paint with a water repellant composition
US53171295 Aug 199231 May 1994Schott GlaswerkeCooking range
US532456623 Jan 199228 Jun 1994Matsushita Electric Industrial Co., Ltd.Water and oil repelling film having surface irregularities and method of manufacturing the same
US532876829 Nov 199112 Jul 1994Ppg Industries, Inc.Durable water repellant glass surface
US53383453 Feb 199416 Aug 1994Eastman Kodak CompanyWater-based water repellent coating compositions
US53485475 Apr 199320 Sep 1994The Procter & Gamble CompanyAbsorbent members having improved fluid distribution via low density and basis weight acquisition zones
US535273310 Mar 19934 Oct 1994R. E. Hart Labs, Inc.Water based, solvent free, two component aliphatic polyurethane coating
US53621457 Mar 19918 Nov 1994Donnelly CorporationMolded refrigerator shelf
US536429929 Jan 199215 Nov 1994Mattel, Inc.Surface skimming toy
US53668109 Oct 199222 Nov 1994General Electric CompanyWater-repellent wallboard
US536889212 Apr 199329 Nov 1994Saint-Gobain Vitrage InternationalNon-wettable glass sheet
US53728885 Feb 199213 Dec 1994Matsushita Electric Industrial Co., Ltd.Chemically adsorbed film and method of manufacturing the same
US538058526 Mar 199310 Jan 1995Matsushita Electric Industrial Co., Ltd.Chemically adsorbed monomolecular lamination film
US538596628 Jan 199431 Jan 1995Hughes Aircraft CompanyFrozen premix, fillet-holding urethane adhesives/sealants
US539565716 Dec 19937 Mar 1995Ausimont S.P.A.Process for imparting oil- and water-repellency to the surface of porous ceramic materials
US54241305 Aug 199213 Jun 1995Toyota Jidosha Kabushiki KaishaWater repellent glass and process for producing the same
US542943329 Jun 19944 Jul 1995Donnelly Technology, Inc.Molded refrigerator shelf
US543583927 Dec 199325 Jul 1995Matsushita Electric Industrial Co., Ltd.Finishing agents and method of manufacturing the same
US543789425 Jan 19941 Aug 1995Matsushita Electric Industrial Co., Ltd.Method of manufacturing a water- and oil-repelling film having surface irregularities
US54379001 Dec 19931 Aug 1995W. L. Gore & Associates, Inc.Surface modified porous expanded polytetrafluoroethylene and process for making
US544133827 Jul 199215 Aug 1995Donnelly CorporationSnap-on shelf
US5441809 *28 Oct 199315 Aug 1995Brady U.S.A., Inc.Dissipative cover tape surface mount device packaging
US545897622 Jun 199417 Oct 1995Matsushita Electric Industrial Co., Ltd.Water and oil repellant coated powders and method for producing same
US546677026 May 199414 Nov 1995Minnesota Mining And Manufacturing CompanyFluorine-efficient oil- and water-repellent compositions
US548932830 Jan 19956 Feb 1996Shin-Etsu Chemical Co., Ltd.Water repellent agent
US550021618 Jun 199319 Mar 1996Julian; Jorge V.Topical hydrophobic composition and method
US5527536 *17 Jul 199318 Jun 1996Schwarz Pharma AgActive ingredient patch for low-melting and/or volatile active ingredients
US5534580 *4 Nov 19949 Jul 1996Sumitomo Chemical Company, LimitedStyrenic resin composition and injection- and extrusion-molded articles
US5539054 *23 Feb 199523 Jul 1996Rohm And Haas CompanyPolyurethane elastomer blends
US55404936 Sep 199430 Jul 1996Donnelly Technology Inc.Encapsulated shelf with pre-encapsulated bracket
US55566678 Dec 199417 Sep 1996Nippon Sheet Glass Co., Ltd.Method of forming water-repellent film on transparent panel
US555894017 Jul 199524 Sep 1996Bayer AktiengesellschaftOil- and water-repellent papers, processes for their production and new fluorine-containing copolymers for this purpose
US556480910 May 199415 Oct 1996Donnelly Technology, Inc.Encapsulated shelf for refrigerated compartments
US557609616 Oct 199519 Nov 1996Shin-Etsu Chemicals Co., Ltd.Agent for water-repellent treatment of fibers
US557836124 Jan 199526 Nov 1996Central Glass Company, LimitedWater-repellent composite grains, method for producing same, and water-repellent article using same
US558495716 Aug 199417 Dec 1996Schott GlaswerkeProcess for forming a permanently elastic adhesive connection easily detachable in case of disassembly
US55858969 Nov 199417 Dec 1996Ricoh Company, Ltd.Image forming apparatus with a contact member contacting an image carrier
US559989311 Aug 19954 Feb 1997Shin-Etsu Co., Ltd.Water repellent composition
US561243314 Nov 199518 Mar 1997Shin-Etsu Chemical Co., Ltd.Agent for water-repellent treatment of fibers
US561862729 Apr 19968 Apr 1997General Electric CompanyWater-repellent wallboard
US5618883 *7 Jun 19958 Apr 1997Avery Dennison CorporationStyrene ethylene-butylene and ethylene-propylene block copolymer hot melt pressure sensitive adhesives
US565192128 Jul 199429 Jul 1997Idemitsu Kosan Company LimitedProcess for preparing a water repellent silica sol
US565896929 Jan 199619 Aug 1997Pierce & Stevens CorporationLight weight plastisols and method of making same
US567496723 Sep 19967 Oct 1997Ppg Industries, Inc.Water repellent surface treatment with integrated primer
US567946013 Apr 199221 Oct 1997Rijksuniversiteit GroningenMethod for modifying fluorine-containing plastic, modified plastic and bio-material containing this plastic
US568886421 Oct 199618 Nov 1997Ppg Industries, Inc.Autophobic water repellent surface treatment
US569799129 Aug 199616 Dec 1997Crescent Marketing, Inc.Glass treatment compound
US57077407 Jun 199613 Jan 1998Ppg Industries, Inc.Water repellent surface treatment with acid activation
US5719226 *30 Aug 199617 Feb 1998Shell Oil CompanyLow viscosity hot melt disposables adhesive composition
US572578931 Mar 199510 Mar 1998Minnesota Mining And Manufacturing CompanyAqueous oil and water repellent compositions
US573558912 Dec 19957 Apr 1998Donnelly Technology, Inc.Sliding refrigerator shelf assembly
US57475614 Oct 19935 May 1998Smirnov; Aleksandr VitalievichSolid surface modifier
US575373416 Dec 199619 May 1998Dow Corning Asia, Ltd.Composition for a coating film with water-repellent properties
US5777043 *5 Mar 19977 Jul 1998Shell Oil CompanySealant formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers
US579814412 Oct 199725 Aug 1998S. C. Johnson & Son, Inc.Method for imparting hydrophobicity to a surface of a substrate with low concentration organofunctional silanes
US580091812 Jul 19951 Sep 1998Saint-Gobain VitrageMultilayered hydrophobic window glass
US581374123 Jan 199629 Sep 1998White Consolidated Industries, Inc.Adjustable shelf for a refrigerator
US581441118 Feb 199729 Sep 1998General Electric CompanyWater-repellent wallboard
US582442130 Oct 199620 Oct 1998Dow Corning Toray Silicone Co., Ltd.Oil- and water-repellent coating composition
US58305298 Jan 19973 Nov 1998Ross; Gregory E.Perimeter coating alignment
US584020125 Apr 199724 Nov 1998Micron Display Technology, Inc.Method for forming spacers in flat panel displays using photo-etching
US584333822 Oct 19961 Dec 1998Dipsol Chemicals Co., Ltd.Water-soluble composition for water-repellent treatments of zinc and zinc alloy and method for water repellent treatment
US585369024 Feb 199729 Dec 1998Toyota Jidosha Kabushiki KaishaMethod for decomposing water using an activated carbon catalyst
US585380025 Oct 199629 Dec 1998Merck Patent Gesellschaft Mit Beschrankter HaftungMaterial for and method of preparing water-repellent coatings on optical substrates
US58563786 Jun 19945 Jan 1999Courtaulds Coatings (Holdings) LimitedPowder coating compositions
US585855131 Jan 199712 Jan 1999Seydel Research, Inc.Water dispersible/redispersible hydrophobic polyester resins and their application in coatings
US58768061 May 19962 Mar 1999Matsushita Electric Industrial Co., Ltd.Finishing agent and method of using the same
US589090713 Jan 19986 Apr 1999Clifford W. Estes Company, Inc.Educational doll
US591055712 May 19978 Jun 1999Minnesota Mining And Manufacturing CompanyFluorochemical polyurethanes, providing good laundry air-dry performance
US59214119 Jun 199713 Jul 1999Merl; Milton J.Shelf assembly
US592435913 Feb 199720 Jul 1999Riso Kagaku CorporationThermoplastic heat-sensitive stencil sheet with a liquid absorbing layer
US59454828 May 199631 Aug 1999Toyo Ink Manufacturing Co., Ltd.Resin composition for water-repellent coating and water-repellent coating
US59475744 Jun 19977 Sep 1999Maytag CorporationRefrigerator shelving assembly
US594868510 Feb 19987 Sep 1999Angros; LeeAnalytic plate with containment border and method of use
US595205326 Sep 199714 Sep 1999Willamette Valley CompanyProcess for producing filled polyurethane elastomers
US595860122 Oct 199828 Sep 1999Seydel Companies, Inc.Water dispersible/redispersible hydrophobic polyester resins and their application in coatings
US59809905 Dec 19979 Nov 1999Ppg Industries Ohio, Inc.Water repellent surface treatment with acid activation
US60137245 Mar 199811 Jan 2000Nippon Paint Co., Ltd.Raindrop fouling-resistant paint film, coating composition, film-forming method, and coated article
US601760922 May 199725 Jan 2000Central Glass Company, LimitedWater-repellent glass plate
US60178313 May 199625 Jan 20003M Innovative Properties CompanyNonwoven abrasive articles
US601799731 Oct 199725 Jan 2000The B. F. Goodrich CompanyWaterborne polyurethane having film properties comparable to rubber
US602041916 Mar 19991 Feb 2000Bayer AktiengesellschaftTransparent coating compositions containing nanoscale particles and having improved scratch resistance
US602494823 Sep 199615 Feb 2000L'orealHair shaping composition comprising a film-forming acrylic oligomer
US602502510 Jun 199815 Feb 2000Ppg Industries Ohio, Inc.Water-repellent surface treatment
US603373824 Jun 19987 Mar 2000Nippon Sheet Glass Co., Ltd.Method for producing water-repellent articles, water-repellent articles obtained thereby, and solution for forming water-repellent film
US6040382 *4 Feb 199421 Mar 2000Phillips Petroleum CompanyPolymer blend clarity
US604565016 Sep 19974 Apr 2000Sunsmart, Inc.Hydrophilic materials and their method of preparation
US606891117 Apr 199730 May 2000Hitachi, Ltd.Super water-repellent coating material, and super water-repellent coating film using the same
US60904476 Aug 199718 Jul 2000Asahi Glass Company, Ltd.Process for forming a water-repellent thin film
US609355926 Aug 199725 Jul 2000Corning IncorporatedProducing low binding hydrophobic surfaces by treating with a low HLB number non-ionic surfactant
US60963803 Nov 19981 Aug 2000Matsushita Electric Industrial Co., Ltd.Method for water repellent coating and coating apparatus for the same
US610523329 Oct 199822 Aug 2000Neal; Albert D.Shelf for a refrigerator and method of making
US611444622 Dec 19975 Sep 2000Kansai Paint Co., Ltd.Polymer composition capable of forming surface slidable on water
US611755516 Apr 199712 Sep 2000Nippon Telegraph And Telephone CorporationWater repellent coating composition, and coated films and coated articles using the same
US611962610 Nov 199719 Sep 2000Canon Kabushiki KaishaVacuum apparatus for forming a thin-film and method for forming thin-film
US61207208 May 199719 Sep 2000Gemtron CorporationMethod of manufacturing a plastic edged glass shelf
US61362102 Nov 199824 Oct 2000Xerox CorporationPhotoetching of acoustic lenses for acoustic ink printing
US615330413 Aug 199928 Nov 2000Decora IncorporatedHydrophobic coating system for application to an inorganic, organic or metallic substrate
US6162870 *17 Feb 199919 Dec 2000Denki Kagaku Kogyo Kabushiki KaishaRubber-modified styrene polymer
US618714327 Aug 199913 Feb 2001Kemira Chemicals OyProcess for the manufacture of hydrophobic paper or hydrophobic board, and a sizing composition
US619112228 Mar 199720 Feb 2001DEGUSSA HüLS AKTIENGESELLSCHAFTPartially hydrophobic precipitated silicas
US620105826 Oct 199813 Mar 2001Wacker-Chemie GmbhAminosiloxane-containing compositions
US620723616 Jun 199727 Mar 2001Daikin Industries, Ltd.Coating composition, coating film, and method for producing coating film
US6214278 *16 Aug 200010 Apr 2001Denki Kagaku Kogyo Kabushiki KaishaRubber-modified styrene copolymer
US622143429 Nov 199924 Apr 2001Ausimont S.P.A.Surface treatments with bifunctional perfluoropolyether derivatives
US622497410 Mar 19991 May 2001Consolidated Papers, Inc.Water resistant, caustically removable coating, paper label and recyclable labeled glass bottle
US622843510 Jul 19968 May 2001Canon Kabushiki KaishaProcess for treating base to selectively impart water repellency, light-shielding member formed substrate, and production process of color filter substrate for picture device
US622897220 Oct 19998 May 2001Nitto Denko CorporationAromatic polycarbodiimide and water repellent sheet made therefrom
US623538321 Jan 199822 May 2001Samsung Corning Co., Ltd.Glass article having a durable water repellent surface
US623583312 Feb 199922 May 2001Central Glass Company, LimitedWater-repellent solution and method of forming water-repellent film on substrate by using the solution
US62453873 Nov 199812 Jun 2001Diamon-Fusion International, Inc.Capped silicone film and method of manufacture thereof
US6248850 *30 Sep 199819 Jun 2001Denki Kagaku Kogyo Kabushiki KaishaFilm and stretch packaging film
US626475118 May 199824 Jul 2001Hoya CorporationMechanism for performing water repellency processing on both sides simultaneously
US628083428 Jul 200028 Aug 2001Guardian Industries CorporationHydrophobic coating including DLC and/or FAS on substrate
US6288149 *8 Oct 199911 Sep 2001H. B. Fuller Licensing & Financing, Inc.Hot melt adhesive composition including surfactant
US629105410 May 199918 Sep 2001E. I. Du Pont De Nemours And CompanyAbrasion resistant coatings
US633307411 Jan 200025 Dec 2001Matsushita Electric Industrial Co., Ltd.Water repellent coating film, method and apparatus for manufacturing the same, and water repellent coating material composition
US633355826 May 199925 Dec 2001Sony CorporationSemiconductor device and method for fabricating the same
US633713319 Aug 19978 Jan 2002Central Glass Company, LimitedWater-repellent glass pane and method for producing same
US63405026 Oct 199822 Jan 2002Saint-Gobain VitrageHydrophobic coating for glazing sheet
US634226814 Feb 200029 Jan 2002Daniel SamainMethod for treating a solid material to make it hydrophobic, material obtained and uses
US63527584 May 19985 Mar 20023M Innovative Properties CompanyPatterned article having alternating hydrophilic and hydrophobic surface regions
US635856918 Dec 199819 Mar 2002Mupor LimitedApplying a film to a body
US636186817 Aug 199826 Mar 2002Bayer AktiengesellschaftCoating compounds based on silanes containing epoxide groups
US637659212 Aug 199923 Apr 2002Asahi Glass Company, Ltd.Water dispersion type water and oil repellent composition
US637975111 Dec 200030 Apr 2002Bayer AktiengesellschaftImparting water-repellency with polysiloxanes containing carboxyl groups
US638364210 Apr 20007 May 2002Saint-Gobain VitrageTransparent substrate provided with hydrophobic/oleophobic coating formed by plasma CVD
US640339728 Jun 200011 Jun 2002Agere Systems Guardian Corp.Process for fabricating organic semiconductor device involving selective patterning
US6410673 *18 Oct 199925 Jun 2002Denki Kagaku Kogyo Kabushiki KaishaEthylene/aromatic vinyl copolymer and molded product thereof
US641998526 May 200016 Jul 2002Tokyo Electron Ltd.Method for producing insulator film
US642337213 Dec 200023 Jul 2002North Carolina State UniversityTailoring the grafting density of organic modifiers at solid/liquid interfaces
US6423381 *13 Nov 200023 Jul 2002Martin ColtonProtective, transparent UV curable coating method
US64321813 Mar 200013 Aug 2002Resource Development, L.L.C.Silicone compositions, methods of making and using VOC free, non-flammable creams, pastes and powders to render nonporous surfaces water, soil and stain repellent
US645143222 Jul 199917 Sep 2002Saint-Gobain Glass FranceHydrophobic treatment composition, method for forming a coating and products provided with said coating
US645842025 Aug 19971 Oct 2002Dow Corning Toray Silicone Co., Ltd.Water repellent for application to glass and water-repellent glass
US6458467 *21 Jan 20001 Oct 2002Toyo Boseki Kabushiki KaishaOptical-use adhesive film and roll thereof
US646153730 Jun 20008 Oct 2002Ashland Inc.Water repellent glass treatment for automotive applications
US646167020 Mar 20018 Oct 2002Central Glass Company, Ltd.Water-repellent solution and method of forming water-repellent film on substrate by using the solution
US646211515 Aug 19978 Oct 2002Nippon Telegraph And Telephone CorporationWater repellent coating composition, method for preparing the same, and coating films and coated articles using the same
US647176120 Apr 200129 Oct 2002University Of New MexicoPrototyping of patterned functional nanostructures
US647609530 May 20015 Nov 2002Microphase Coatings, Inc.Antifouling coating composition
US647961219 Jun 200012 Nov 2002E. I. Du Pont De Nemours And CompanyFluorochemical water and oil repellents
US64825249 Mar 199819 Nov 2002Nippon Sheet Glass Co., Ltd.Substrate having a treatment surface
US648834721 Nov 20003 Dec 2002Gemtron CorporationRefrigerator shelf with one-piece internally ribbed/reinforced polymeric frame and reinforced suspension hooks
US6559234 *22 Dec 19996 May 2003Denki Kagaku Kogyo Kabushiki KaishaCross-copolymerized olefin/styrene/diene copolymer, process for the production of the same and uses thereof
US65649352 Nov 200020 May 2003Nippon Sheet Glass Co., Ltd.Coating solution, method and kit for preparing the same, and method for water-repellent treatment using the same
US6566453 *13 Sep 200020 May 2003Denki Kagaku Kogyo Kabushiki KaishaCross-copolymerized olefin/aromatic vinyl/diene copolymer and process for producing the same
US657962014 Nov 200117 Jun 2003Ntt Advanced Technology Corp.Water-repellent coating and coating film
US658282530 Aug 200124 Jun 2003General Electric CompanyHydrophobicity imparting particulate
US658474410 Oct 19951 Jul 2003Schott GlaswerkeApparatus for securing a glass plate in a recess
US65896411 Jun 19998 Jul 2003Seagate Technology LlcThin films of crosslinked fluoropolymer on a carbon substrate
US65960606 Aug 199922 Jul 2003AtofinaWater-repellent composition
US661036322 Aug 200126 Aug 2003Nanofilm, Ltd.Composition with film forming alkylsilsesquioxane polymer and method for applying hydrophobic films to surfaces
US661386012 Oct 20002 Sep 20033M Innovative Properties CompanyCompositions comprising fluorinated polyether silanes for rendering substrates oil and water repellent
US662386330 Mar 200123 Sep 2003Nippon Sheet Glass Co., Ltd.Article coated with water-repellent film, liquid composition for coating with water-repellent film, and process for producing article coated with water-repellent film
US664165427 Nov 20014 Nov 2003Central Glass Company, LimitedWater-repellent glass pane and method for producing same
US66492227 Sep 199918 Nov 2003The Procter & Gamble CompanyModulated plasma glow discharge treatments for making superhydrophobic substrates
US665264029 Jun 200125 Nov 2003Shin-Etsu Chemical Co., Ltd.Surface treating agent and water repellent, oil repellent article
US66603397 Sep 19999 Dec 2003The Procter & Gamble CompanyProcess for hydrophobic treatment of water vapor permeable substrates
US666036325 Jul 19959 Dec 2003Wilhelm BarthlottSelf-cleaning surfaces of objects and process for producing same
US666068624 May 20019 Dec 2003Kabushiki Kaisha Toyota Chuo KenkyushoPhotocatalyst and process for producing the same
US668312625 Apr 200127 Jan 2004Basf AktiengesellschaftCompositions for producing difficult-to-wet surface
US668599213 Sep 20003 Feb 2004Nippon Sheet Glass Co., Ltd.Method for partially treating a water-repellent glass sheet
US668920025 Jul 200210 Feb 2004The Sherwin-Williams CompanyFilm-forming water-based water repellent coating compositions
US669256525 Mar 200217 Feb 2004C-Cure Corp.Colored cement
US670679829 Nov 200116 Mar 2004Dow Corning Toray Silicone Co., Ltd.Water repellent silicone coating agent composition
US672037110 Jun 200213 Apr 2004Asahi Glass Company, LimitedWater repellent and oil resistant composition
US672970422 Dec 20004 May 2004General Electric CompanyRemovable glass encapsulated shelves
US67338921 Sep 199811 May 2004Asahi Glass Company, LimitedSurface treatment composition, method of surface treatment, substrate and article
US674346721 Aug 20001 Jun 2004Unisearch LimitedHydrophobic material
US676798410 May 200127 Jul 2004Nippon Paint Co., Ltd.Top coating composition
US677032315 May 20023 Aug 2004North Carolina State UniversityMethods for forming tunable molecular gradients on substrates
US67804975 Aug 199924 Aug 2004Gore Enterprise Holdings, Inc.Surface modified expanded polytetrafluoroethylene devices and methods of producing the same
US678656222 Aug 20017 Sep 2004Engineered Glass Products LlcRefrigeration shelf and method of making the same
US67938217 May 200221 Sep 2004Korea Research Institute Of Chemical TechnologySuper water-repellent organic/inorganic composite membrane
US680035412 Dec 20015 Oct 2004Ferro GmbhSubstrates with a self-cleaning surface, a process for their production and their use
US680629924 Apr 200219 Oct 2004The Regents Of The University Of CaliforniaPreparation of hydrophobic organic aeorgels
US680883530 Oct 200126 Oct 2004Qinetiq LimitedSystem for the humidification of polymer electrolyte membrane fuel cells
US681171623 Oct 19972 Nov 2004Fibervisions A/SPolyolefin fibers and method for the production thereof
US681184419 Dec 20022 Nov 2004E. I. Du Pont De Nemours And CompanyMultilayer film
US681188424 Dec 20022 Nov 2004Ppg Industries Ohio, Inc.Water repellant surface treatment and treated articles
US6835778 *20 May 200228 Dec 2004Chevron Phillips Chemical Company LpConjugated diene/monovinylarene block copolymers blends
US68457883 Jun 200325 Jan 2005Entegris, Inc.Fluid handling component with ultraphobic surfaces
US685238912 Apr 20028 Feb 2005Creavis Gesellschaft Fuer Technologie Und Innovation MbhSurfaces rendered self-cleaning by hydrophobic structures, and process for their production
US68523903 Jun 20038 Feb 2005Entegris, Inc.Ultraphobic surface for high pressure liquids
US685537520 Mar 200315 Feb 2005Matsushita Electric Industrial Co., Ltd.Method for producing water-repellent film
US685575931 Oct 200215 Feb 2005Shin-Etsu Chemical Co., Ltd.Silica particles surface-treated with silane, process for producing the same and uses thereof
US68582849 Apr 200222 Feb 2005Creavis Gesellschaft Fuer Technologie Und Innovation MbhSurfaces rendered self-cleaning by hydrophobic structures, and process for their production
US687192324 Sep 200229 Mar 2005Maytag CorporationSpill-proof refrigerator shelf
US687244113 Mar 200129 Mar 2005Ferro GmbhGlass ceramic and metal substrates with a self-cleaning surface, method for the production and use thereof
US689036017 Dec 200110 May 20053M Innovative Properties CompanyFluorochemical urethane composition for treatment of fibrous substrates
US692321629 Aug 20032 Aug 2005Entegris, Inc.Microfluidic device with ultraphobic surfaces
US692694618 Sep 20039 Aug 2005Nippon Sheet Glass Co., Ltd.Partially treated water-repellent glass sheet
US69318888 May 200323 Aug 2005Ferro CorporationLyophilization method and apparatus for producing particles
US69387743 Jun 20036 Sep 2005Entegris, Inc.Tray carrier with ultraphobic surfaces
US694274611 Dec 200313 Sep 2005Optima, Inc.Lens blocking system
US696699019 May 200322 Nov 2005Ferro CorporationComposite particles and method for preparing
US69765853 Jun 200320 Dec 2005Entegris, Inc.Wafer carrier with ultraphobic surfaces
US697699817 Jan 200320 Dec 2005Massachusetts Institute Of TechnologyMinimally invasive retinal prosthesis
US698224224 Mar 20043 Jan 2006Rohm And Haas CompanyAqueous detergent composition and method of use
US699404529 Oct 20027 Feb 2006Cnt Spolka Z O.O.Superhydrophobic coating
US699805125 Apr 200314 Feb 2006Ferro CorporationParticles from supercritical fluid extraction of emulsion
US700418423 Jul 200128 Feb 2006The Reagents Of The University Of MichiganCompositions and methods for liquid metering in microchannels
US701906912 Feb 200128 Mar 2006Dow Corning Toray Silicone Co., Ltd.Silicone resin composition for water repellent coating
US70224168 Nov 20024 Apr 2006Nippon Sheet Glass Company, LimitedArticle coated with coating film, and functional article coated with coating film using the same
US702601815 Nov 200111 Apr 2006Sslo Holding Company, Inc.Coating with anti-microbial agent for refrigerator shelving
US70375917 Aug 20032 May 2006Schott AgCleaning-friendly apparatus with an easily cleanable, heat-resistant surface coating
US704888923 Mar 200423 May 2006Lucent Technologies Inc.Dynamically controllable biological/chemical detectors having nanostructured surfaces
US705224410 Jun 200330 May 2006Commissariat A L'energie AtomiqueDevice for displacement of small liquid volumes along a micro-catenary line by electrostatic forces
US705640912 Sep 20036 Jun 2006Nanosys, Inc.Structures, systems and methods for joining articles and materials and uses therefor
US70578327 Mar 20036 Jun 2006President And Fellows Of Harvard CollegeMicrolens for projection lithography and method of preparation thereof
US70578818 Mar 20056 Jun 2006Nanosys, IncNanofiber surface based capacitors
US707427314 Jan 200311 Jul 2006Canon Kabushiki KaishaEpoxy resin composition, surface treatment method, liquid ejection recording head, and liquid ejection recording apparatus
US707429419 Apr 200411 Jul 2006Nanosys, Inc.Structures, systems and methods for joining articles and materials and uses therefor
US70837488 May 20031 Aug 2006Ferro CorporationMethod and apparatus for continuous particle production using supercritical fluid
US708382818 Dec 20031 Aug 2006Goldschmidt GmbhProcess for producing detachable dirt- and water-repellent surface coatings
US710925624 Jun 200219 Sep 2006Nippon Aerosil Co., Ltd. (Nac)Surface-modified inorganic oxide powder, process for producing the same, and use thereof
US71123692 Mar 200426 Sep 2006Bridgestone CorporationNano-sized polymer-metal composites
US71244501 Mar 200424 Oct 2006Dennis DavidsonFlushable plunger cover
US714127619 Apr 200228 Nov 2006Leibniz-Institut Fuer Polymerforschung Dresden E.V.Hydrophobic permanent coatings on substrates and methods for production thereof
US7144947 *18 Oct 20015 Dec 2006Laboratories D'hygiene Et De DietetiqueAmphiphilic copolymers useful especially as emulsifiers
US714818115 Jun 200512 Dec 2006Dainippon Ink And Chemicals, Inc.Thermosensitive recording medium
US715090427 Jul 200419 Dec 2006Ut-Battelle, LlcComposite, ordered material having sharp surface features
US715335730 Jun 200326 Dec 2006Basf Coatings AgCoating material, related production method and use
US71570188 Jul 20042 Jan 2007Scheidler Karl JCompositions for improving the light-fade resistance and soil repellancy of textiles and leathers
US71662356 May 200323 Jan 2007The Procter & Gamble CompanyCompositions comprising anionic functionalized polyorganosiloxanes for hydrophobically modifying surfaces and enhancing delivery of active agents to surfaces treated therewith
US71757234 Oct 200413 Feb 2007The Regents Of The University Of CaliforniaStructure having nano-fibers on annular curved surface, method of making same and method of using same to adhere to a surface
US717975825 May 200420 Feb 2007International Business Machines CorporationRecovery of hydrophobicity of low-k and ultra low-k organosilicate films used as inter metal dielectrics
US717986422 Feb 200520 Feb 2007Bridgestone CorporationPolymer nano-strings
US71889173 Feb 200513 Mar 2007Gemtron CorporationRefrigerator compartment housing vertically adjustable shelves, each formed from a piece of tempered glass to which is injection molded a frame in the form of front and rear border members
US719885512 Sep 20033 Apr 2007Becton, Dickinson And CompanyMethods of surface modification of a flexible substrate to enhance cell adhesion
US720429824 Nov 200417 Apr 2007Lucent Technologies Inc.Techniques for microchannel cooling
US721122322 Jul 20031 May 2007Commissariat A. L'energie AtomiqueDevice for injection and mixing of liquid droplets
US72113133 May 20021 May 2007Degussa AgSurfaces rendered self-cleaning by hydrophobic structures and a process for their production
US721132910 Jun 20031 May 2007Schott AgProcess for making a product with a long-lasting easily cleaned surface and product thereof
US72116054 Mar 20041 May 2007The Regents Of The University Of CaliforniaSuper-hydrophobic fluorine containing aerogels
US721330924 Feb 20048 May 2007Yunzhang WangTreated textile substrate and method for making a textile substrate
US723875129 Jun 20053 Jul 2007Bridgestone Americas Holding, Inc.Multi-layer nano-particle preparation and applications
US725313015 Sep 20047 Aug 2007National Central UniversityMethod for making transparent continuous zeolite film and structure of the zeolite film
US725873127 Jul 200421 Aug 2007Ut Battelle, LlcComposite, nanostructured, super-hydrophobic material
US726484529 Apr 20044 Sep 2007The Procter & Gamble CompanyMethod for increasing the hydrophobicity of a lavatory bowl surface
US7265180 *1 Oct 20034 Sep 2007Lanxess CorporationThermoplastic molding composition having high clarity
US726546822 Nov 20054 Sep 2007Mancl Dennis JWater repellent motor sleeve
US726817930 Sep 200311 Sep 2007Cytonix CorporationHydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same
US727365819 Dec 200225 Sep 2007Rhodia ChimieCrosslinking agent for a crosslinkable silicone composition with a low level of platinum based on a hydrogenated silicone oil comprising Si-H units at the chain end and in the chain
US728533122 Dec 199923 Oct 2007Qiagen GmbhUltraphobic surface
US72883119 Feb 200430 Oct 2007Dai Nippon Printing Co., Ltd.Barrier film
US72885923 Apr 200330 Oct 2007Wacker Polymer Systems Gmbh & Co. KgOrganofunctional silicone copolymers and the saponification products thereof
US729165326 Aug 20046 Nov 2007The Regents Of The University Of CaliforniaPreparation of hydrophobic organic aeorgels
US730689521 Apr 200411 Dec 2007Fujifilm CorporationPattern forming method, image forming method, fine particle adsorption pattern forming method, conductive pattern forming method, pattern forming material and planographic printing plate
US730927828 Apr 200618 Dec 2007Nidek Co., Ltd.Lean presser for holding eyeglass lens and eyeglass lens processing apparatus having the same
US73120573 Mar 200325 Dec 2007Corning IncorporatedMethod for reducing binding of organic material to hydrophobic surfaces
US732303330 Apr 200429 Jan 2008Lucent Technologies Inc.Nanostructured surfaces having variable permeability
US73388358 Jul 20054 Mar 2008Lucent Technologies Inc.OFETs with active channels formed of densified layers
US734255128 Sep 200411 Mar 2008Electronic Controlled SystemsAntenna systems for reliable satellite television reception in moisture conditions
US734461922 May 200618 Mar 2008H.B. Fuller Licensing & Financing, IncMethod of making water repellent laminates
US73447587 Jun 200518 Mar 2008E.I. Du Pont De Nemours And CompanyHydrocarbon extenders for surface effect compositions
US73447837 Jul 200418 Mar 2008Shell Oil CompanyDurable hydrophobic surface coatings using silicone resins
US735432828 Jun 20048 Apr 2008Lg.Philips Lcd Co., Ltd.Organic electroluminescent device and fabricating method thereof
US735462418 May 20058 Apr 2008Ppg Industries Ohio, Inc.Multi-layer coatings and related methods
US735465018 May 20058 Apr 2008Ppg Industries Ohio, Inc.Multi-layer coatings with an inorganic oxide network containing layer and methods for their application
US73685108 Mar 20056 May 2008Samsung Electronics Co., Ltd.Organic semiconductor copolymers containing oligothiophene and n-type heteroaromatic units
US73935155 Jun 20061 Jul 2008Asahi Glass Company, LimitedFluorinated compound, water repellent composition and thin film
US73963958 May 20078 Jul 2008Everest Textile Co., Ltd.Composition of a water-repellent agent
US741961530 Jun 20052 Sep 2008The Boeing CompanyRenewable superhydrophobic coating
US74492336 Aug 200711 Nov 2008Innovation Chemical Technologies, LtdNano structured phased hydrophobic layers on substrates
US746833310 Jan 200323 Dec 2008Milliken & CompanyWash-durable, liquid repellent, and stain releasing polyester fabric substrates
US752453127 Apr 200528 Apr 2009Ferro CorporationStructured self-cleaning surfaces and method of forming same
US752783227 Apr 20055 May 2009Ferro CorporationProcess for structuring self-cleaning glass surfaces
US753159813 Jun 200612 May 2009Goldschmidt GmbhProcess for producing detachable dirt- and water-repellent surface coatings
US754441121 Dec 20019 Jun 2009Ferro GmbhSelf-cleaning paint coating and a method and agent for producing the same
US75635058 Feb 200121 Jul 2009Sunyx Surface Nanotechnologies GmbhLong-time stable water-repellent and oil-repellent surface
US756858315 Jul 20024 Aug 2009Maytag CorporationUpright rear wall extension for refrigerator shelves
US760774415 May 200627 Oct 2009Whirlpool CorporationDomestic refrigerator provided with shelves
US772661516 Feb 20061 Jun 2010Steelcase Werndl AgShelf system
US77313169 Jun 20068 Jun 2010Maytag CorporationUniversal shelf module for a refrigerator
US774880629 Aug 20056 Jul 2010Whirlpool CorporationEncapsulated sliding shelf and over-molded frame
US79191805 Sep 20085 Apr 2011Asahi Glass Company, LimitedTreated substrate having hydrophilic region and water repellent region, and process for producing it
US798961913 Jul 20062 Aug 2011Innovative Surface Technoloiges, Inc.Nanotextured surfaces
US825820613 Apr 20074 Sep 2012Ashland Licensing And Intellectual Property, LlcHydrophobic coating compositions for drag reduction
US828656118 Sep 200916 Oct 2012Ssw Holding Company, Inc.Spill containing refrigerator shelf assembly
US8580884 *11 Nov 201012 Nov 2013Kraton Polymers U.S. LlcThermoplastic polyurethane block copolymer compositions
US859620515 Oct 20123 Dec 2013Ssw Holding Company, Inc.Spill containing refrigerator shelf assembly
US8715906 *11 Dec 20096 May 2014E I Du Pont De Nemours And CompanyHigh resolution, solvent resistant, thin elastomeric printing plates
US877902512 Nov 201115 Jul 2014Donald David StoneMethod for increasing the wet coefficient of friction of a thermoplastic elastomer and composition therefor
US90678217 Apr 201130 Jun 2015Ross Technology CorporationHighly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
US90967867 Apr 20114 Aug 2015Ross Technology CorporationSpill resistant surfaces having hydrophobic and oleophobic borders
US913974416 Jun 201422 Sep 2015Ross Technology CorporationComposition and coating for hydrophobic performance
US200100181309 Mar 200130 Aug 2001Don HaydenCapped silicone film and method of manufacture thereof
US2001001977320 Mar 20016 Sep 2001Yoshinori AkamatsuWater-repellent solution and method of forming water-repellent film on substrate by using the solution
US2001002472830 Mar 200127 Sep 2001Nippon Sheet Glass Co., Ltd., JapanArticle coated with water-repellent film, liquid composition for coating with water-repellent film, and process for producing article coated with water-repellent film
US2001003080823 May 200118 Oct 2001Toru KomatsuAnti-fog mirror and method for manufacturing the same
US2001005567717 Feb 200127 Dec 2001Consolidated Papers, Inc.Water resistant, caustically removable coating, paper label and recyclable labeled glass bottle
US2002000167611 Jun 20013 Jan 2002Don HaydenCapped silicone film and method of manufacture thereof
US2002003462721 Jun 200121 Mar 2002Catherine JacquiodGlazing with a functional, especially hydrophobic, mesoporous coating
US2002004500722 Aug 200118 Apr 2002Arora Pramod K.Composition with film forming alkylsilsesquioxane polymer and method for applying hydrophobic films to surfaces
US20020049276 *5 Apr 200125 Apr 2002Zwick Paul D.Thermoplastic elastomer gel compositions and method of making same
US2002007741229 Nov 200120 Jun 2002Hideki KobayashiWater repellent silicone coating agent composition
US2002011140214 Nov 200115 Aug 2002Ntt Advanced Technology CorporationWater-repellent coating and coating film
US2002011573610 Oct 200122 Aug 2002Koshy Vettithara C.Two component thermosettable compositions useful for producing structural reinforcing adhesives
US20020161130 *21 Feb 200231 Oct 2002Denki Kagaku Kogyo Kabushiki KaishaCross-copolymerized olefin/aromatic vinyl compound/diene copolymer and process for its production
US200201776557 Jun 200228 Nov 2002Rhodia, Inc.Latex made with crosslinkable surface active agent
US2002019247225 May 200119 Dec 2002Bernd MetzEasily cleanable coating
US2002019749020 Mar 200226 Dec 2002Katsuyoshi AmidaijiCurable composition, coating composition, paint, antifouling paint, cured product thereof and method of rendering base material antifouling
US2003000904912 Apr 20019 Jan 2003Smith Andrea KarenMDI-based polyurethane prepolymer with low monomeric MDI content
US200300137953 May 200216 Jan 2003Creavis Gesellschaft F. Techn. U. Innovation MbhSurfaces rendered self-cleaning by hydrophobic structures and a process for their production
US2003002190216 Sep 200230 Jan 2003Nippon Sheet Glass Co., Ltd.Substrate having a treatment surface
US200300269728 Feb 20016 Feb 2003Karsten ReihsLong-time stable water-repellent and oil-repellent surface
US2003004024321 Oct 200227 Feb 2003Ward Calvin B.Composition for protecting work surfaces from contamination
US2003004056810 Jun 200227 Feb 2003Asahi Glass Company LimitedWater repellent and oil resistant composition
US20030065093 *23 Sep 20023 Apr 2003Enichem S.P.AHigh transparency polymeric composition
US2003007067723 Jul 200117 Apr 2003The Regents Of The University Of MichiganCompositions and methods for liquid metering in microchannels
US2003007272310 Dec 199717 Apr 2003Heinrich Gers-BarlagSunscreen preparations containing surface-active mono-or oligoglyceryl compounds, water-soluble uv filter substances and, if desired, inorganic micropigments
US2003007306718 Feb 200017 Apr 2003Bookfinder Dana CraigMethods for producing low binding surfaces
US200300775338 Dec 200024 Apr 2003Masamichi MurotaFine metal oxide powder having high dispersibility and toner composition comprising the same
US2003009180925 Jul 200215 May 2003Scarborough Victoria D.Film-forming water-based water repellent coating compositions
US2003011097629 Oct 200219 Jun 2003Gerard AbidhWater-repellent composition and windscreen washer with a rain-repellent effect comprising it , in particular for a vehicle windscreen
US2003011705111 Dec 200226 Jun 2003Lg Electronics Inc.Shelf for refrigerator
US2003011968420 Nov 200226 Jun 2003Fu-Pao TsaoConditioning solution for contact lenses and a method of using the same
US2003012565631 Dec 20013 Jul 2003Vadim DavankovHemo-and biocompatible beaded polymeric material for purification of physiological fluids of organism, method of producing the material, as well as method of and device for purification of physiological fluids of organism with use of the material
US200301433395 Dec 200231 Jul 2003Seiko Epson CorporationMethod of treatment for water repellancy, thin film forming method and method of manufacturing organic EL device using this method, organic EL device, and electric device
US2003014921817 Dec 20017 Aug 20033M Innovative Properties CompanyFluorochemical urethane composition for treatment of fibrous substrates
US2003016684012 Jan 20014 Sep 2003Urry Dan W.Photoresponsive polymers
US2003017040114 Jan 200311 Sep 2003Akihiko ShimomuraEpoxy resin composition, surface treatment method, liquid ejection recording head, and liquid ejection recording apparatus
US2003017657230 Jan 200318 Sep 2003Asahi Glass Company, LimitedAqueous dispersion
US2003017949413 Mar 200325 Sep 2003Asahi Glass Company LimitedMounting member made of glass for a magnetic disk and method for fabricating the same
US2003019456521 Nov 200216 Oct 2003Philipp SchaeferFull-grained milled napa leather and process for the production thereof
US2003020377126 Apr 200230 Oct 2003Ronald RosenbergPolyurethane elastomers from HDI prepolymers with reduced content of free HDI monomers
US2004000546910 Jun 20038 Jan 2004Bernd MetzProcess for making a product with a long-lasting easily cleaned surface and product thereof
US200400201044 Oct 20015 Feb 2004Michael FeldhegeDevice for catching flying insects
US200400257471 Aug 200312 Feb 2004Nippon Sheet Glass Co., Ltd., JapanWater-repellent film-coated articles, water-repellent film-coating liquid composition and process for preparation of water-repellent film-coated articles
US20040039128 *23 Oct 200226 Feb 2004Masahiro SasagawaHydrogenated copolymer
US2004005029712 Feb 200118 Mar 2004Hideki KobayashiSilicone resin composition for water repellent coating
US200400530581 Aug 200318 Mar 2004Nippon Sheet Glass Co., Ltd., JapanWater-repellent film-coated articles, water-repellent film-coating liquid composition and process for preparation of water-repellent film-coated articles
US2004005657524 Sep 200225 Mar 2004Maytag CorporationSpill-proof refrigerator shelf
US2004009761610 Jan 200220 May 2004Hoppler Hans UlrichMethod for treating a mineral filler with a polydialkylsiloxane and a fatty acid, resulting hydrophobic fillers and uses thereof in polymers for breathable films
US200401021242 May 200227 May 2004Migaku SuzukiHighly permeable and water resistant barrier sheet, and absorber product using the barrier sheet
US20040102588 *15 May 200227 May 2004Toru AraiProcess for producing olefin/aromatic vinyl compound copolymer
US2004012116824 Dec 200224 Jun 2004Goodwin George B.Water repellant surface treatment and treated articles
US2004013781410 Jan 200315 Jul 2004Kimbrell Wiliam C.Wash-durable, liquid repellent, and stain releasing polyester fabric substrates
US2004013808310 Jan 200315 Jul 2004Kimbrell Wiliam C.Substrates having reversibly adaptable surface energy properties and method for making the same
US2004014255720 Oct 200322 Jul 2004Novellus Systems, Inc.Deposition of tungsten nitride
US2004015410626 Feb 200212 Aug 2004Markus OlesFlat textile structures with self-cleaning and water-repellent surfaces
US20040192844 *7 May 200330 Sep 2004Takeshi IkematsuStyrene polymer resin and composition thereof
US2004020104817 Oct 200314 Oct 2004Seiko Epson CorporationMethod of forming thin film patterning substrate including formation of banks
US2004020287223 Jul 200314 Oct 2004Pennzoil-Quaker State CompanyHydrophobic surface treatment composition and method of making and using same
US2004020920321 Apr 200421 Oct 2004Fuji Photo Film Co., Ltd.Pattern forming method, image forming method, fine particle adsorption pattern forming method, conductive pattern forming method, pattern forming material and planographic printing plate
US2004021390418 Dec 200328 Oct 2004Goldschmidt AgProcess for producing detachable dirt-and water-repellent surface coatings
US2004021622729 Apr 20044 Nov 2004Maria PapadakiMethod for increasing the hydrophobicity of a lavatory bowl surface
US200500004631 Jul 20046 Jan 2005Shotaro MochizukiDischarged waste processing material for pet animals
US2005000426411 Sep 20026 Jan 2005Katsutoshi TanabeTwo-pack type water repellent for glass surface
US2005000885919 Nov 200213 Jan 2005Haim ForgacsMethod for the preparation of aggregates
US200500099537 Jul 200413 Jan 2005Shea Timothy MichaelDurable hydrophobic surface coatings using silicone resins
US2005002076322 Jul 200327 Jan 2005Richard MilicAqueous coating composition
US200500223138 Jul 20043 Feb 2005Scheidler Karl J.Methods and compositions for improving light-fade resistance and soil repellency of textiles and leathers
US2005005379324 Oct 200210 Mar 2005Jean-Paul Benay-OunLiquid silicone formulation for producing release and water-repellent crosslinked elastomer coatings on a solid support, such as a paper support
US2005007502019 Dec 20027 Apr 2005Rhondia ChimieCrosslinking agent for crosslinkable silicone composition with low platinum content based on hydrogenated silicone oil comprising si-h units in chain end and in the chain
US20050075455 *1 Oct 20037 Apr 2005Chang Moh-Ching O.Thermoplastic molding composition having high clarity
US2005010676225 May 200419 May 2005Nirupama ChakrapaniRecovery of hydrophobicity of low-k and ultra low-k organosilicate films used as inter metal dielectrics
US200501217823 Dec 20049 Jun 2005Koichiro NakamuraSelectively adherent substrate and method for producing the same
US200501435473 Apr 200330 Jun 2005Wacker Polymer Systems Gmbh & Co. KgOrganofunctional silicone copolymers and the saponification products thereof
US2005016519420 May 200428 Jul 2005Rhodia ChimieCrosslinking agent for a silicone composition which can be crosslinked at low temperature based on a hydrogenated silicone oil comprising Si-H units at the chain end and in the chain
US2005017009816 Feb 20054 Aug 2005Ferro GmbhGlass, ceramic and metal substrates with a self-cleaning surface, method of making them and their use
US20050197447 *4 Mar 20058 Sep 2005Jiren GuBlock copolymer composition for overmolding any nylon
US2005022109816 Apr 20036 Oct 2005Saint-Gobain Glass FranceSubstrate with a self-cleaning coating
US2005023921121 Mar 200527 Oct 2005Hiroshi UchiharaConcentration method and apparatus of preparing a liquid specimen for a trace element analysis system
US2005024539515 Jun 20053 Nov 2005Dainippon Ink And Chemicals, Inc.,Method of producing a thermosensitive recording medium
US2006001398315 Jul 200419 Jan 20063M Innovative Properties CompanyAdhesive delivery of oil and water repellents
US200600298086 Aug 20049 Feb 2006Lei ZhaiSuperhydrophobic coatings
US2006004016418 Aug 200523 Feb 2006Gm Global Technology Operations, Inc.Surface modifications of fuel cell elements for improved water management
US2006005156124 Mar 20039 Mar 2006University Of DurhamMethod and apparatus for the formation of hydrophobic surfaces
US200600525567 Jun 20059 Mar 2006Franchina Justine GHydrocarbon extenders for surface effect compositions
US2006005739011 Dec 200316 Mar 2006Kittle Kevin JPowder coating apparatus and process
US2006005845818 Oct 200316 Mar 2006Roehm Gmbh & Co. KgCoating agents for producing rigid coatings resistant to scratching and soiling and rigid moulded bodies resistant to scratching and soiling and method for the production thereof
US2006006269516 Sep 200523 Mar 2006Van Andel Research InstituteMethod and apparatus for making partitioned slides
US2006006292911 Dec 200323 Mar 2006Akzo Nobel Coatings International B.V.Powder coating process
US2006008139415 Oct 200420 Apr 2006Georgia Tech Research CorporationInsulator coating and method for forming same
US200600894661 Dec 200527 Apr 2006Canon Kabushiki KaishaEpoxy resin composition
US2006011054131 Oct 200525 May 2006Russell Jodi LTreatments and kits for creating transparent renewable surface protective coatings
US2006011054231 Oct 200525 May 2006Thomas DietzProcessing compositions and method of forming the same
US200601134434 Jan 20061 Jun 2006Remmers Lee EShelves, resilient drawer stops, and drawer brackets for supporting shelves and drawers
US200601476346 Jan 20056 Jul 2006Strauss Dennis RSelf-cleaning superhydrophobic surface
US2006014770528 Dec 20056 Jul 2006Industrial Technology Research InstituteMethod for forming self-cleaning coating comprising hydrophobically-modified particles
US2006015173928 May 200413 Jul 2006Rudolf Gmbh & Co. KgPreparations for making planar structures oil-repellent and water-repellent, and use thereof
US2006015404810 Dec 200313 Jul 2006Toyoyuki TeranishiArticle having functional coating film thereon, method for manufacture thereof, and applying material for forming functional coating film
US200601623738 Aug 200327 Jul 2006Mcmillin Matthew JHeat staked shelf
US2006017264121 Dec 20053 Aug 2006Degussa AgTextile substrates having self-cleaning properties
US200601855559 Jun 200424 Aug 2006Degussa AgTwo-component coating system for equipping smooth surfaces with easy-to-clean properties
US20060205874 *13 Apr 200414 Sep 2006Uzee Andre JBlock copolymer composition and transparent elastomeric articles produced therefrom
US200602070323 Mar 200621 Sep 2006Lanxess Deutschland GmbhProcess for hydrophobing leather by means of alkylalkoxysilanes, and water-repellent leather
US2006021379121 Mar 200628 Sep 2006Holden H LPlungers and devices for storing plumbing tools
US2006021379221 Mar 200628 Sep 2006Francois NguyenPlungers and devices for storing plumbing tools
US2006021384925 Mar 200528 Sep 2006Gemtron CorporationRefrigerator shelf
US200602228655 Jun 20065 Oct 2006Asahi Glass Company, LimitedFluorinated compound, water repellent composition and thin film
US2006024021825 Apr 200626 Oct 2006Nanosys, Inc.Paintable nonofiber coatings
US200602635168 Apr 200423 Nov 2006Newsouth Innovations Pty Limited Rupert Myers BuildingHydrophobic coating
US2006026625816 Sep 200430 Nov 2006Koichi AsakuraSurface-finishing agent and finished material and method of surface finishing
US2006026975822 May 200630 Nov 2006Helmeke Marietta BMethod of making water repellent laminates
US2006028188927 May 200214 Dec 2006Hideki KobayashiSilicone composition for water-repellent coating
US2006028630513 May 200421 Dec 2006Thies Jens Christoph JHydrophobic coatings comprising reactive nano-particles
US2006029234514 Jun 200628 Dec 2006Dave Bakul CMicropatterned superhydrophobic silica based sol-gel surfaces
US2007000370530 Jun 20054 Jan 2007The Boeing CompanyRenewable superhydrophobic coating
US2007000502410 Jun 20054 Jan 2007Jan WeberMedical devices having superhydrophobic surfaces, superhydrophilic surfaces, or both
US200700096578 Apr 200411 Jan 2007New South Innovations Pty LimitedDurable superhydrophobic coating
US200700149709 Dec 200318 Jan 2007Edwin NunDispersion of water in hydrophobic oxides for producing hydrophobic nanostructured surfaces
US2007002619331 Mar 20061 Feb 2007Clemson UniversityUltrahydrophobic substrates
US2007003690624 Oct 200615 Feb 2007Reeve John ASilicon-containing treatments for solid substrates
US2007004616029 Aug 20051 Mar 2007Egan Martin SEncapsulated sliding shelf and over-molded frame
US2007006566821 Sep 200622 Mar 2007Akebono Brake Industry Co., Ltd.Work with multi layers coating films and method of forming multi layers coating films
US2007007519917 Apr 20065 Apr 2007Stewart Brian JWire sideplates
US2007014111415 Dec 200521 Jun 2007Essilor International Compagnie Generale D'optiqueArticle coated with an ultra high hydrophobic film and process for obtaining same
US2007014130621 Dec 200521 Jun 2007Toshihiro KasaiProcess for preparing a superhydrophobic coating
US2007014840726 Dec 200628 Jun 2007Industrial Technology Research InstituteWater-Repellent Structure and Method for Making the Same
US2007016651311 Sep 200619 Jul 2007Xiaoxia ShengPatterned Coatings Having Extreme Wetting Properties and Methods of Making
US2007017265028 Mar 200726 Jul 2007O'rear Edgar A IiiMethod for making an article water resistant and articles made therefrom
US200701726585 Mar 200426 Jul 2007Martial DeruelleMethod for enhancing the water repellency of inorganic binder compositions, the compositions capable of being obtained by this method and the uses of these compositions
US2007017266130 Sep 200426 Jul 2007Jorg FechnerAntimicrobial glass and glass ceramic surfaces and their production
US2007017637916 Feb 20052 Aug 2007Horst SonnendorferShopping cart or transport container
US200701966569 Aug 200623 Aug 2007University Of SunderlandHydrophobic silica particles and methods of making same
US2007020234212 Dec 200630 Aug 2007Whiteford Jeffery AMethods and systems for coating an oral surface
US2007021323029 Jul 200513 Sep 2007Ugo PfeifferFast Dissolving Hydroxyalkyl Guar Derivatives
US2007021500411 Apr 200520 Sep 2007Tarou KurodaStain-Proofing Coating Composition
US2007021826512 Feb 200720 Sep 2007Harris Caroline SPhoto-induced hydrophilic article and method of making same
US2007022489827 Mar 200627 Sep 2007Deangelis Alfred RElectrically conductive water repellant fabric composite
US200702315172 Apr 20074 Oct 2007Golownia Robert FMethod of reducing the tendency for water insoluble films to form on the exposed surfaces of containers and articles which are used to contain water borne coatings and article
US200702388073 Apr 200711 Oct 2007Safir Adam LWater resistant film forming compositions incorporating hydrophilic activities
US200702591563 May 20068 Nov 2007Lucent Technologies, Inc.Hydrophobic surfaces and fabrication process
US2007027487123 May 200629 Nov 2007Genetix LimitedWell plate
US2007027524527 Apr 200529 Nov 2007Ronnie PerssonActivation Of A Glass Surface
US2007029821623 Jun 200627 Dec 20073M Innovative Properties CompanyArticles having durable hydrophobic surfaces
US2008000883822 Feb 200510 Jan 2008Leibniz-Institut Fuer Neue Materialien GemeinnuetzAbrasion-Resistant and Alkali-Resistant Coatings or Moulded Bodies Having a Low-Energy Surface
US2008001245922 May 200717 Jan 2008Clarion Technologies, Inc.Refrigerator shelf assembly
US20080015306 *14 Mar 200717 Jan 2008Wright Kathryn JNovel Block Copolymer Compositions
US2008001870920 Apr 200724 Jan 2008Kei TakenakaActuator for Manipulation of Liquid Droplets
US200800201272 May 200724 Jan 2008Allaccem, Inc.Methods and systems for coating a medical device
US200800212122 May 200724 Jan 2008Allaccem, Inc.Methods and systems for preparing an antimicrobial composition
US200800324038 Sep 20057 Feb 2008National University Corporation Nagoya UniversityProduction of Cell Culture Product and Material for Use in Said Production
US2008003955818 May 200514 Feb 2008Dario LazzariPerfluorinated Esters, Polyester, Ethers and Carbonates
US20080039576 *14 Aug 200614 Feb 2008General Electric CompanyVulcanizate composition
US200800446356 Jun 200721 Feb 2008O'neill MichaelBarrier film for flexible articles
US2008005056726 Jul 200728 Feb 2008Sayaka KawashimaBarrier film
US200800638704 Oct 200713 Mar 2008O'rear Edgar AMethod for making an article hydrophobic and oleophobic as well as articles made therefrom and their use
US2008006664819 Sep 200720 Mar 2008Koichi AsakuraHigh water-repellent composition
US200800701466 Jul 200720 Mar 2008Cabot CorporationHydrophobic-treated metal oxide
US200800818582 Oct 20063 Apr 2008Genta OkazakiHigh styrene SBS hot melt adhesive
US2008008819211 Oct 200617 Apr 2008Huang-Hsi HsuWater-repellent motor assembly for rotisserie and casing thereof
US2008009000415 Jul 200517 Apr 2008Hua ZhangHydrophobic and Lyophobic Coating
US2008010104119 Jun 20071 May 2008Delta Electronics, Inc.Electronic device having water-repellent structure and draining structure
US2008010234731 Oct 20061 May 2008Gm Global Technology Operations, Inc.Super-hydrophobic composite bipolar plate
US2008010786414 Jan 20058 May 2008Newsouth Innovations Pty Limited Rupert Myers BuildingMethod of Making a Surface Hydrophobic
US2008013165330 Nov 20065 Jun 2008Lucent Technologies Inc.Fluid-permeable body having a superhydrophobic surface
US2008016025713 Jan 20063 Jul 2008Nitto Denko CorporationAntireflection Hard Coating Film, Optical Element and Image Display
US200801665494 Jan 200710 Jul 2008Nan Ya Plastics CorporationSurface protection film for polarizer film
US200801718058 Jan 200817 Jul 2008Diego MingarelliWaterproofing product that reduces the spread of fire
US2008017293723 Jan 200824 Jul 2008Charles Francis PalmerMethod for improving the water transport characteristics of hydrophobic surfaces
US2008017699111 Oct 200724 Jul 2008Shin-Etsu Chemical Co., Ltd.Coating emulsion composition, and water/oil-repellent paper and making method
US2008019374030 Jan 200814 Aug 2008Nesbitt Jeffrey EComposite building material and method for making composite building material
US2008019776016 Feb 200721 Aug 2008Saint Gobain Glass FranceShelf for supporting articles, particularly in refrigerated installations
US2008019965724 Apr 200821 Aug 2008Commissariat A L'energie AtomiqueSuperhydrophilic or superhydrophobic product, process for producing it and use of this product
US2008019965918 Mar 200821 Aug 2008Wayne State UniversityTransparent hydrophobic article having self-cleaning and liquid repellant features and method of fabricating same
US2008020595028 Feb 200728 Aug 2008Carolyn Patricia MoorlagSilane Functionalized Fluoropolymers
US2008020655026 Feb 200828 Aug 2008Michael Jeremiah BorlnerHydrophobic surface
US200802075812 May 200728 Aug 2008Allaccem, Inc.Methods and systems for coating a surface
US200802136013 Mar 20084 Sep 2008Yasuaki YamamotoHigh-water-repellency and high-slidability coating member, fabrication method for same, and high-water-repellency and high-slidability product using same
US200802201701 Sep 200611 Sep 2008Mark Arthur Josepha Van Der FlaasUse of Alkoxylated Amines to Improve Water Repellency
US2008022067629 Feb 200811 Sep 2008Robert Anthony MarinLiquid water resistant and water vapor permeable garments
US2008022100928 Jan 200811 Sep 2008Subbareddy KanagasabapathyHydrophobic self-cleaning coating compositions
US2008022126331 Aug 200711 Sep 2008Subbareddy KanagasabapathyCoating compositions for producing transparent super-hydrophobic surfaces
US2008022669413 Mar 200718 Sep 2008Daniel GelbartMethod for introducing superhydrophobic articles into the human body
US2008023712629 Oct 20072 Oct 2008Hoek Eric M VMicro-and nanocomposite support structures for reverse osmosis thin film membranes
US2008024151226 Sep 20072 Oct 2008Applied Microstructures, Inc.Articles with super-hydrophobic and-or super-hydrophilic surfaces and method of formation
US2008024152323 Feb 20052 Oct 2008Saint-Gobain Glass FranceSubstrate, Such As A Glass Substrate, With A Hydrophobic Surface And Improved Durability Of Hydrophobic Properties
US200802452735 Apr 20079 Oct 2008Jouko VyorkkaHydrophobic coatings
US2008024680431 Mar 20089 Oct 2008Canon Kabushiki KaishaLiquid ejection head
US2008024826317 Mar 20089 Oct 2008Applied Microstructures, Inc.Method of creating super-hydrophobic and-or super-hydrophilic surfaces on substrates, and articles created thereby
US2008025097817 Jan 200816 Oct 2008Baumgart Richard JHydrophobic self-cleaning coating composition
US2008026102429 Oct 200723 Oct 2008Constantinos XenopoulosSilica-based coating composition and its use for coating cement-bonded objects
US2008026823326 Feb 200830 Oct 2008Lawin Laurie RNanotextured super or ultra hydrophobic coatings
US2008026935827 Jun 200830 Oct 2008Agc Si-Tech Co., Ltd.Water-repellent inorganic powder and process for its production
US200802806998 May 200813 Nov 2008Erik Jonas JarvholmWater Repellant Golf Balls Containing a Hydrophobic or Superhydrophobic Outer Layer or Coating
US2008028655617 May 200720 Nov 2008D Urso Brian RSuper-hydrophobic water repellant powder
US200802953471 Jun 20074 Dec 2008Eric Barkley BrahamMoisture resistant chalk line composition for use with chalk line devices
US2008029625211 Aug 20064 Dec 2008Ut-Battelle, LlcComposite, nanostructured, super-hydrophobic material
US200803062028 Jun 200711 Dec 2008Xerox CorporationIntermediate transfer members comprised of hydrophobic carbon nanotubes
US2008031066012 Jun 200818 Dec 2008Starkey Laboratories, Inc.Method and apparatus for hearing assistance device using superhydrophobic coatings
US2009001087023 Feb 20068 Jan 2009Andreas GreinerHydrophobic Flourinated Polymer Surfaces
US2009001122213 Dec 20068 Jan 2009Georgia Tech Research CorporationSuperhydrophobic surface and method for forming same
US200900112275 Sep 20088 Jan 2009Asahi Glass Company, LimitedTreated substrate having hydrophilic region and water repellent region, and process for producing it
US2009001196018 Jun 20088 Jan 2009An Ming WuDrilling fluid composition comprising hydrophobically associating polymers and methods of use thereof
US2009001824930 Jan 200715 Jan 2009Subbareddy KanagasabapathyHydrophobic self-cleaning coating compositions
US200900255085 Oct 200729 Jan 2009Industrial Technology Research InstituteSuperhydrophobic and self-cleaning powders and fabrication method thereof
US2009002560915 Dec 200629 Jan 2009Miki EgamiCoating Liquid for Forming Low Dielectric Constant Amorphous Silica-Based Coating Film and the Coating Film Obtained From the Same
US200900320883 Aug 20075 Feb 2009Mario RabinowitzSealants for Solar Energy Concentrators and Similar Equipment
US20090035519 *1 Aug 20085 Feb 2009Saint-Gobain Abrasives, Inc.Abrasive article with anti-slip polymeric layer
US200900369781 Aug 20075 Feb 2009Kleiner Lothar WBioabsorbable coating with tunable hydrophobicity
US2009004246910 Aug 200712 Feb 2009Ut-Battelle, LlcSuperhydrophilic and Superhydrophobic Powder Coated Fabric
US2009005824728 Aug 20075 Mar 2009Electrolux Home Products, Inc.Drop-down shelf
US200900648944 Sep 200812 Mar 2009Ashland Licensing And Intellectual Property LlcWater based hydrophobic self-cleaning coating compositions
US2009007643019 Nov 200819 Mar 2009Simpson John TSuper-hydrophobic bandages and method of making the same
US2009008457422 Sep 20082 Apr 2009Kim Gene BalfourPoly(arylene ether) composition and its use in the fabrication of extruded articles and coated wire
US2009008491411 Sep 20082 Apr 2009Clarion Technologies, Inc.Refrigerator shelf assembly
US200900854535 Dec 20082 Apr 2009Howard DaleyShelf assembly for a refrigerator compartment
US2009008767020 Nov 20082 Apr 2009E. I. Du Pont De Nemours And CompanyFluoroalkyl phosphate compositions
US200900959419 Nov 200516 Apr 2009Takashi NakataMoisture-resistant deoxidant
US2009009930122 Mar 200716 Apr 2009PolyintellMolecular imprintings for recognition in aqueous media, methods for preparing same and uses thereof
US2009010540922 Jul 200823 Apr 2009Bayer Materialscience AgAqueous secondary polymer dispersions for the production of coatings
US200901056793 Mar 200623 Apr 2009Rhodia Recherches Et TechnologiesHydrophilized Compositions Comprising Normally Hydrophobic Thermoplastic Polymers/Anionic Surfactants and Articles Shaped Therefrom
US2009011134429 Oct 200730 Apr 2009Peter Michael MurphyFluorinated water soluble copolymers
US200901153026 Apr 20067 May 2009Bsh Bosch Und Siemens Hausgerate GmbhSupport arrangement and refrigerator provided therewith
US200901237282 Feb 200914 May 2009Pactiv CorporationPolymer Blends Of Biodegradable Or Bio-Based And Synthetic Polymers And Foams Thereof
US2009013475830 Nov 200528 May 2009Saint-Gobain Glass FranceShelf, particularly for refrigeration units, which is designed to support at least one accessory and corresponding accessories
US2009013673711 Jul 200628 May 2009John RingPowder coating materials
US2009014260421 Nov 20084 Jun 2009Nichiha CorporationCoating film for building material
US2009015556618 Dec 200718 Jun 2009General Electric CompanyWetting resistant materials and articles made therewith
US2009016259218 Dec 200825 Jun 2009Dow Global Technologies Inc.Protective coating for window glass having enhanced adhesion to glass bonding adhesives
US2009016363714 Aug 200825 Jun 2009Zhifeng LiFiller system including densed fumed metal oxide
US2009018208525 Jan 200716 Jul 2009Escobar Barrios Vladimir APolyurethane-based retention, covering, filling and reinforcement composition
US2009018607027 Mar 200923 Jul 2009Guire Patrick EParticle immobilized coating and uses thereof
US2009018887723 Jan 200930 Jul 2009Brian Joseph StewartFull extension refrigerator shelf and basket system
US20090193743 *6 Feb 20086 Aug 2009Wiercinski Robert ASkid Resistant Surfaces
US200901951362 Apr 20096 Aug 2009Maytag CorporationUpright rear wall extension for refrigerator shelves
US20090208739 *29 Jun 200720 Aug 2009Tesa AgAdhesive film with high optical transperancy, as an anti-splinter cover for adhering to glass windows in electronic components for consumer items
US200902125057 Apr 200927 Aug 2009Mcmillin Matthew JHeat staked shelf
US200902400044 Sep 200724 Sep 2009Alois MaierFunctionalized polyurethane resin, method for the production thereof, and use thereof
US20090263604 *29 May 200722 Oct 2009Denki Kagaku Kogyo Kabushiki KaishaProcess for production of cross copolymers, cross copolymers obtained by the process, and use thereof
US20090286023 *30 Mar 200619 Nov 2009Pactiv CorporationPolymer films with treated fillers and improved properties and products and methods using same
US200902983698 Apr 20093 Dec 2009Luna Innovations IncorporatedAdditive particles having superhydrophobic characteristics and coatings and methods of making and using the same
US2009032491028 May 200931 Dec 2009Massachussetts Institute Of TechnologyCoatings
US2010000162523 Jan 20087 Jan 2010Bsh Bosch Und Siemens Hausgerate GmbhRefrigeration device comprising shelves that are suspended on a rail
US2010000349322 Jul 20097 Jan 2010Ppg Industries Ohio, Inc.Radiation curable coating compositions, related coatings and methods
US201000043732 Jul 20087 Jan 2010Jingxu ZhuCompositions and processes for producing durable hydrophobic and/or olephobic surfaces
US20100006223 *29 Jun 200914 Jan 2010Tesa SeUse of an adhesive sheet with a carrier film provided on one side with an adhesive for covering microtitre plates
US2010002615629 Jul 20094 Feb 2010Saint-Gobain Glass FranceShelf for refrigeration units
US201000524912 Sep 20094 Mar 2010Saint-Gobain Glass FranceShelf, in particular for refrigerated installations
US2010010269318 Sep 200929 Apr 2010Ssw Holdings Company, Inc.Spill Containing Refrigerator Shelf Assembly
US201001094986 Jul 20096 May 2010Axel Julio RammSystem for moving a set of shelves of a refrigeration appliance and refrigeration appliance
US201001175027 Apr 200813 May 2010Lg Electronics Inc.Basket for refrigerator
US2010013397018 Apr 20083 Jun 2010Lg Electronics Inc.Structure for modifying height of shelf and refrigerator having the same
US201001767039 Dec 200915 Jul 2010Hyeon Jin KimRefrigerator
US2010018188418 Dec 200922 Jul 2010Whirlpool CorporationRefrigerator shelf with glass receiving slot
US201001967025 Sep 20085 Aug 2010Asahi Glass Company, LimitedTreated substrate having hydrophilic region and water repellent region, and process for producing it
US201002133346 May 201026 Aug 2010John DavenportShelf mounting system
US2010027291330 Jun 201028 Oct 2010The Clorox CompanyTreatment and Kits for Creating Transparent Renewable Surface Protective Coatings
US20100314575 *15 Jun 201016 Dec 2010Di GaoAnti-icing superhydrophobic coatings
US2010033034714 Jul 201030 Dec 2010Surface Innovations LimitedMethod and apparatus for the formation of hydrophobic surfaces
US20110020637 *2 Jul 201027 Jan 2011Nitto Denko CorporationLaminated film and pressure-sensitive adhesive tape
US20110027531 *2 Jul 20103 Feb 2011Nitto Denko CorporationLaminated film and pressure-sensitive adhesive tape
US20110033662 *14 Jul 201010 Feb 2011Nitto Denko CorporationLaminated film and pressure-sensitive adhesive tape
US2011011165618 Oct 201012 May 2011Di GaoDurable superhydrophobic coatings
US20110184082 *19 Jan 201128 Jul 2011Kraton Polymers U.S. LlcCompositions Containing Styrene-Isobutylene-Styrene And Styrene-Ethylene/Butylene-Styrene Block Copolymers
US2011021754421 Aug 20098 Sep 2011Innova Dynamics, Inc.Enhanced surfaces, coatings, and related methods
US20110243985 *10 Dec 20096 Oct 2011Stefania PaganiSelf-adhesive matrix system comprising a styrene block copolymer
US2011025131822 Dec 200913 Oct 2011Toagosei Co., Ltd.Adhesive composition
US20110303156 *16 May 201115 Dec 2011Ross Technology CorporationLong lasting, non-wetting, odor free, easily manageable animal litter and litter box usable therewith
US2011031308225 Feb 201022 Dec 2011Matthias PoppEpoxy adhesive compositions with high mechanical strength over a wide temperature range
US20120009396 *7 Apr 201112 Jan 2012Ross Technology CorporationSpill resistant surfaces having hydrophobic and oleophobic borders
US2012004057730 Jun 200916 Feb 2012Kissel David JSuperhydrophobic aerogel that does not require per-fluoro compounds or contain any fluorine
US20120045954 *7 Apr 201123 Feb 2012Ross Technology CorporationHighly durable superhydrophobic. oleophobic and anti-icing coatings and methods and compositions for their preparation
US20130139309 *14 Sep 20126 Jun 2013Ross Technology CorporationPlunger and Methods of Producing Hydrophobic Surfaces
US201302168207 Nov 201122 Aug 20133M Innovative Properties CompanyHydrophobic fluorinated coatings
US20140087134 *21 Aug 201327 Mar 2014Ross Technology CorporationSuperhydrophobic and Oleophobic Coatings with Low VOC Binder Systems
US20140296409 *16 Jun 20142 Oct 2014Ross Technology CorporationComposition and Coating for Hydrophobic Performance
US20140349061 *8 Aug 201427 Nov 2014Ross Technology CorporationHydrophobic surfaces on injection molded or shaped articles
US201500054243 Jul 20141 Jan 2015Ross Technology CorporationElastomeric Coatings Having Hydrophobic and/or Oleophobic Properties
US2015003077930 Jun 201429 Jan 2015Ross Technology CorporationHighly Durable Superhydrophobic, Oleophobic and Anti-Icing Coatings and Methods and Compositions for Their Preparation
US2015009747530 Jun 20149 Apr 2015Ross Technology CorporationSpill Resistant Surfaces Having Hydrophobic and Oleophobic Borders
USD2959504 Sep 198631 May 1988Arbell Inc.Pair of support brackets for a shelf or the like
USD54764012 Dec 200531 Jul 2007Clairson, Inc.Drawer bracket
USD56834416 May 20066 May 2008Bsh Bosch Und Siemens Hausgeraete GmbhRefrigerator shelf
USD5969314 Dec 200728 Jul 2009Clairson, Inc.Bracket
USD59693221 Oct 200828 Jul 2009Crystal Spring Colony Farms Ltd.Shelf bracket
USD60702016 May 200629 Dec 2009Bsh Bosch Und Siemens Hausgeraete GmbhRefrigerator shelf
USD61240429 May 200823 Mar 2010Clarion Technologies, Inc.Refrigerator shelf
USD6124055 May 200923 Mar 2010Bsh Bosch Und Siemens Hausgeraete GmbhGlass refrigerator shelf
USD6133165 May 20096 Apr 2010Bsh Bosch Und Siemens Hausgeraete GmbhGlass refrigerator shelf
CA2175848A16 May 19966 Dec 1996Ppg Industries Ohio, Inc.Water Repellent Surface Treatment with Integrated Primer
CA2796305A1 *15 Mar 201122 Sep 2011Ross Technology CorporationPlunger and methods of producing hydrophobic surfaces
DE10306891A1 *18 Feb 200326 Aug 2004Basf AgTransparent vinyl-aromatic-diene block copolymers with star structure, used for molding, film, fibers or foam, e.g. coat hanger or packaging, has rigid blocks of different molecular weight and 2 types of random flexible blocks
DE102010022265A131 May 20101 Dec 2011Siemens AktiengesellschaftHydrophobe Beschichtung und Anwendung dazu
EP0166363A219 Jun 19852 Jan 1986Asahi Glass Company Ltd.Low reflectance transparent material having antisoiling properties
EP0207282A224 May 19867 Jan 1987Dow Corning CorporationOil and water repellent coating compositions
EP0307915A215 Sep 198822 Mar 1989Aqualon CompanyCarboxymethyl hydrophobically modified hydroxyethylcellulose (cmhmhec) and use of cmhmhec in protective coating compositions
EP0317057A213 Sep 198824 May 1989Dow Corning CorporationProcess for preparing water-based silicone-organic polymer compositions
EP0332141A27 Mar 198913 Sep 1989Asahi Glass Company Ltd.Water and oil repellant
EP0399568A28 Jan 198628 Nov 1990TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATIONHydrophilic porous membrane
EP0446391A114 Mar 199018 Sep 1991The Dow Chemical CompanyBituminous binder compositions
EP0452723A128 Mar 199123 Oct 1991Ppg Industries, Inc.Chemically treated glass surface
EP0472215A223 Aug 199126 Feb 1992Dow Corning Toray Silicone Company, LimitedWater-repellent and oil-repellent treatment agent
EP0476510A111 Sep 199125 Mar 1992Nissan Motor Company LimitedProcess for treating glass surface with water repellency
EP0493270A228 Nov 19911 Jul 1992Pascal LengrandLiquid or paste-like hydrophobic coating compositions usable as thick or semi-thick coating for building or decoration
EP0545201A223 Nov 19929 Jun 1993Ppg Industries, Inc.Durable water repellent glass surface
EP0623656A22 May 19949 Nov 1994The Thompson Minwax CompanyWater-based water repellent coating compositions
EP0649887A221 Oct 199426 Apr 1995DOW CORNING ASIA, Ltd.Water-repellant and antiseptic coating composition
EP0657393A17 Dec 199414 Jun 1995Nippon Sheet Glass Co. Ltd.Method of forming water-repellent film on transparent panel
EP0714870A125 Oct 19955 Jun 1996Elf Atochem S.A.Process and composition for the oleophobic and hydrophobic treatment of construction materials
EP0714921A125 Oct 19955 Jun 1996Elf Atochem S.A.Cationic fluorinated copolymers for oil and water repellent treatment of construction materials
EP0719743A111 Dec 19953 Jul 1996Ppg Industries, Inc.Water repellent surface treatment with integrated primer
EP0719821A111 Dec 19953 Jul 1996Ppg Industries, Inc.Water repellent surface treatment for plastic and coated plastic substrates
EP0739714A22 Sep 198830 Oct 1996Kuraray Co., Ltd.Multilayered structure comprising a layer of an ethylene-vinyl alcohol copolymer composition and a hydrophobic thermoplastic resin layer
EP0745567A117 May 19964 Dec 1996Ppg Industries, Inc.Water repellent surface treatment with integrated primer
EP0745568A117 May 19964 Dec 1996Ppg Industries, Inc.Autophobic water repellent surface treatment
EP0752459A21 Jul 19968 Jan 1997ÖMV AktiengesellschaftProcess and device for separating a hydropholic liquide fraction of an aqueous suspension
EP0770706A124 Oct 19962 May 1997Dipsol Chemicals Co., Ltd.Water-soluble composition for water-repellent treatments of zinc and zinc alloy and method for water-repellent treatment
EP0799791A130 Sep 19968 Oct 1997Mitsubishi Materials CorporationHydrophobic metal oxide powder and use thereof
EP0811430A13 Jun 199710 Dec 1997Ppg Industries, Inc.Water repelllent surface treatment with acid activation
EP0863191A25 Mar 19989 Sep 1998Nippon Paint Co., Ltd.Raindrop fouling-resistant paint film, coating composition, film-forming method, and coated article
EP0903389A12 Jun 199724 Mar 1999Toto Ltd.Antifouling member and antifouling coating composition
EP0904343A127 Sep 199631 Mar 1999Reckitt &amp; Colman Inc.Germicidal acidic hard surface cleaning compositions
EP0914873B13 Nov 199826 Mar 2003Matsushita Electric Industrial Co., Ltd.Method for water repellent coating and coating apparatus for the same
EP0915103A127 Oct 199812 May 1999Elf Atochem S.A.Stable aqueous dispersions based on hydrosoluble polymers containing a cationic dispersing agent with hydrophobic groups
EP0930351A113 Jan 199821 Jul 1999Minnesota Mining And Manufacturing CompanyFluorochemical copolymer and fluorochemical copolymer compositions for imparting repellency properties to a substrate
EP0969718B12 Mar 19988 Sep 2004Engelhard CorporationAqueous dispersion of hydrophobic particles and films produced thereby
EP1047735A213 Jan 19992 Nov 2000Cabot CorporationMethod of preparing hydrophobic silica
EP1048696A219 Apr 20002 Nov 2000Dow Corning CorporationMethod for preparation of hydrophobic precipitated silica
EP1097979A16 Nov 20009 May 2001Nippon Sheet Glass Co., Ltd.Coating solution and method for water-repellent treatment and kit for preparing such solution
EP1108735A121 Nov 200020 Jun 2001Bayer CorporationLiquid, hydrophobic, non-migrating, non-functional polyurethane plasticizers
EP1113064A13 Jun 19994 Jul 2001Nippon Sheet Glass Co., Ltd.Process for producing article coated with water-repellent film, article coated with water-repellent film, and liquid composition for water-repellent film coating
EP1136539A11 Aug 200026 Sep 2001Nippon Sheet Glass Co., Ltd.Article coated with water-repellent film, liquid composition for coating with water-repellent film, and process for producing article coated with water-repellent film
EP1180533A110 Aug 200020 Feb 2002The Procter &amp; Gamble CompanyThermoplastic hydrophilic, polymeric compostions with improved adhesive properties for moisture vapour permeable structures
EP1187872A112 May 200020 Mar 2002BAUSCH &amp; LOMB INCORPORATEDSurface-treatment of silicone medical devices comprising an intermediate carbon coating and graft polymerization
EP1193289A12 Oct 20003 Apr 2002The Procter &amp; Gamble CompanyImproved thermoplastic hydrophilic polymeric compositions for moisture vapour permeable structures
EP1215252A212 Dec 200119 Jun 2002Dow Corning Toray Silicone Co., Ltd.Water repellent silicone coating agent composition
EP1261559A18 Feb 20014 Dec 2002Sunyx Surface Nanotechnologies GmbHLong-time stable water-repellent and oil-repellent surface
EP1360253A212 Feb 200212 Nov 2003Dow Corning Toray Silicone Co., Ltd.Silicone resin composition for water repellent coating
EP1362904A121 Feb 200219 Nov 2003Kazuyuki MatsumuraWater-based water repellant for treatment of substrates
EP1387011A129 Jul 20034 Feb 2004Weco Bahnüberwege- Und Auffangwannenbau GmbhSystem for avoiding the spillage of oil and method for avoiding spillage of oil
EP1387169A12 Aug 20024 Feb 2004Sony International (Europe) GmbHMethod of attaching hydrophilic species to hydrophilic macromolecules and immobilizing the hydrophilic macromolecules on a hydrophobic surface
EP1392619A128 May 20023 Mar 2004MOLTECH Invent S.A.Hydrophilic protective layers bonded on hydrophobic substrates for use at elevated temperature
EP1392772A127 May 20023 Mar 2004Dow Corning Toray Silicone Co.,Ltd. Patent DepartmentSilicone composition for water-repellent coating
EP1401903A215 Feb 200231 Mar 2004Rhodia ChimieCopolymers with water-soluble blocks comprising a hydrophobic block and a hydrophilic block
EP1407792A110 Oct 200314 Apr 2004Ethicon, Inc.Medical devices having durable and lubricious polymeric coating comprising a silicone polymer and non-silicone hydrophobic polymers
EP1429919A125 Jul 200223 Jun 20043M Innovative Properties CompanyStain resistant protect film and adhesive sheet having the same thereon
EP1433821A124 Nov 200330 Jun 2004United Technologies CorporationChromate free waterborne epoxy corrosion resistant primer
EP1473355A129 Apr 20033 Nov 2004THE PROCTER &amp; GAMBLE COMPANYA method for increasing the hydrophobicity of a lavatory bowl surface
EP1475234A16 May 200410 Nov 2004Seiko Epson CorporationWater and oil-repellent film-coated nozzle plate
EP1479738A120 May 200324 Nov 2004DSM IP Assets B.V.Hydrophobic coatings comprising reactive nano-particles
EP1492837A13 Apr 20035 Jan 2005Wacker Polymer Systems GmbH &amp; Co. KGOrganofunctional silicone copolymers and the saponification products thereof
EP1503813A11 Apr 20039 Feb 2005SurModics, Inc.Silane coating composition
EP1524290A111 Oct 200420 Apr 2005Curvet SPAProduct and method for water-repellent treatment of surfaces
EP1583615A122 Dec 200312 Oct 2005PPG Industries Ohio, Inc.Water repellent surface treatment and treated articles
EP1752284A131 May 200414 Feb 2007Mitsui Chemicals, Inc.Hydrophilic porous film and multi-layered film comprising the same
EP1857497A212 Apr 200221 Nov 2007The Procter and Gamble CompanyLiquid impermeable, moisture vapour permeable layers and films comprising thermoplastic hydrophilic polymeric compositions and having improved strength
EP1873218A121 Apr 20062 Jan 2008Dow Corning Toray Silicone Company, Ltd.Solution or dispersion for base surface treatment containing titanium oxide doped with metal element, method of treating base surface with the liquid, and surface-treated material obtained by the method
EP1875279A113 Mar 20069 Jan 2008Eastman Kodak CompanyA method of forming mirrors on a conducting substrate
EP1883669A122 May 20066 Feb 2008DSMIP Assets B.V.Hydrophobic coating
EP1902091A214 Jul 200626 Mar 2008Innovative Surface Technologies, LLCNanotextured surfaces
EP1908804A113 Feb 20069 Apr 2008AGC Si-Teck Co., Ltd.Process for producing water repellent particulate
EP1988129A224 Apr 20085 Nov 2008Shin-Etsu Chemical Co., Ltd.Hydrophobic spherical silica microparticles having a high degree of flowability, method of producing same, electrostatic image developing toner external additive using same, and organic resin compositon containing same
EP1997619A11 Mar 20073 Dec 2008Japan Absorbent Technology InstituteHighly air-permeable water-resistant sheet, highly air-permeable water-resistant sheet composite body, absorbent article, method for producing highly air-permeable water-resistant sheet, and method for producing highly air-permeable water-resistant sheet composite body
EP2346678A17 Oct 200927 Jul 2011Ross Technology CorporationSpill resistant surfaces having hydrophobic and oleophobic borders
EP2678400A121 Feb 20121 Jan 2014Ross Technology CorporationSuperhydrophobic and oleophobic coatings with low voc binder systems
EP2791255A117 Dec 201222 Oct 2014Ross Technology CorporationComposition and coating for superhydrophobic performance
GB1341605A Title not available
GB2484751A Title not available
JP2002020575A * Title not available
JP2004143352A * Title not available
JP2004162133A Title not available
JP2004308984A Title not available
JP2005082616A Title not available
JP2006131938A Title not available
JP2006176559A * Title not available
JP2007144917A Title not available
JP2007182491A Title not available
JP2008228958A Title not available
JP2009071672A Title not available
JP2009120792A * Title not available
JPH0790691A Title not available
JPH05186738A Title not available
JPH10309768A Title not available
JPS62246960A Title not available
MXPA01011653A Title not available
MXPA02006399A Title not available
MXPA02012841A Title not available
MXPA04010165A Title not available
MXPA05006898A Title not available
MXPA06003323A Title not available
WO1991004305A111 Sep 19904 Apr 1991Manchem LimitedWater-based water repellents
WO1993016131A111 Dec 199219 Aug 1993Minnesota Mining And Manufacturing CompanyRadiation crosslinked elastomers
WO1994013734A16 Dec 199323 Jun 1994Franz Haas Waffelmaschinen Industrie-Gesellschaft MbhProcess for producing biodegradable thin-walled starch-based mouldings
WO1996004123A125 Jul 199515 Feb 1996Wilhelm BarthlottSelf-cleaning surfaces of objects and process for producing same
WO1996007621A117 Aug 199514 Mar 1996Ford Motor CompanyVolatile glass batch materials incorporated in frits
WO1997007993A127 Aug 19966 Mar 1997First Medical, Inc.Methods and articles for enhanced protein adsorption and fluid management on surfaces
WO1998020960A110 Nov 199722 May 1998Whatman, Inc.Hydrophilic polymeric phase inversion membrane
WO1999023137A14 Nov 199814 May 1999Ge Bayer Silicones Gmbh & Co. KgSuperficial hydrophilized silicon elastomers, a method for the production thereof and their application
WO1999023437A120 Oct 199814 May 1999MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.Element with extremely strong water-repellent dry zones on the surface thereof
WO1999040431A19 Feb 199912 Aug 1999Angros Lee HAnalytic plate and method
WO1999047578A115 Mar 199923 Sep 1999Reichhold, Inc.Surface active polyesters
WO1999048339A117 Mar 199923 Sep 1999Seiko Epson CorporationSubstrate for patterning thin film and surface treatment thereof
WO1999057185A129 Apr 199911 Nov 19993M Innovative Properties CompanyPatterned article having alternating hydrophilic and hydrophobic surface regions
WO1999064363A110 Jun 199916 Dec 1999Ppg Industries Ohio, Inc.Water-repellent surface treatment
WO2000005321A122 Jul 19993 Feb 2000Saint-Gobain Glass FranceHydrophobic treatment composition, method for forming a coating and products provided with said coating
WO2000014297A17 Sep 199916 Mar 2000The Procter & Gamble CompanyModulated plasma glow discharge treatments for making superhydrophobic substrates
WO2000025938A129 Jan 199911 May 2000Diamon-Fusion International, Inc.Capped silicone film and method of manufacture thereof
WO2000034361A124 Nov 199915 Jun 2000Hercules IncorporatedHydrophobically modified comb copolymers
WO2000039240A122 Dec 19996 Jul 2000Sunyx Surface Nanotechnologies GmbhUltraphobic surface
WO2000046464A18 Jan 200010 Aug 2000Kloeber JohannesHydrophobically finished roof lining which allows diffusion
WO2000066241A13 May 20009 Nov 2000Sustainable Technologies CorporationEncapsulant compositions and methods for treating spills of hydrophobic and/or hydrophilic materials
WO2001019745A113 Sep 200022 Mar 2001Nippon Sheet Glass Co., Ltd.Method for partially treating a water-repellent glass sheet and the partially treated glass sheet
WO2001062682A18 Feb 200130 Aug 2001Sunyx Surface Nanotechnologies GmbhLong-time stable water-repellent and oil-repellent surface
WO2001074739A113 Mar 200111 Oct 2001Dmc?2¿ Degussa Metals Catalyts Cerdec AgGlass ceramic and metal substrates with a self-cleaning surface, method for the production and use thereof
WO2001079142A112 Apr 200125 Oct 2001Nanogate Technologies GmbhCeramic material surface with hydrophobic or ultraphobic properties and method for the production thereof
WO2001079371A211 Apr 200125 Oct 2001World Properties, Inc.Method for improving bonding of rigid, thermosetting compositions to hydrophilic surfaces, and the articles formed thereby
WO2001098399A115 Jun 200127 Dec 2001The Procter & Gamble CompanyThermoplastic hydrophilic polymeric compositions with high water solubility component
WO2002014417A17 Aug 200121 Feb 2002The Procter & Gamble CompanyThermoplastic hydrophilic polymeric compositions with improved adhesive properties for moisture vapour permeable structures
WO2002028951A11 Oct 200111 Apr 2002The Procter & Gamble CompanyImproved thermoplastic hydrophilic polymeric compositions for moisture vapour permeable structures
WO2002062910A212 Feb 200215 Aug 2002Dow Corning Toray Silicone Co., Ltd.Silicone resin composition for water repellent coating
WO2002074869A18 Mar 200226 Sep 2002Cabot CorporationCorrosion-resistant coating composition
WO2002098983A127 May 200212 Dec 2002Dow Corning Toray Silicone Co., Ltd.Silicone composition for water-repellent coating
WO2003010255A225 Jul 20026 Feb 2003The Sherwin-Williams CompanyWater-based water repellent coating compositions
WO2003012004A126 Jul 200213 Feb 2003Cabot CorporationHydrophobe associative polymers and compositions and methods employing them
WO2003030879A130 Sep 200217 Apr 2003Surmodics, Inc.Particle immobilized coatings and uses thereof
WO2003037702A129 Oct 20028 May 2003Cnt Spolka Z O.O.Superhydrophobic coating
WO2003045693A115 Nov 20025 Jun 2003Basf Drucksysteme GmbhLaser engravable flexo printing elements for the production of flexo printing forms containing blends of hydrophilic polymers and hydrophobic elastomers
WO2003063646A224 Jan 20037 Aug 2003Ssw Holding Company, Inc.Adhesively bonded, leak-proof shelf
WO2003080258A224 Mar 20032 Oct 2003University Of DurhamMethod and apparatus for the formation of hydrophobic surfaces
WO2003082998A128 Mar 20039 Oct 2003Nanogate Technologies GmbhWater-based coating fluid
WO2003093568A130 Apr 200313 Nov 2003Omnova Solutions Inc.Highly durable, coated fabrics exhibiting hydrophobicity, oleophobicity and stain resistance, and related methods
WO2004012625A221 Jul 200312 Feb 2004ArkemaAdhesive composition for a humid medium based on block copolymers comprising at least one hydrophilic block
WO2004043319A222 Oct 200327 May 2004Kimberly-Clark Worldwide, Inc.Semi-hydrophobic cover for an absorbent product
WO2004058418A122 Dec 200315 Jul 2004Ppg Industries Ohio, Inc.Water repellent surface treatment and treated articles
WO2004104116A113 May 20042 Dec 2004Dsm Ip Assets B.V.Hydrophobic coatings comprising reactive nano-particles
WO2004110132A210 Jun 200423 Dec 2004E.I. Dupont De Nemours And CompanyWater vapor permeable hydrophilic membranes and devices made there-from and process for using the devices
WO2005021843A12 Sep 200310 Mar 2005Sabanci UniversitesiProcess for preparing superhydrophobic surface compositions, surfaces obtained by said process and use of them
WO2005023935A116 Jun 200417 Mar 2005Dow Corning CorporationSilicone oil-in-water (o/w) emulsions or compositions useful for water repellent applications
WO2005028562A117 Sep 200431 Mar 2005Techno Polymer Co., Ltd.Polymer composition for molded-article molding, molded article, hydrophilic molded article and process for producing the same, and layered article
WO2005068399A114 Jan 200528 Jul 2005Newsouth Innovations Pty LimitedMethod of making a surface hydrophobic
WO2005077429A19 Feb 200525 Aug 2005The Procter & Gamble CompanyHydrophobic surface coated absorbent articles
WO2006044641A213 Oct 200527 Apr 2006Donnelly CorporationRefrigerator shelf assembly
WO2006044642A212 Oct 200527 Apr 2006Georgia Tech Research CorporationInsulator coating and method for forming same
WO2006081891A18 Dec 200510 Aug 2006Degussa GmbhHigh-viscosity aqueous emulsions of functional alkoxysilanes, condensed oligomers thereof, organopolysiloxanes, their preparation and use for surface treatment of inorganic materials
WO2006083600A119 Jan 200610 Aug 2006Applied Microstructures, Inc.High aspect ratio performance coatings for biological microfludics
WO2006101934A115 Mar 200628 Sep 2006Allegiance CorporationRepellent elastomeric article
WO2006135755A29 Jun 200621 Dec 2006Boston Scientific Scimed, Inc.Medical devices having superhydrophobic surfaces,superhydrophilic surfaces, or both
WO2007011731A214 Jul 200625 Jan 2007Innovative Surface Technologies, LlcNanotextured surfaces
WO2007027276A121 Jun 20068 Mar 2007Kimberly-Clark Worldwide, Inc.Hydrophilic silicone elastomers
WO2007052260A230 Oct 200610 May 2007Shenkar College Of Engineering And DesignUse of poss nanostructured molecules for hydrophobic and self cleaning coatings
WO2007053266A110 Oct 200610 May 2007The Clorox CompanyTreatments and kits for creating transparent renewable surface protective coatings
WO2007056427A27 Nov 200618 May 2007Massachusetts Institute Of TechnologySuperhydrophilic coatings
WO2007070801A212 Dec 200621 Jun 2007Allaccem, Inc.Methods and systems for preparing antimicrobial films and coatings
WO2007075407A115 Dec 20065 Jul 20073M Innovative Properties CompanyProcess for preparing a superhydrophobic coating
WO2007092746A22 Feb 200716 Aug 2007Ut-Battelle, LlcTransparent articles having hydrophobic or super-hydrophobic surfaces
WO2007102960A230 Jan 200713 Sep 2007Ashland Licensing And Intellectual Property LlcHydrophobic self-cleaning coating compositions
WO2007104494A19 Mar 200720 Sep 2007Construction Research & Technology GmbhFluorine-modified additive for cementitious products, process for its preparation and use thereof
WO2007126432A120 Dec 20068 Nov 2007Georgia Tech Research CorporationSuperhydrophobic surface and method for forming same
WO2007126743A126 Mar 20078 Nov 2007Milliken & CompanyElectrically conductive water repellant fabric composite
WO2007130294A225 Apr 200715 Nov 2007Lucent Technologies Inc.Superhydrophobic surfaces and fabrication process
WO2007149617A130 Mar 200727 Dec 20073M Innovative Properties CompanyArticles having durable hydrophobic surfaces
WO2008004827A15 Jul 200710 Jan 2008Postech Academy-Industry FoundationMethod for fabricating superhydrophobic surface and solid having superhydrophobic surface structure by the same method
WO2008004828A15 Jul 200710 Jan 2008Postech Academy-Industry FoundationMethod for fabricating superh ydrophob ic surface and solid having superhydrophobic surface structure by the same method
WO2008006078A26 Jul 200710 Jan 2008Bio-Rad Laboratories, Inc.Mass spectrometry probes having hydrophobic coatings
WO2008021791A26 Aug 200721 Feb 2008Innovation Chemical Technologies, LtdNano structured phased hydrophobic layers on substrates
WO2008035347A220 Sep 200727 Mar 2008Ariel-University Research And Development Company Ltd.Superhydrophobic nanotextured polymer and metal surfaces
WO2008035917A119 Sep 200727 Mar 2008Postech Academy-Industry FoundationMethod for fabricating solid body having superhydrophobic surface structure and superhydrophobic tube using the same method
WO2008050895A124 Oct 20072 May 2008Canon Kabushiki KaishaWater repellent catalyst layer for polymer electrolyte fuel cell and manufacturing method for the same
WO2008051221A223 Oct 20062 May 2008Nano-Structured Consumer Products, LlcCompositions and methods for imparting oil repellency and/or water repellency
WO2008066828A228 Nov 20075 Jun 2008Lucent Technologies Inc.Fluid-permeable body having a superhydrophobic surface
WO2008078346A13 Sep 20073 Jul 2008Ce.S.I. Centro Studi Industriali Di Taddei Ing. Franco & C. S.A.S.Hybrid coating that is water-repellent and humidity-proof for reinforced composite polymer materials deposited through pecvd
WO2008106494A127 Feb 20084 Sep 2008Innovative Surface Technologies, Inc.Nanotextured super or ultra hydrophobic coatings
WO2008112158A17 Mar 200818 Sep 2008E. I. Du Pont De Nemours And CompanyLiquid water resistant and water vapor permeable garments comprising hydrophobic treated nonwoven made from nanofibers
WO2008123650A111 Dec 200716 Oct 2008Korea Institute Of Machinery And MaterialsPreparation of super water repellent surface
WO2008123955A131 Mar 200816 Oct 2008Applied Microstructures, Inc.Articles with super-hydrophobic and-or super hydrophilic surfaces and method of formation
WO2008123961A131 Mar 200816 Oct 2008Applied Microstructures, Inc.Method of creating super-hydrophobic and-or super hydrophilic surgfaces on substrates, and articles created thereby
WO2008134243A116 Apr 20086 Nov 2008Dow Corning CorporationAqueous silicone emulsions for imparting water repellency
WO2008137973A18 May 200813 Nov 2008Erik Jonas JarvholmWater repellant golf balls containing a hydrophobic or superhydrophobic outer layer or coating
WO2008151991A16 Jun 200818 Dec 2008Omya Development AgSurface-reacted calcium carbonate in combination with hydrophobic adsorbent for water treatment
WO2008153687A220 May 200818 Dec 2008Ashland Licensing And Intellectual Property LlpHydrophobic self-cleaning coating composition
WO2009003847A119 Jun 20088 Jan 2009Evonik Degussa GmbhMoldings with a superhydrophobic surface of high pressure and shear resistance
WO2009005465A130 Jun 20088 Jan 2009Swetree Technologies AbMethod to prepare superhydrophobic surfaces on solid bodies by rapid expansion solutions
WO2009012116A210 Jul 200822 Jan 2009Ut-Battelle, LlcSuperhydrophobic diatomaceous earth
WO2009018327A230 Jul 20085 Feb 2009Soane Labs, LlcUltraphobic compositions and methods of use
WO2009032988A15 Sep 200812 Mar 2009Ashland Licensing & Intellectual Property LlcWater based hydrophobic self-cleaning coating compositions
WO2009037717A226 Aug 200826 Mar 2009Council Of Scientific & Industrial ResearchNanocomposite material useful for the preparation superhydrophobic coating and a process for the preparation thereof
WO2009041752A18 Jan 20082 Apr 2009Il Shin Chemical Co., Ltd.Method of fabricating superhydrophobic silica chain powders
WO2009061199A110 Nov 200814 May 2009Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek TnoHydrophobic surface finish and method of application
WO2009148611A14 Jun 200910 Dec 2009Ssw Holding Company, Inc.Shelf with led assembly
WO2009158567A126 Jun 200930 Dec 2009Ssw Holding Company, Inc.Method for spill containment and shelves or the like therefore
WO2010033288A230 Jun 200925 Mar 2010Stc.UnmDurable polymer-aerogel based superhydrophobic coatings: a composite material
WO2010042191A1 *7 Oct 200915 Apr 2010Ross Technology CorporationHighly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
WO2010042668A17 Oct 200915 Apr 2010Ross Technology CorporationSpill resistant surfaces having hydrophobic and oleophobic borders
WO2011116005A115 Mar 201122 Sep 2011Ross Technology CorporationPlunger and methods of producing hydrophobic surfaces
WO2011151151A113 May 20118 Dec 2011Siemens AktiengesellschaftHydrophobic coating and use thereof
WO2012115986A121 Feb 201230 Aug 2012Ross Technology CorporationSuperhydrophobic and oleophobic coatings with low voc binder systems
WO2013090939A117 Dec 201220 Jun 2013Ross Technology CorporationComposition and coating for superhydrophobic performance
WO2014003852A914 Mar 201317 Apr 2014Ross Technology CorporationElastomeric coatings having hydrophobic and/or oleophobic properties
WO2015048539A126 Sep 20142 Apr 2015Ross Technology CorporationFlexible superhydrophobic and/or oleophobic polyurethane coatings
Non-Patent Citations
Reference
1"Composition," in Collins English Dictionary, found at http://www.credoreference.com/entry/hcengdict/composition, 2000 (viewed Aug. 26, 2013).
2"NeverWet-product characteristics," found at http://www.neverwet.com/product-characteristics.php, NeverWet LLC (viewed Mar. 7, 2013).
3"Surfactant," found at https://en.wikipedia.org/wiki/Surrfactant, Wikipedia (viewed Dec. 28, 2015).
4"Taber® Test Method Reference," found at http://www.taberindustries.com/documents/Taber Test Reference by Method.pdf (Jun. 2014, viewed Oct. 6, 2015) (2 pages).
5"Yield strength, elastic limit, and ultimate strength," found at http://inventor.grantadesign.com/en/notes/science/material/S04%20strength.htm, Granta Design Ltd. (viewed Feb. 10, 2015).
62009 R&D 100 Award Entry Form (p. 5 excerpt from another document) showing Fig. 1 Schematic of NICE ("no ice nanocoating") (2009).
7Bae et al., "Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent," J Colloid Interface Sci, abstract only (May 3, 2009; epublication ahead of print).
8Bayer Materials Science product information on Bayhydrol® 110 polyurethane dispersion (two first pages of this brochure) (Aug. 2002).
9Bayer Materials Science product information on Bayhydrol® 122 polyurethane dispersion (Jan. 2004).
10Bayer Materials Science product information on Bayhydrol® 124 polyurethane dispersion (Jan. 2004).
11Bayer Materials Science product information on Bayhydrol® 140AQ, polyurethane dispersion (Aug. 2002).
12Bayer Materials Science product information on Bayhydrol® A145, aqueous hydroxyl-functional polyurethane dispersion (Jan. 2010).
13Beyler et al, "Thermal Decomposition of Polymers," Chapter 7 of The SFPE Handbook of Fire Protection Engineering (3rd ed.), pp. 1-110-1-131 (2002).
14Bliznakov et al., "Double-scale roughness and superhydrophobicity on metalized Toray carbon fiber paper," Langmuir, 25(8):4760-4766, abstract only (Apr. 21, 2009).
15Boinovich et al., "Principles of design of superhydrophobic coatings by deposition from dispersions," Langmuir, 25(5):2907-2912, abstract only (Mar. 3, 2009).
16Boinovich et al., "Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions," Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
17Bravo et al., "Transparent superhydrophobic films based on silica nanoparticles," Langmuir, 23(13):7293-7298, abstract only (Jun. 19, 2007; epublished May 25, 2007).
18Choi et al., "Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface," Phys Rev Lett, 96(6):066001, abstract only (Feb. 17, 2006; epublished Feb. 16, 2006).
19Clark, M.D.T. et al. "Paints and Pigments" available at nzic.org.nz/ChemProcesses/polymers/10D.pdf (copyright 2005-2008 at http://nzic.org.nz/ChemProcesses/polymers/).
20Courbin et al., "Your wetting day," Physics Today, 60(2):84 (Feb. 2007).
21de Givenchy et al., "Fabrication of Superhydrophobic PDMS Surfaces by Combining Acidic Treatment and Perfluorinated Monolayers," Langmuir, 25(11):6448-6453, abstract only (Jun. 2, 2009).
22Du, "Surfactants, Dispersants, and Defoamers for the Coatings, Inks, and Adhesives Industries," in Coatings Technology Handbook, Third Edition, Tracton (ed.), CRC Press (2005).
23EPO Communication dated Dec. 5, 2011, regarding third-party observations filed in European Application No. 09771098.2.
24 *EXPANCEL DE product list, Oct. 2010.
25Extended European search report for European Application No. 09771098.2, dated Dec. 27, 2011.
26Extended European search report for European Application No. 09819518, dated Jul. 22, 2014.
27Extended European search report for European Application No. 12749985.3, dated Apr. 7, 2015.
28Extended European search report for European Application No. 12857248.4, dated Apr. 7, 2015.
29Extended European search report for European Application No. 920119918, dated Jul. 22, 1997.
30Fürstner et al., "Wetting and self-cleaning properties of artificial superhydrophobic surfaces," Langmuir, 21(3):956-961, abstract only (Feb. 1, 2005).
31García et al., "Use of p-toluenesulfonic acid for the controlled grafting of alkoxysilanes onto silanol containing surfaces; preparation of tunable hydrophilic, hydrophobic, and super-hydrophobic silica," J Am Chem Soc, 129(16):5052-5060, abstract only (Apr. 25, 2007; epublished Mar. 31, 2007).
32Gonçalves et al., "Superhydrophobic cellulose nanocomposites," J. Colloid Interface Sci, 324(1-2):42-46, abstract only (Aug. 2008; epublished May 7, 2008).
33Guo et al., "A novel approach to stable superhydrophobic surfaces," Chemphyschem, 7(8):1674-1677, abstract only (Aug. 11, 2006; epublished Jul. 17, 2006).
34International Preliminary Report on Patentability for International Application No. PCT/US2009/048775, dated Jan. 13, 2011.
35International Preliminary Report on Patentability for International Application No. PCT/US2010/059909, dated Apr. 21, 2011.
36International Search Report and Written Opinion for International Application No. PCT/US2009/005512, dated Dec. 8, 2009.
37International Search Report and Written Opinion for International Application No. PCT/US2009/048775, dated Nov. 19, 2009.
38International Search Report and Written Opinion for International Application No. PCT/US2009/059909, dated Dec. 4, 2009.
39International Search Report and Written Opinion for International Application No. PCT/US2010/048711, dated Mar. 17, 2011.
40International Search Report and Written Opinion for International Application No. PCT/US2010/054936, dated Feb. 16, 2011.
41International Search Report and Written Opinion for International Application No. PCT/US2010/070200, dated Feb. 27, 2013.
42International Search Report and Written Opinion for International Application No. PCT/US2011/028541 (published as WO Publication No. 2011/116005), dated May 17, 2011.
43International Search Report and Written Opinion for International Application No. PCT/US2012/025982, dated Jun. 13, 2012.
44International Search Report and Written Opinion for International Application No. PCT/US2013/031751, dated Dec. 23, 2013.
45International Search Report and Written Opinion for International Application No. PCT/US2014/057848, dated Dec. 29, 2014.
46Jauregui-Beloqui et al., "Thermoplastic polyurethane-fumed silica composites: influence of the specific surface area of fumed silica on the viscoelastic and adhesion properties," Journal of Adhesive Science and Technology, 13(6):695-711, abstract only (1999).
47Kietzig et al., "Patterned superhydrophobic metallic surfaces," Langmuir, 25(8):4821-4827, abstract only (Apr. 21, 2009).
48Kim et al., "A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold," Chem Commun (Camb), 22:2237-2239, abstract only (Jun. 14, 2007; epublished Mar. 6, 2007).
49Kim et al., "A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold," Chem Commun(Camb), 22:2237-2239, abstract only (Jun. 14, 2007; epublished Mar. 6, 2007).
50Kobayashi et al., Surface Tension of Poly[(3,3,4,4,5,5,6,6,6-nonafluorohexyl)-methylsiloxane], Macromolecules, 23:4929-4933 (1990).
51Kovalchuk et al., "Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance?," Advances in Colloid and Interface Science, 210:65-71 (available online Apr. 13, 2014).
52Kraton® FG1901 G Polymer, Data Document, Identifier K127DDh14U, the Kraton Polymers Group of Companies (Jun. 17, 2014).
53Kraton® FG1924 G Polymer, Data Document, Identifier K123DDe09U, the KRATON Polymers Group of Companies (Aug. 10, 2009).
54KratonI M FG1901 Data Document Jun. 17, 2014.
55KratonI M Polymers for Modification of Thermoplastics-available on the world wide web at http://docs.kraton.com/kraton/attachments/downloads/81311AM.pdf, last accessed Aug. 3, 2015.
56Le Marechal et al., "Textile Finishing Industry as an Important Source of Organic Pollutants," in Organic Pollutants Ten Years After the Stockholm Convention-Environmental and Analytical Update, Puzyn (ed.), Chapter 2, pp. 29-54, InTech (2012).
57Lee et al., "Impact of a superhydrophobic sphere onto water," Langmuir, 24(1):142-145, abstract only (Jan. 1, 2008; epublished Nov. 14, 2007).
58Li et al., "Conversion of a metastable superhydrophobic surface to an ultraphobic surface," Langmuir, 24(15):8008-8012, abstract only (Aug. 5, 2008; epublished Jul. 8, 2008).
59Ling et al., "Stable and transparent superhydrophobic nanoparticle films," Langmuir, 25(5):3260-3263, abstract only (Mar. 3, 2009).
60Litvinov et al., "Structure of a PDMS Layer Grafted onto a Silica Surface Studied by Means of DSC and Solid-State NMR," Macromolecules, 35(11):4356-4364 (2002).
61 *Machine translation of DE 10306891, retrieved Aug. 6, 2015.
62 *Machine translation of JP 2002-020575, retrieved Aug. 6, 2015.
63 *Machine translation of JP 2004-143352, retrieved Aug. 6, 2015.
64 *Machine translation of JP 2006-176559, retrieved Aug. 6, 2015.
65 *Machine translation of JP 2009-120792, retrieved Aug. 6, 2015.
66Manca et al., "Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing," Langmuir, 25(11):6357-6362, abstract only (Jun. 2, 2009).
67Marmur, "Super-hydrophobicity fundamentals: implications to biofouling prevention," Biofouling, 22(1-2):107-115, abstract only (2006).
68Ming et al., "Toward Superlyophobic Surfaces," Contact Angle, Wettability and Adhesion (ed. Mittal), vol. 6, pp. 191-205, Koninklijke Brill NV, Leiden (2009).
69Mohammadi et al., "Effect of Surfactants on Wetting of Super-Hydrophobic Surfaces," Langmuir, 20:9657-9662 (available online Oct. 2, 2004).
70Nosonovsky et al., "Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions," Langmuir, 24(4):1525-1533, abstract only (Feb. 19, 2008; epublished Dec. 12, 2007).
71Park et al., "Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials," J. Colloid Interface Sci, 336(1):298-303, abstract only (Aug. 1, 2009; epublished Apr. 15, 2009).
72Perez, Jr., et al., "Performance and Processing Enhancements of Aromatic Polyurea Elastomer Systems Prepared from High 2,4'-MDI Isocyanates," in Polyurethanes Conference 2000: Defining the Future Through Technology, Boston, Massachusetts, pp. 219-232 (Oct. 8-11, 2000).
73Piret et al., "Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces," Langmuir, 24(5):1670-1672, abstract only (Mar. 4, 2008; epublished Feb. 6, 2008).
74Prosecution History EP Patent Application No. 13 809 987.4 Aug. 2015.
75Prosecution History of U.S. Appl. No. 13/082,319, filed Apr. 7, 2011, as downloaded on Jan. 5, 2016.
76Prosecution History of U.S. Appl. No. 13/082,327, "Highly Durable Superhydrophobic, Oleophobic and Anti-Icing Coatings and Methods and Compositions for Their Preparation," filed Apr. 7, 2011.
77Prosecution History of U.S. Appl. No. 13/618,779, filed Sep. 14, 2012, as downloaded on Jan. 5, 2016.
78Prosecution History of U.S. Appl. No. 13/972,034, filed Aug. 21, 2013, as downloaded on Jan. 5, 2016.
79Prosecution History of U.S. Appl. No. 14/305,425, filed Jun. 16, 2014, as downloaded on Jan. 5, 2016.
80Prosecution History of U.S. Appl. No. 14/320,315, filed Jun. 30, 2014, as downloaded on Jan. 5, 2016.
81Prosecution History of U.S. Appl. No. 14/320,358, "Highly Durable Superhydrophobic, Oleophobic and Anti-Icing Coatings and Methods and Compositions for Their Preparation," filed Jun. 30, 2014.
82Prosecution History of U.S. Appl. No. 14/323,660, "Elastomeric Coatings Having Hydrophobic and/or Oleophobic Properties," filed Jul. 3, 2014.
83Prosecution History of U.S. Appl. No. 14/837,253, filed Aug. 27, 2015.
84Prosecution History U.S. Appl. No. 14/323,660 Aug. 2015.
85Puukilainen et al., "Superhydrophobic polyolefin surfaces: controlled micro- and nanostructures," Langmuir, 23(13):7263-7268, abstract only (Jun. 19, 2007; epublished May 23, 2007).
86Sakai et al., "Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces," Langmuir, 22(11):4906-4909, abstract only (May 23, 2006).
87Sherwin Williams Chemical Coatings product information for CC-D14, POLANE® 2.8T, plus polyurethane enamel (Oct. 19, 2006).
88Sherwin Williams Chemical Coatings product information for CC-D5, POLANE® T, polyurethane enamel (Sep. 2001).
89Sherwin Williams Chemical Coatings product information for CC-E14, POLANE® 700T, water reducible enamel (May 2010).
90Shirtcliffe et al., "Wetting and wetting transitions on copper-based super-hydrophobic surfaces," Langmuir, 21(3):937-943, abstract only (Feb. 1, 2005).
91Smith et al., "Modeling of PDMS-Silica Nanocomposites," NSTI-Nanotech, 3:115-118 (2004).
92SSW Holding Company, Inc. v. Schott Gemtron Corporation, Civil Docket, Civil Action No. 3:12-cv-00661-CRS (as of Dec. 6, 2013).
93SSW Holding Company, Inc. v. Schott Gemtron Corporation, Complaint for Patent Infringement, Demand for Jury Trial, Civil Action No. 3:12-cv-00661-CRS (Oct. 16, 2012).
94Su et al., "From Suerhydrophophilic to Superhydrophobic: Controlling Wettability of Hydroxide Zinc Carbonate Film on Zinc Plates," Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
95Synytska et al., "Wetting on Fractal Superhydrophobic Surfaces from 'Core-Shell' Particles: a Comparison of Theory and Experiment," Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
96Torró-Palau et al., "Characterization of polyurethanes containing different silicas," International Journal of Adhesion and Adhesives, 21(1):1-9, abstract only (2001).
97Two webpages re pigment particle size: http://www.specialchem4coatings.com/tc/color-handbook/index.aspx?id=size and http://www.specialchem4coatings.com/tc/tio2/index.aspx?id=whiteness, SpecialChem, S.A. (printed Jul. 19, 2013).
98U.S. Appl. No. 12/037,520 file history, now U.S. Pat. No. 7,943,234, filed Feb. 26, 2008, Lawin et al.
99U.S. Appl. No. 60/699,200, filed Jul. 14, 2005, Guire et al. (Innovative Surface Technologies, Inc.).
100U.S. Appl. No. 60/807,143, filed Jul. 12, 2006, Guire et al. (Innovative Surface Technologies, Inc.).
101U.S. Appl. No. 60/891,876, filed Feb. 27, 2007, Lawin et al. (Innovative Surface Technology, Inc.).
102U.S. Appl. No. 61/058,902, filed Jun. 4, 2008, Driver et al.
103U.S. Appl. No. 61/090,002, filed Aug. 19, 2008, Driver et al.
104U.S. Appl. No. 61/133,273, filed Jun. 27, 2008, Driver et al.
105U.S. Appl. No. 61/198,414, filed Jun. 16, 2009, Gao.
106U.S. Appl. No. 61/216,540, filed May 18, 2009, Driver et al.
107U.S. Appl. No. 61/252,229, filed Oct. 16, 2009, Gao.
108Venkateswara et al., "Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method," J Colloid Interface Sci, 332(2):484-490, abstract only (Apr. 15, 2009; epublished Jan. 14, 2009).
109Wang et al., "One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity," Chem Commun (Camb),7:877-879, abstract only (Feb. 21, 2008; epublished Dec. 18, 2007).
110Yang et al., "Influence of surface roughness on superhydrophobicity," Phys Rev Lett, 97(11):116103, abstract only (Sep. 15, 2006; epublished Septenber 14, 2006).
111 *Yield strength, elastic limit, and ultimate strength NPL document, retrieved Mar. 20, 2015.
112Zhang et al., "Application of superhydrophobic edge effects in solving the liquid outflow phenomena," Langmuir, 23(6):3230-3235, abstract only (Mar. 13, 2007; epublished Jan. 25, 2007).
113Zhou et al., "Study on the morphology and tribological properties of acrylic based polyurethane/fumed silica composite coatings," Journal of Materials Science, 39:1593-1594, abstract only (2004).
Classifications
International ClassificationB65D83/14, C08K5/54, C09D153/02, C09D153/00, C09D183/16, C09D183/04
Cooperative ClassificationC09D183/16, C09D153/00, C09D183/04, C08K5/5406, Y10T428/24355, C09D153/02, B65D83/752