WO1999023437A1 - Element with extremely strong water-repellent dry zones on the surface thereof - Google Patents

Element with extremely strong water-repellent dry zones on the surface thereof Download PDF

Info

Publication number
WO1999023437A1
WO1999023437A1 PCT/EP1998/006618 EP9806618W WO9923437A1 WO 1999023437 A1 WO1999023437 A1 WO 1999023437A1 EP 9806618 W EP9806618 W EP 9806618W WO 9923437 A1 WO9923437 A1 WO 9923437A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic
strips
elements
hydrophilic strips
another
Prior art date
Application number
PCT/EP1998/006618
Other languages
German (de)
French (fr)
Inventor
Stephan Herminghaus
Hartmut Gau
Wolfgang Mönch
Original Assignee
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Publication of WO1999023437A1 publication Critical patent/WO1999023437A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C5/00Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K13/00Other constructional types of cut-off apparatus; Arrangements for cutting-off
    • F16K13/08Arrangements for cutting-off not used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Definitions

  • the invention relates to an element with a fine, in particular microscopic surface pattern of hydrophilic stripes and hydrophobic areas lying between the hydrophilic stripes, the distances between adjacent hydrophilic stripes and their stripe widths being coordinated with one another in such a way that the hydrophobic areas between the hydrophilic stripes form drying zones that repel moisture extremely strongly.
  • a further application example is the use of elements according to the invention as capacitor elements that remove moisture from their surroundings.
  • elements according to the invention When cooling to below the dew point, condensation takes place in the area of the hydrophilic stripes, the condensed water being immediately drained along the hydrophilic stripes (“channels”) under the effect of the laplace pressure mentioned above.
  • the elements of the invention can therefore be used effectively as elements for drying their surroundings.
  • optical elements can be realized that do not fog up in the area of the drying zones - even in extremely humid environments.
  • An element according to the invention can in principle be implemented as a layer that adheres to a carrier material.
  • the area should be considered, for example, to coat the lens of a microscope accordingly. Microscopy can then be carried out through the hydrophobic areas (dry zones) even in a very humid environment, the “channels” possibly causing an acceptable loss of light intensity.
  • the preparation of a mirror with a relevant surface pattern according to the invention can also be used.
  • micromechanical valves to control liquid flows on a microscopic scale.
  • micromechanical valves have already been proposed (cf. "J. Pfahler et al, - Gas and Liquid Flow in Small Channels - Micromechanical Sensors, Actuators, and Systems ASME DSC-32 (1 991) p. 49").
  • Such micromechanical valves have a complicated, complex structure and can only be miniaturized to a very limited extent. Their function is based on the use of closed channels that easily clog, and the easier the smaller the channels or the higher the degree of integration of a component in question.
  • two opposing elements according to the invention are brought together closely with their hydrophilic / hydrophobic structured surfaces and the surfaces are aligned with one another in such a way that with water or hydrophilic strips occupied by aqueous solutions are in alignment with one another, so fluid bridges spontaneously form from one hydrophilic strip to the opposite hydrophilic strip between the two elements, the fluid bridges permitting liquid transport from one element to the other element.
  • the fluid bridges can be destroyed in a targeted and reversible manner if the distance between the two elements is increased and / or the alignment or overlap of the hydrophilic strips, for example by lateral movement of the two elements relative to one another, at least to a certain extent picks up.
  • the hydrophilic strips run essentially in a straight line and in particular parallel to one another, the surface preferably being flat.
  • a stripe pattern can be easily implemented using a mask that can be produced in a simple manner.
  • the material transport in the channels can be better controlled with such a stripe pattern.
  • the element according to the invention can have a hydrophobic substrate on which the hydrophilic strips are applied.
  • a hydrophilic substrate can be provided on which the hydrophobic areas are applied.
  • suitable hydrophilic materials are salts, in particular magnesium fluorite, and / or quartz.
  • a hydrophobic Materials include, for example, metals, sulfides, graphite and / or suitable polymers.
  • the hydrophilic strips should have a width b between 5 and 100 ⁇ m, in particular between 20 and 60 ⁇ m.
  • Fig. 1 shows a schematic diagram of an embodiment of an element according to the invention in a plan view of the hydrophilic / hydrophobic structured surface.
  • FIG. 2 shows an enlarged section of the element in cross-sectional representation with the section plane indicated in FIG. 1 at II-II.
  • FIG. 3 and FIG. 4 show a cross section of a section of an arrangement of two elements according to the invention
  • the element 1 according to the invention has a base plate 2 made of glass, on which a silicone rubber layer is arranged as the hydrophobic substrate 3.
  • the silicone rubber layer was produced by spinning on "Sylgard 1 84" (branded product from Dow Corning) and subsequent cross-linking.
  • the hydrophilic strips 4 were then produced by evaporating a sparingly soluble salt onto the substrate 3.
  • Hydrophilic strips can also be produced, for example, by exposing the sample to a plasma discharge.
  • the hydrophilic strips 4 have a width b of approximately 30 ⁇ m.
  • the distance c between adjacent hydrophilic strips 4 is approximately 60 ⁇ m and thus corresponds to approximately twice the width of the hydrophilic strips 4. If desired, the distances c could also be smaller and correspond, for example, to the width b.
  • FIGS. 3 and 4 illustrate the possibility already mentioned above of realizing a micro valve function.
  • two elements according to the invention are shown opposite one another with substantially exactly aligned hydrophilic strips 4.
  • the elements 1 lying parallel to one another with their surfaces have a spacing L-, which is in the order of the width b of the hydrophilic strips 4.
  • the fluid channels 5 have been combined on the mutually opposite hydrophilic strips 4 to form a fluid bridge 7 between the two elements 1, so that material can be transported from one element to the other via the fluid bridge 7.
  • 4 shows the situation that the two elements have been laterally displaced relative to one another by the amount L 2 , so that the substantially complete overlap of the hydrophilic strips 4 has been eliminated.
  • the fluid bridge 7 has been broken up again into channels 5, so that there is no longer any material exchange between the two hydrophilic strips 4.
  • material transport can take place along each of the two elements along the hydrophilic strips.
  • the states according to FIGS. 3 and 4 can be produced selectively and reversibly by correspondingly moving the elements 1, as a result of which a valve function can be realized while avoiding closed channels and thus avoiding channel blockage problems.
  • the liquid between the two elements 1 organizes itself by shifting or rotating the elements 1 relative to one another.
  • the distance L can also be increased, for example, by removing the elements 1 from one another and / or rotating the elements 1 relative to one another.
  • FIG. 5a shows an arrangement according to FIG. 3 in a sectional view along two mutually opposite hydrophilic strips 4.
  • FIGS. 5b-5d show in a sequence how the water or the fluid bridge 7 typically behaves when the distance L is increased by removing the elements 1 from one another.
  • the effect according to FIG. 5b first occurs that fluid bridges 7 connected in the longitudinal direction of the strip contract into one or more fluid compartments 7 'or compartments 7' which, with a further increase in the distance L., become columnar Forms 7 '(Fig. 5c) are pulled apart.
  • FIGS. 5b-5d show in a sequence how the water or the fluid bridge 7 typically behaves when the distance L is increased by removing the elements 1 from one another.
  • FIG. 5a showing the state of the opened Valve - and Fig. 5b or 5c represents the state of the closed valve.
  • connection openings 8 are indicated, via which liquid can be supplied or removed.
  • the state according to FIG. 5a can be established in which the two reactants come into contact and can carry out a chemical reaction in question.
  • the elements 1 according to the invention can thus also be used to form microreactors.
  • the bringing together of two chemical reaction partners can also take place by changing from the state according to FIG. 5d to the state according to FIG. 5a, wherein in the state according to FIG. 5d one reaction partner adheres to a respective hydrophilic strip 4.
  • compartments 7 'according to FIG. 5b can be produced if the
  • Compartments can now be moved rapidly across the substrate surface, that is to say also across hydrophobic regions, by laterally displacing a plate in a direction perpendicular to the course of the hydrophilic strips 4. This results in a further possibility of realizing valve functions if supply connections, for example supply holes, are prepared in the elements 1 at suitable locations.
  • the opposite phase (above the hydrophobic areas) need not necessarily be air (or another gas). If necessary, it can also be a second liquid which is immiscible with the liquid to be manipulated. If, for example, you want to control aqueous systems, an oil (such as silicone oil) is a suitable counter phase, with water collecting on the hydrophilic areas.
  • an oil such as silicone oil
  • drying zone would then be understood to mean a zone that is anhydrous but can be occupied by the opposite phase.
  • hydrophilic strips are advantageous, but not essential.
  • other surface patterns can also be selected in order to implement an expedient "fluid transport conductor track design".
  • the elements 1 lying opposite one another can have the same or different stripe patterns and stripe numbers.

Abstract

The invention relates to an element with a microscopic surface pattern comprised of hydrophilic strips (4) and hydrophobic areas (6). Said hydrophobic areas are situated between said hydrophilic strips (4). The distances (c) between hydrophilic strips (4) and the strip widths (b) thereof, said strips running adjacent to one another, are matched for one another such that the hydrophobic areas (6) form extremely strong water-repellent dry zones between the hydrophilic strips (4). Moisture sensitive, electronic components, for example, can be integrated in these dry zones. The element can also be used as a capacitor element for drying. The inventive elements are additionally suitable for the realization of micro valve functions.

Description

Element mit extrem stark wasserabweisenden Trockenzonen an der OberflächeElement with extremely water-repellent drying zones on the surface
Beschreibungdescription
Gegenstand der Erfindung ist ein Element mit einem feinen, insbesondere mikroskopischen Oberflächenmuster aus hydrophilen Streifen und zwischen den hydrophilen Streifen liegenden hydrophoben Bereichen, wobei die Abstände zwischen nebeneinander verlaufenden hydrophilen Streifen und deren Streifenbreiten derart aufeinander abgestimmt sind, daßdie hydrophoben Bereiche zwischen den hydrophilen Streifen Trockenzonen bilden, die Feuchtigkeit extrem stark abweisen.The invention relates to an element with a fine, in particular microscopic surface pattern of hydrophilic stripes and hydrophobic areas lying between the hydrophilic stripes, the distances between adjacent hydrophilic stripes and their stripe widths being coordinated with one another in such a way that the hydrophobic areas between the hydrophilic stripes form drying zones that repel moisture extremely strongly.
Experimente mit einem erfindungsgemäßen Element haben folgenden, sehr zuverlässig reprodzierbaren Effekt gezeigt. Wird das Element feuchter Luft ausgesetzt, so kondensiert Wasser so gut wie ausschließlich auf den hydrophilen Streifen, und es bilden sich auf den hydrophilen Streifen kleine Wasserkanäle, die im Schnitt quer zur Streifenlängsrichtung eine konvexe Krümmung haben, wobei der Krümmungsradius von der Größenordnung der Breite der betreffenden hydrophilen Streifen ist. Der Laplacedruck Δp in den " Kanälen" ist gegeben durch Δp = σ/r, wobei σ die Oberflächenspannung des Wassers und r der Krümmungsradius des Kanals ist. Dieser Druck sorgt dafür, daß das kondensierte Wasser längs der Kanäle sehr effektiv nach außen beispielsweise zu einer an die Kanäle angeschlossenen Feuchtesenke abtransportiert wird. Als Folge davon bleiben die hydrophoben Bereiche zwischen den hydrophilen Streifen trocken. Dieser Effekt zeigt sich auch dann, wenn das Element unter Taupunkttemperatur abgekühlt und stark übersättigter Feuchtluft ausgesetzt wird. Kondensationsanlagerung findet auch unter solch extremen Feuchtbedingungen ausschließlich im Bereich der hydrophilen Streifen statt, da die " Kanäle" hier als sehr effektive Senke wirken und die kondensierte Flüssigkeit abtransportieren. Das vorstehend beschriebene Verhalten des Elementes nach der Erfindung eröffnet zahlreiche interessante Anwendungsmöglichkeiten. Ein Anwendungsbeispiel ist die Integration feuchteempfindlicher Bauelemente, wie etwa integrierter Schaltungen, Mikrosensoren, etc. , im Bereich der Trockenzonen. Derartige Bauelemente könnten dann in extrem feuchter Umgebung zuverlässig betrieben werden, ohne Schaden zu nehmen.Experiments with an element according to the invention have shown the following, very reliably reproducible effect. If the element is exposed to moist air, water condenses almost exclusively on the hydrophilic strips, and small water channels are formed on the hydrophilic strips, which have a convex curvature in cross section to the longitudinal direction of the strip, the radius of curvature being of the order of the width of the relevant hydrophilic strip. The laplace pressure Δp in the "channels" is given by Δp = σ / r, where σ is the surface tension of the water and r is the radius of curvature of the channel. This pressure ensures that the condensed water is very effectively transported along the channels to the outside, for example to a moisture sink connected to the channels. As a result, the hydrophobic areas between the hydrophilic strips remain dry. This effect is also evident when the element is cooled below the dew point temperature and exposed to highly supersaturated humid air. Even under such extreme wet conditions, condensation accumulation only takes place in the area of the hydrophilic stripes, since the "channels" act here as a very effective sink and remove the condensed liquid. The behavior of the element according to the invention described above opens up numerous interesting applications. One application example is the integration of moisture-sensitive components, such as integrated circuits, microsensors, etc., in the area of the dry zones. Such components could then be operated reliably in extremely humid environments without being damaged.
Ein weiteres Anwendungsbeispiel ist die Verwendung erfindungsgemäßer Elemente als Kondensatorelemente, die ihrer Umgebung Feuchtigkeit entziehen. Bei Abkühlung unter den Taupunkt findet im Bereich der hydrophilen Streifen Kondensation statt, wobei das kondensierte Wasser unter Wirkung des oben angesprochenen Laplacedrucks sogleich längs der hydrophilen Streifen ("Kanäle") abgeleitet wird. Die erfindungsgemäßen Elemente können daher wirksam als Elemente zur Trocknung ihrer Umgebung eingesetzt werden. Bei einer derartigen Anwendung kann es zweckmäßig sein, die hydrophilen Streifen sehr eng aneinander anzuordnen, um möglichst viel Kondenswasser ableiten zu können.A further application example is the use of elements according to the invention as capacitor elements that remove moisture from their surroundings. When cooling to below the dew point, condensation takes place in the area of the hydrophilic stripes, the condensed water being immediately drained along the hydrophilic stripes (“channels”) under the effect of the laplace pressure mentioned above. The elements of the invention can therefore be used effectively as elements for drying their surroundings. In such an application, it may be appropriate to arrange the hydrophilic strips very close to one another in order to be able to drain off as much condensed water as possible.
Weitere interessante Anwendungsmöglichkeiten ergeben sich daraus, daß mit dem enormen Materialtransport, der entlang der " Kanäle" stattfindet, auch ein hoher Wärmetransport bewerkstelligt werden kann. Hierbei ist beispielsweise an Wärmeeintrag aus der Gasphase bei gleichzeitiger Vermeidung des flächenhaften Beschlagens zu denken. Der gezielte Wärmetransport längs der hydrophilen Streifen (" Kanäle") eröffnet Möglichkeiten des Einsatzes erfindungsgemäßer Elemente in integrierten Miniatur-Wärmetauschern.Further interesting application possibilities result from the fact that with the enormous material transport that takes place along the "channels", a high heat transport can also be accomplished. Here, for example, heat input from the gas phase should be taken into account while avoiding fogging. The targeted heat transport along the hydrophilic strips ("channels") opens up possibilities for using elements according to the invention in integrated miniature heat exchangers.
Weitere interessante Anwendungsmöglichkeiten ergeben sich im Bereich der Optik. Grundsätzlich lassen sich transparente optische Elemente realisieren, die im Bereich der Trockenzonen - selbst in extrem feuchter Umgebung - nicht beschlagen. Ein Elemente nach der Erfindung kann grundsätzlich als Schicht realisiert sein, die an einem Trägermaterial haftet. Im optischen Bereich ist beispielsweise daran zu denken, das Objektiv eines Mikroskops entsprechend zu beschichten. Durch die hydrophoben Bereiche (Trockenzonen) hindurch kann dann auch in sehr feuchter Umgebung mikroskopiert werden, wobei die " Kanäle" ggf. einen hinnehmbaren Lichtintensitätsverlust hervorrufen. Im Bereich der Optik kommt auch die Präparation eines Spiegels mit einem betreffenden Oberflächenmuster nach der Erfindung in Frage.There are other interesting applications in the field of optics. In principle, transparent optical elements can be realized that do not fog up in the area of the drying zones - even in extremely humid environments. An element according to the invention can in principle be implemented as a layer that adheres to a carrier material. In optical The area should be considered, for example, to coat the lens of a microscope accordingly. Microscopy can then be carried out through the hydrophobic areas (dry zones) even in a very humid environment, the “channels” possibly causing an acceptable loss of light intensity. In the field of optics, the preparation of a mirror with a relevant surface pattern according to the invention can also be used.
Ein weiteres, hochinteressantes Anwendungsgebiet ergibt sich im Zu- sammenhang mit Bestrebungen zur Miniaturisierung und Parallelisierung chemischer, pharmazeutischer und biologischer bzw. biotechnologischer Prozesse, etwa in Analogie zur Entwicklung der integrierten Schaltungen in der Elektronik bzw. Optoelektronik.Another, very interesting field of application arises in connection with efforts to miniaturize and parallelize chemical, pharmaceutical and biological or biotechnological processes, for example in analogy to the development of integrated circuits in electronics or optoelectronics.
Wichtige Funktionselemente für ein Bauelement zur Miniaturisierung und Parallelisierung solcher Prozesse sind Mikroventile, um Flüssigkeitsströmungen im mikroskopischen Maßstab zu steuern. In diesem Zusammenhang sind bereits mikromechanische Ventile vorgeschlagen worden (vgl. "J. Pfahler et al, - Gas and Liquid Flow in Small Channels - Mikromechanical Sensors, Actuators, and Systems ASME DSC-32 ( 1 991 ) S. 49") . Derartige mikromechanische Ventile weisen einen komplizierten, aufwendigen Aufbau auf und sind nur sehr begrenzt miniaturisierbar. Ihre Funktion beruht auf der Verwendung geschlossener Kanäle, die leicht verstopfen, und zwar umso leichter, je kleiner die Kanäle bzw. je höher der Integrationsgrad eines betreffenden Bauelementes ist.Important functional elements for a component for miniaturization and parallelization of such processes are micro valves to control liquid flows on a microscopic scale. In this context, micromechanical valves have already been proposed (cf. "J. Pfahler et al, - Gas and Liquid Flow in Small Channels - Micromechanical Sensors, Actuators, and Systems ASME DSC-32 (1 991) p. 49"). Such micromechanical valves have a complicated, complex structure and can only be miniaturized to a very limited extent. Their function is based on the use of closed channels that easily clog, and the easier the smaller the channels or the higher the degree of integration of a component in question.
Erfindungsgemäße Elemente können zur Realisierung von Mikroventilfunktio- nen herangezogen werden.Elements according to the invention can be used to implement microvalve functions.
Bringt man zwei einander gegenüberliegende Elemente nach der Erfindung mit ihren hydrophil/hydrophob-strukturierten Oberflächen eng zusammen und richtet man die Oberflächen dabei so zueinander aus, daß mit Wasser oder wäßrigen Lösungen besetzte, hydrophile Streifen einander fluchtend gegenüberliegen, so bilden sich spontan fluide Brücken von einem hydrophilen Streifen zu dem jeweils gegenüberliegenden hydrophilen Streifen zwischen den beiden Elementen aus, wobei die fluiden Brücken Flüssigkeitstransport von einem Element zum anderen Element ermöglichen. Die fluiden Brücken können auf einfache Weise gezielt und reversibel zerstört werden, wenn man den Abstand zwischen den beiden Elementen vergrößert und/oder die Ausrichtung bzw. Überlappung der hydrophilen Streifen, etwa durch seitliches Bewegen der beiden Elemente relativ zueinander, zumindest bis zu einem gewissen Grad aufhebt. In dieser Situation kann Flüssigkeitstransport nicht mehr zwischen den ehedem einander gegenüberliegenden hydrophilen Streifen und somit dort von dem einen Element zu dem anderen Element stattfinden, wohl aber längs der hydrophilen Streifen in jedem einzelnen Element. Es können somit Ventil- funktionen zwischen den Elementen realisiert werden, die durch geringe Verschiebung der Elemente relativ zueinander steuerbar sind. Die Relativbewegung der Elemente kann beispielsweise mittels Piezoaktoren in gezielter Weise durchgeführt werden.If two opposing elements according to the invention are brought together closely with their hydrophilic / hydrophobic structured surfaces and the surfaces are aligned with one another in such a way that with water or hydrophilic strips occupied by aqueous solutions are in alignment with one another, so fluid bridges spontaneously form from one hydrophilic strip to the opposite hydrophilic strip between the two elements, the fluid bridges permitting liquid transport from one element to the other element. The fluid bridges can be destroyed in a targeted and reversible manner if the distance between the two elements is increased and / or the alignment or overlap of the hydrophilic strips, for example by lateral movement of the two elements relative to one another, at least to a certain extent picks up. In this situation, liquid transport can no longer take place between the previously opposite hydrophilic strips and thus from one element to the other element, but it can take place along the hydrophilic strips in each individual element. Valve functions between the elements can thus be realized, which can be controlled relative to one another by slight displacement of the elements. The relative movement of the elements can be carried out in a targeted manner, for example by means of piezo actuators.
Gemäß einer vorteilhaften Ausgestaltung des Elementes nach der Erfindung verlaufen die hydrophilen Streifen im wesentlichen geradlinig und insbesondere parallel zueinander, wobei die Oberfläche vorzugsweise eben ausgebildet ist. Ein derartiges Streifenmuster läßt sich unter Verwendung einer auf einfache Weise herstellbaren Maske leicht realisieren. Ferner läßt sich der Materialtransport in den Kanälen bei einem solchen Streifenmuster besser kontrollieren.According to an advantageous embodiment of the element according to the invention, the hydrophilic strips run essentially in a straight line and in particular parallel to one another, the surface preferably being flat. Such a stripe pattern can be easily implemented using a mask that can be produced in a simple manner. Furthermore, the material transport in the channels can be better controlled with such a stripe pattern.
Das Element nach der Erfindung kann ein hydrophobes Substrat aufweisen, auf dem die hydrophilen Streifen aufgebracht sind. Alternativ kann ein hydrophiles Substrat vorgesehen sein, auf dem die hydrophoben Bereiche aufgebracht sind. Als hydrophile Materialien kommen beispielsweise Salze, insbesondere Magnesiumfluorit, und/oder Quarz in Frage. Als hydrophobe Materialien kommen beispielsweise Metalle, Sulfide, Graphit und/oder geeignete Polymere in Frage.The element according to the invention can have a hydrophobic substrate on which the hydrophilic strips are applied. Alternatively, a hydrophilic substrate can be provided on which the hydrophobic areas are applied. Examples of suitable hydrophilic materials are salts, in particular magnesium fluorite, and / or quartz. As a hydrophobic Materials include, for example, metals, sulfides, graphite and / or suitable polymers.
Sehr gute Ergebnisse im Hinblick auf die Nichtbenetzbarkeit der hydrophoben Bereiche (Trockenzonen) werden erzielt, wenn der Abstand zwischen benachbarten, nebeneinander verlaufenden, hydrophilen Streifen kleiner ist als die dreifache Streifenbreite. Vorzugsweise sollte der lichte Abstand zwischen zwei nebeneinander verlaufenden, hydrophilen Streifen etwa dem Doppelten einer Streifenbreite entsprechen oder kleiner sein.Very good results with regard to the non-wettability of the hydrophobic areas (drying zones) are achieved if the distance between adjacent, adjacent hydrophilic stripes is less than three times the stripe width. The clear distance between two hydrophilic strips running next to one another should preferably be approximately twice a strip width or smaller.
Gemäß einer bevorzugten Ausführungsform der Erfindung sollten die hydrophilen Streifen eine Breite b zwischen 5 und 1 00 μm, insbesondere zwischen 20 und 60 μm, aufweisen.According to a preferred embodiment of the invention, the hydrophilic strips should have a width b between 5 and 100 μm, in particular between 20 and 60 μm.
Die vorstehend beschriebenen Effekte funktionieren mit Wasser und wäßrigen Lösungen als zu manipulierendes Medium. Sie funktionieren jedoch auch bei Fluiden, die sich aufgrund ihrer Oberflächenspannung wie Wasser auf der hydrophil/hydrophob-strukturierten Oberfläche verhalten.The effects described above work with water and aqueous solutions as the medium to be manipulated. However, they also work with fluids that behave like water on the hydrophilic / hydrophobic structured surface due to their surface tension.
Die Erfindung wird im folgenden anhand der Figuren näher erläutert.The invention is explained in more detail below with reference to the figures.
Fig. 1 zeigt eine schematische Prinzipdarstellung eines Ausführungsbeispiels eines Elementes nach der Erfindung in einer Draufsicht auf die hydrophil/hydrophob-strukturierte Oberfläche.Fig. 1 shows a schematic diagram of an embodiment of an element according to the invention in a plan view of the hydrophilic / hydrophobic structured surface.
Fig. 2 zeigt einen vergrößerten Ausschnitt des Elementes in Querschnittsdarstellung mit der in Fig. 1 bei ll-ll angedeuteten Schnittebene.FIG. 2 shows an enlarged section of the element in cross-sectional representation with the section plane indicated in FIG. 1 at II-II.
Fig. 3 und Fig. 4 zeigen in Querschnittsdarstellung einen Ausschnitt aus einer Anordnung aus jeweils zwei erfindungsgemäßen Elementen zur3 and FIG. 4 show a cross section of a section of an arrangement of two elements according to the invention
Realisierung einer steuerbaren Mikroventilfunktion. Fig. 5a - 5d zeigen eine der Fig. 3 entsprechende Anordnung im Schnitt längs zweier einander gegenüberliegender hydrophiler Streifen mit unterschiedlichen Abständen der Elemente voneinander.Realization of a controllable micro valve function. 5a-5d show an arrangement corresponding to FIG. 3 in section along two mutually opposite hydrophilic strips with different distances between the elements.
Gemäß Fig. 2 weist das Element 1 nach der Erfindung eine Basisplatte 2 aus Glas auf, auf der als hydrophobes Substrat 3 eine Silikongummischicht angeordnet ist. Im Beispielsfall wurde die Silikongummischicht durch Aufschleudern von "Sylgard 1 84" (Markenprodukt der Firma Dow Corning) und anschließendes Quervernetzen hergestellt. Mittels einer Maske mit einer Serie paralleler Schlitze sind dann die hydrophilen Streifen 4 durch Aufdampfen eines schwerlöslichen Salzes auf das Substrat 3 hergestellt worden. Hydrophile Streifen können beispielsweise auch dadurch hergstellt werden, daß man die Probe einer Plasmaentladung aussetzt.2, the element 1 according to the invention has a base plate 2 made of glass, on which a silicone rubber layer is arranged as the hydrophobic substrate 3. In the example, the silicone rubber layer was produced by spinning on "Sylgard 1 84" (branded product from Dow Corning) and subsequent cross-linking. Using a mask with a series of parallel slits, the hydrophilic strips 4 were then produced by evaporating a sparingly soluble salt onto the substrate 3. Hydrophilic strips can also be produced, for example, by exposing the sample to a plasma discharge.
Im Beispielsfall haben die hydrophilen Streifen 4 eine Breite b von etwa 30 μm. Der Abstand c zwischen benachbarten hydrophilen Streifen 4 beträgt etwa 60 μm und entspricht somit etwa der doppelten Breite der hydrophilen Streifen 4. Falls gewünscht, könnten die Abstände c auch kleiner sein und beispielsweise der Breite b entsprechen.In the example, the hydrophilic strips 4 have a width b of approximately 30 μm. The distance c between adjacent hydrophilic strips 4 is approximately 60 μm and thus corresponds to approximately twice the width of the hydrophilic strips 4. If desired, the distances c could also be smaller and correspond, for example, to the width b.
Gemäß Fig. 1 verlaufen die hydrophilen Streifen 4 parallel zueinander und erstrecken sich über die gesamte Probenlänge. Wird das Element 1 befeuchtet bzw. einer feuchten Umgebung ausgesetzt, so bilden sich in überraschender Weise Wasseransammlungen im wesentlichen ausschließlich über den hydrophilen Streifen, und zwar in Form von konvexen Kanälen 5 mit einer im wesentlichen zylindrischen Krümmung, wohingegen die hydrophoben Bereiche 6 trocken bleiben. Nach dem Gesetz von Laplace herrscht in den Kanälen 5 der Laplacedruck Δp = σ/r, wobei σ die Oberflächenspannung des Wassers und r den Krümmungsradius des Kanals bezeichnet. Sorgt man dafür, daß das Wasser die hydrophilen Streifen 4 endseitig verlassen kann, etwa durch Anschluß der Kanäle an ein Reservoir oder eine Senke, wie sie in Fig. 1 bei 9 gestrichelt angedeutet ist, so bewirkt der Laplacedruck, daß Flüssigkeit, insbesondere nachkondensierendes Wasser, von dem Element 1 nach außen abfließt. Sofern ein gesondertes, externes Reservoir 9 benutzt wird, kann dies beispielsweise aus irgendeinem saugfähigen Material bestehen, welches mit den Kanälen an wenigstens einem Ende der hydrophilen Streifen in Verbindung steht. Besonders gute Ergebnisse wurden mit einem Element 1 erzielt, bei dem das Verhältnis von b/c etwa 3/2 betrug.1, the hydrophilic strips 4 run parallel to one another and extend over the entire length of the sample. If the element 1 is moistened or exposed to a moist environment, water accumulations surprisingly form essentially exclusively over the hydrophilic strip, in the form of convex channels 5 with an essentially cylindrical curvature, whereas the hydrophobic regions 6 remain dry. According to Laplace's law, the laplace pressure Δp = σ / r prevails in the channels 5, where σ denotes the surface tension of the water and r the radius of curvature of the channel. It is ensured that the water can leave the hydrophilic strips 4 at the ends, for example by connecting the channels to a reservoir or a depression, as indicated by dashed lines in FIG. 1 at 9, so causes the Laplace pressure that liquid, in particular post-condensing water, flows out of the element 1 to the outside. If a separate, external reservoir 9 is used, this can consist, for example, of any absorbent material which is connected to the channels at at least one end of the hydrophilic strips. Particularly good results were achieved with an element 1 in which the ratio of b / c was approximately 3/2.
Die Figuren 3 und 4 illustrieren die bereits oben angesprochene Möglichkeit der Realisierung einer Mikroventilfunktion. In Fig. 3 sind zwei Elemente nach der Erfindung einander gegenüberliegend mit im wesentlichen exakt zueinander ausgerichteten hydrophilen Streifen 4 dargestellt. Die mit ihren Oberflächen parallel zueinander liegenden Elemente 1 haben einen Abstand L-, voneinander, der in der Größenordnung der Breite b der hydrophilen Streifen 4 liegt. Gemäß Fig. 3 haben sich die Fluidkanäle 5 an den einander gegenüberliegenden hydrophilen Streifen 4 zu einer Fluidbrücke 7 zwischen den beiden Elementen 1 vereinigt, so daß Materialtransport von einem Element zum anderen Element über die Fluidbrücke 7 stattfinden kann. In Fig. 4 ist die Situation gezeigt, daß die beiden Elemente relativ zueinander um den Betrag L2 seitlich verschoben worden sind, so daß die im wesentlichen vollständige Überlappung der hydrophilen Streifen 4 beseitigt ist. Hierbei ist die Fluidbrücke 7 wieder in Kanäle 5 aufgebrochen worden, so daß kein Materialaustausch zwischen den beiden hydrophilen Streifen 4 mehr stattfindet. Materialtransport kann jedoch bei jedem der beiden Elemente längs der hydrophilen Streifen stattfinden. Die Zustände gemäß Fig. 3 und Fig. 4 sind durch entsprechendes Verschieben der Elemente 1 wahlweise und reversibel herstellbar, wodurch eine Ventilfunktion unter Vermeidung geschlossener Kanäle und somit unter Vermeidung von Kanalverstopfungsproblemen realisiert werden kann. Insbesondere organisiert sich die Flüssigkeit zwischen beiden Elementen 1 durch Verschiebung bzw. Verdrehung der Elemente 1 relativ zueinander selbst. Zum Aufbrechen der Fluidbrücke 7 kann man beispielsweise auch den Abstand L, durch Entfernen der Elemente 1 voneinander vergrößern und/oder die Elemente 1 relativ zueinander verdrehen.FIGS. 3 and 4 illustrate the possibility already mentioned above of realizing a micro valve function. In Fig. 3 two elements according to the invention are shown opposite one another with substantially exactly aligned hydrophilic strips 4. The elements 1 lying parallel to one another with their surfaces have a spacing L-, which is in the order of the width b of the hydrophilic strips 4. According to FIG. 3, the fluid channels 5 have been combined on the mutually opposite hydrophilic strips 4 to form a fluid bridge 7 between the two elements 1, so that material can be transported from one element to the other via the fluid bridge 7. 4 shows the situation that the two elements have been laterally displaced relative to one another by the amount L 2 , so that the substantially complete overlap of the hydrophilic strips 4 has been eliminated. Here, the fluid bridge 7 has been broken up again into channels 5, so that there is no longer any material exchange between the two hydrophilic strips 4. However, material transport can take place along each of the two elements along the hydrophilic strips. The states according to FIGS. 3 and 4 can be produced selectively and reversibly by correspondingly moving the elements 1, as a result of which a valve function can be realized while avoiding closed channels and thus avoiding channel blockage problems. In particular, the liquid between the two elements 1 organizes itself by shifting or rotating the elements 1 relative to one another. To break the fluid bridge 7, the distance L can also be increased, for example, by removing the elements 1 from one another and / or rotating the elements 1 relative to one another.
In Fig. 5a ist eine Anordnung nach Fig. 3 in einer Schnittansicht längs zweier einander gegenüberliegender hydrophiler Streifen 4 dargestellt. Die Figuren 5b - 5d zeigen in einer Sequenz, wie sich das Wasser bzw. die Fluidbrücke 7 typischerweise verhält, wenn der Abstand L durch Entfernen der Elemente 1 voneinander vergrößert wird. Bei Vergrößerung des Abstandes L, tritt gemäß Fig. 5b zunächst der Effekt auf, daß sich in Streifenlängsrichtung zusammenhängende Fluidbrücken 7 jeweils zu einem oder mehreren fluiden Kompartiment 7' bzw. Kompartimenten 7' zusammenziehen, die bei weiterer Vergrößerung des Abstandes L., zu säulenartigen Gebilden 7' (Fig. 5c) auseinandergezogen werden. Im Zustand gemäß den Figuren 5b und 5c findet längs der hydrophilen Streifen 4 keine Fluidströmung zwischen den benachbarten Kompartimenten 7' statt, so daß auch in bezug auf Fluidtransport entlang der hydrophilen Streifen 4 eine Mikroventilfunktion realisiert werden kann, wobei Fig. 5a den Zustand des geöffneten Ventils - und Fig. 5b oder 5c den Zustand des geschlossenen Ventils darstellt.5a shows an arrangement according to FIG. 3 in a sectional view along two mutually opposite hydrophilic strips 4. FIGS. 5b-5d show in a sequence how the water or the fluid bridge 7 typically behaves when the distance L is increased by removing the elements 1 from one another. When the distance L is increased, the effect according to FIG. 5b first occurs that fluid bridges 7 connected in the longitudinal direction of the strip contract into one or more fluid compartments 7 'or compartments 7' which, with a further increase in the distance L., become columnar Forms 7 '(Fig. 5c) are pulled apart. In the state according to FIGS. 5b and 5c, there is no fluid flow along the hydrophilic strips 4 between the adjacent compartments 7 ', so that a microvalve function can also be implemented with regard to fluid transport along the hydrophilic strips 4, FIG. 5a showing the state of the opened Valve - and Fig. 5b or 5c represents the state of the closed valve.
Bei weiterer Vergrößerung des Abstands L-, reißen die Fluidbrücken bzw. Kompartimente 7' zwischen den Elementen 1 auf, so daß zwischen den Elementen 1 keine Strömung mehr stattfindet. Die Flüssigkeit bildet gemäß Fig. 5d jeweils einen separaten Kanal 5 an den hydrophilen Streifen 4. Es lassen sich somit folgende Zustände schalten:When the distance L- is increased further, the fluid bridges or compartments 7 'between the elements 1 tear open, so that no more flow takes place between the elements 1. According to FIG. 5d, the liquid forms a separate channel 5 on the hydrophilic strip 4. The following states can thus be switched:
1 . Fluidtransport zwischen zwei Elementen 1 und längs der hydrophilen Streifen (Fig. 5a) . 2. Flüssigkeitstransport zwischen den beiden Elementen 1 bei Unterbrechung der Strömung längs der hydrophilen Streifen 4 (Fig. 5b bzw. 5c).1 . Fluid transport between two elements 1 and along the hydrophilic strips (Fig. 5a). 2. Liquid transport between the two elements 1 when the flow along the hydrophilic strips 4 is interrupted (FIGS. 5b and 5c).
3. Flüssigkeitstransport längs der hydrophilen Streifen bei Unterbrechung der Strömung zwischen den Elementen 1 (Fig. 5d).3. Liquid transport along the hydrophilic strips when the flow between the elements 1 is interrupted (FIG. 5d).
In den Fig. 5a - 5d sind Anschlußöffnungen 8 angedeutet, über die Flüssigkeit zugeführt bzw. abgeführt werden kann.5a-5d, connection openings 8 are indicated, via which liquid can be supplied or removed.
Es sei darauf hingewiesen, daß die in den Fig. 5a - 5d gezeigte Sequenz durch Annäherung der Elemente 1 umgekehrt werden kann.It should be noted that the sequence shown in FIGS. 5a-5d can be reversed by approximating elements 1.
Geht man beispielsweise vom Zustand gemäß Fig. 5b aus, indem man zunächst zwei chemische Reaktionspartner über die Öffnungen 8 bei entsprechendem Abstand der Elemente 1 voneinander und darauf abgestimmter Dosierung in den Zwischenraum einbringt, so daß jeder der beiden Reaktionspartner ein betreffendes Kompartiment 7' bildet, und nähert man dann die Elemente 1 aneinander an, so kann man den Zustand gemäß Fig. 5a herstellen, in dem die beiden Reaktionspartner in Kontakt kommen und eine betreffende chemische Reaktion ausführen können. Die erfindungsgemäßen Elemente 1 können somit auch zur Bildung von Mikroreaktoren verwendet werden. Das Zusammenbringen zweier chemischer Reaktionspartner kann auch dadurch erfolgen, daß man vom Zustand gemäß Fig. 5d zum Zustand gemäß Fig. 5a übergeht, wobei im Zustand gemäß Fig. 5d jeweils ein Reaktionspartner an einem betreffenden hydrophilen Streifen 4 haftet.If one starts from the state according to FIG. 5b, for example, by first introducing two chemical reaction partners into the interspace via the openings 8 with a corresponding spacing of the elements 1 from one another and with the appropriate dosage, so that each of the two reaction partners forms a respective compartment 7 ', and then approaching the elements 1 to one another, the state according to FIG. 5a can be established in which the two reactants come into contact and can carry out a chemical reaction in question. The elements 1 according to the invention can thus also be used to form microreactors. The bringing together of two chemical reaction partners can also take place by changing from the state according to FIG. 5d to the state according to FIG. 5a, wherein in the state according to FIG. 5d one reaction partner adheres to a respective hydrophilic strip 4.
Weitere Versuche haben gezeigt, daß man ausgehend vom Zustand der Fig. 5a Kompartimente 7' gemäß Fig. 5b erzeugen kann, wenn man dieFurther tests have shown that, starting from the state of FIG. 5a, compartments 7 'according to FIG. 5b can be produced if the
Elemente 1 bei gleichbleibendem Abstand L, um einen nicht zu großenElements 1 at a constant distance L, in order not to be too large
Winkel um eine vertikale Achse gegeneinander verdreht. Die so erzeugten Kompartimente können nun durch laterale Verschiebung einer Platte in einer Richtung senkrecht zum Verlauf der hydrophilen Streifen 4 rasch über die Substratoberfläche, also auch über hydrophobe Bereiche hinweg, bewegt werden. Hieraus ergibt sich eine weitere Möglichkeit der Realisierung von Ventilfunktionen, wenn an geeigneten Stellen Versorgungsanschlüsse, beispielsweise Versorgungslöcher, in die Elemente 1 einpräpariert werden.Angle rotated against each other around a vertical axis. The so generated Compartments can now be moved rapidly across the substrate surface, that is to say also across hydrophobic regions, by laterally displacing a plate in a direction perpendicular to the course of the hydrophilic strips 4. This results in a further possibility of realizing valve functions if supply connections, for example supply holes, are prepared in the elements 1 at suitable locations.
Schließlich ist noch darauf hinzuweisen, daß die Gegenphase (über den hydrophoben Bereichen) nicht unbedingt Luft (oder ein anderes Gas) sein muß. Es kann bedarfsweise auch eine mit der zu manipulierenden Flüssigkeit nicht mischbare, zweite Flüssigkeit sein. Will man beispielsweise wäßrige Systeme kontrollieren, so bietet sich ein Öl (etwa Silikonöl) als Gegenphase an, wobei sich Wasser auf den hydrophilen Bereichen ansammelt. In diesem Zusammenhang wäre dann unter dem Begriff Trockenzone eine wasserfreie, jedoch von der Gegenphase besetzbare Zone zu verstehen.Finally, it should be pointed out that the opposite phase (above the hydrophobic areas) need not necessarily be air (or another gas). If necessary, it can also be a second liquid which is immiscible with the liquid to be manipulated. If, for example, you want to control aqueous systems, an oil (such as silicone oil) is a suitable counter phase, with water collecting on the hydrophilic areas. In this context, the term drying zone would then be understood to mean a zone that is anhydrous but can be occupied by the opposite phase.
Es sei darauf hingewiesen, daß die parallele Anordnung der hydrophilen Streifen vorteilhaft, jedoch nicht zwingend ist. Insbesondere bei der Realisierung von Bauelementen mit Mikroventilen der vorstehend erläuterten Art können auch andere Oberflächenmuster gewählt werden, um ein zweckmäßiges "Fluidtransport-Leiterbahndesign" zu verwirklichen. Dabei können die einander gegenüberliegenden Elemente 1 gleiche oder unterschiedliche Streifenmuster und Streifenanzahlen haben. It should be noted that the parallel arrangement of the hydrophilic strips is advantageous, but not essential. In particular when realizing components with microvalves of the type explained above, other surface patterns can also be selected in order to implement an expedient "fluid transport conductor track design". The elements 1 lying opposite one another can have the same or different stripe patterns and stripe numbers.

Claims

Ansprüche Expectations
1 . Element mit einem feinen, insbesondere mikroskopischen Ober- flächenmuster aus hydrophilen Streifen (4) und zwischen den hydrophilen Streifen (4) liegenden hydrophoben Bereichen (6) , wobei die Abstände (c) zwischen nebeneinander verlaufenden, hydrophilen Streifen (4) und deren Streifenbreiten (b) derart aufeinander abgestimmt sind, daß die hydrophoben Bereiche (6) zwischen den hydrophilen Streifen (4) extrem stark wasserabweisende Trockenzonen bilden.1 . Element with a fine, in particular microscopic surface pattern made of hydrophilic strips (4) and hydrophobic areas (6) lying between the hydrophilic strips (4), the distances (c) between hydrophilic strips (4) running next to one another and their strip widths ( b) are matched to one another in such a way that the hydrophobic regions (6) between the hydrophilic strips (4) form extremely water-repellent drying zones.
2. Element nach Anspruch 1 , wobei die hydrophilen Streifen (4) im wesentlichen geradlinig und insbesondere parallel zueinander 5 verlaufen.2. Element according to claim 1, wherein the hydrophilic strips (4) are substantially straight and in particular parallel to each other 5.
3. Element nach Anspruch 1 oder 2, wobei es ein hydrophobes Substrat (3) aufweist, auf dem die hydrophilen Streifen (4) aufgebracht sind .3. Element according to claim 1 or 2, wherein it has a hydrophobic substrate (3) on which the hydrophilic strips (4) are applied.
o 4. Element nach Anspruch 1 oder 2, wobei es ein hydrophiles Substrat aufweist, auf dem die hydrophoben Bereiche (6) aufgebracht sind .4. Element according to claim 1 or 2, wherein it has a hydrophilic substrate on which the hydrophobic areas (6) are applied.
5. Element nach einem der vorhergehenden Ansprüche, wobei die hydrophilen Streifen (4) eine Breite b aufweisen und wobei der 5 Abstand c zwischen benachbarten, nebeneinander verlaufenden, hydrophilen Streifen (4) kleiner als 3 b, insbesondere kleiner als oder gleich 2 b ist.5. Element according to any one of the preceding claims, wherein the hydrophilic strips (4) have a width b and wherein the 5 distance c between adjacent, adjacent, hydrophilic strips (4) is less than 3 b, in particular less than or equal to 2 b .
6. Element nach Anspruch 5, wobei die hydrophilen Streifen (4) eine 0 Breite (b) zwischen 5 und 1 00 μm aufweisen. 6. Element according to claim 5, wherein the hydrophilic strips (4) have a 0 width (b) between 5 and 100 μm.
7. Element nach einem der vorhergehenden Ansprüche, wobei die hydrophilen Streifen (4) mit wenigstens einer Flüssigkeit ableitenden Senke (9) verbunden oder zur Verbindung mit einer solchen eingerichtet sind.7. Element according to one of the preceding claims, wherein the hydrophilic strips (4) are connected to at least one liquid-draining depression (9) or are set up for connection to such a depression.
8. Anordnung aus wenigstens zwei Elementen nach einem der vorhergehenden Ansprüche, wobei die Elemente ( 1 ) mit ihren Oberflächenmustern einander gegenüberliegend angeordnet und relativ zueinander bewegbar sind, um Fluidbrücken (7) zwischen den Elementen durch Annäherung hydrophiler Streifen (4) der beiden Elemente aneinander zu erzeugen bzw. durch Entfernung der betreffenden hydrophilen Streifen (4) voneinander zu zerstören, so daß in gesteuerter Weise Fluidströmung zwischen den betreffenden hydrophilen Streifen (4) ermöglicht oder unterbunden wird.8. Arrangement of at least two elements according to one of the preceding claims, wherein the elements (1) with their surface patterns are arranged opposite one another and are movable relative to each other to fluid bridges (7) between the elements by approximation of hydrophilic strips (4) of the two elements to each other to produce or destroy them by removing the relevant hydrophilic strips (4) from one another, so that fluid flow between the relevant hydrophilic strips (4) is made possible or prevented in a controlled manner.
9. Anordnung nach Anspruch 8, wobei zur Erzeugung der Bewegung der beiden Elemente ( 1 ) relativ zueinander wenigstens eines der Elemente ( 1 ) mit einem Piezoaktuator verbunden ist. 9. The arrangement according to claim 8, wherein at least one of the elements (1) is connected to a piezo actuator for generating the movement of the two elements (1) relative to one another.
PCT/EP1998/006618 1997-10-31 1998-10-20 Element with extremely strong water-repellent dry zones on the surface thereof WO1999023437A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19748295.3 1997-10-31
DE19748295A DE19748295A1 (en) 1997-10-31 1997-10-31 Element with extremely water-repellent drying zones on the surface

Publications (1)

Publication Number Publication Date
WO1999023437A1 true WO1999023437A1 (en) 1999-05-14

Family

ID=7847307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/006618 WO1999023437A1 (en) 1997-10-31 1998-10-20 Element with extremely strong water-repellent dry zones on the surface thereof

Country Status (2)

Country Link
DE (1) DE19748295A1 (en)
WO (1) WO1999023437A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2374818A (en) * 2001-04-23 2002-10-30 Secr Defence Hydrophobic and hydrophilic surface, for promoting droplet formation
EP2028432A1 (en) * 2007-08-06 2009-02-25 Université de Mons-Hainaut Devices and method for enhanced heat transfer
US9067821B2 (en) 2008-10-07 2015-06-30 Ross Technology Corporation Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
US9074778B2 (en) 2009-11-04 2015-07-07 Ssw Holding Company, Inc. Cooking appliance surfaces having spill containment pattern
US9139744B2 (en) 2011-12-15 2015-09-22 Ross Technology Corporation Composition and coating for hydrophobic performance
US9179773B2 (en) 2008-06-27 2015-11-10 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US9388325B2 (en) 2012-06-25 2016-07-12 Ross Technology Corporation Elastomeric coatings having hydrophobic and/or oleophobic properties
US9546299B2 (en) 2011-02-21 2017-01-17 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low VOC binder systems
US9914849B2 (en) 2010-03-15 2018-03-13 Ross Technology Corporation Plunger and methods of producing hydrophobic surfaces
CN109296864A (en) * 2018-12-17 2019-02-01 西安交通大学 Condensation water hammer strength reduction device based on hydrophobe characteristic
US10317129B2 (en) 2011-10-28 2019-06-11 Schott Ag Refrigerator shelf with overflow protection system including hydrophobic layer
US11786036B2 (en) 2008-06-27 2023-10-17 Ssw Advanced Technologies, Llc Spill containing refrigerator shelf assembly

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170556B1 (en) * 2000-07-07 2003-12-03 Astrium GmbH Condensing heat exchanger
DE10120035B4 (en) * 2001-04-24 2005-07-07 Advalytix Ag Method and device for manipulating small quantities of liquid on surfaces
EP2143492A1 (en) * 2008-07-11 2010-01-13 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method and microfluidic device for combining reaction components contained in liquids
CN104748604B (en) * 2015-03-26 2016-07-13 中国科学院工程热物理研究所 A kind of dropwise condensation enhanced heat exchange surface texture with hydrophobic strip
DE102016200548A1 (en) * 2016-01-18 2017-07-20 Festo Ag & Co. Kg Fluid guide device
US10703489B2 (en) 2018-06-29 2020-07-07 Hamilton Sunstrand Corporation Moisture extraction component
CN109806921B (en) * 2019-03-06 2021-07-23 安徽中医药高等专科学校 Preparation method of cloth chip and cloth chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1451230A1 (en) * 1964-12-31 1969-05-08 Hummel Richard L Process for the surface treatment of heat transfer surfaces on high-boiling films in order to achieve a large heat transfer coefficient and the product obtained thereby
JPH01133779A (en) * 1987-07-20 1989-05-25 Canon Inc Recording material
US4855176A (en) * 1986-12-15 1989-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Anti-blurring optical member
DE4104741C1 (en) * 1991-02-15 1992-08-27 Kissler, Gerhard, Dr., 8400 Regensburg, De

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2390760A1 (en) * 1977-05-12 1978-12-08 Rhone Poulenc Graphic NEW LITHOGRAPHIC PLATES BASED ON PHOTOPOLYMERS AND PROCESSING METHODS
DE3705439A1 (en) * 1987-02-20 1988-09-01 Man Technologie Gmbh PRINTING MACHINE
DE19628928A1 (en) * 1996-07-18 1998-01-22 Basf Ag Solid supports for analytical measurement processes, a process for their production and their use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1451230A1 (en) * 1964-12-31 1969-05-08 Hummel Richard L Process for the surface treatment of heat transfer surfaces on high-boiling films in order to achieve a large heat transfer coefficient and the product obtained thereby
US4855176A (en) * 1986-12-15 1989-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Anti-blurring optical member
JPH01133779A (en) * 1987-07-20 1989-05-25 Canon Inc Recording material
DE4104741C1 (en) * 1991-02-15 1992-08-27 Kissler, Gerhard, Dr., 8400 Regensburg, De

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 380 (M - 863) 23 August 1989 (1989-08-23) *
PFAHLER ET AL: "gas and liquid flow in small channels", 1991, article "mikromechanical sensors, actuators, and systems asme dsc-32", pages: 49

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2374818B (en) * 2001-04-23 2005-01-12 Secr Defence Surface for promoting droplet formation
US7402195B2 (en) 2001-04-23 2008-07-22 Qinetiq Limited Surface for promoting droplet formation
US7507277B2 (en) 2001-04-23 2009-03-24 Qinetiq Limited Surface for promoting droplet formation
GB2374818A (en) * 2001-04-23 2002-10-30 Secr Defence Hydrophobic and hydrophilic surface, for promoting droplet formation
EP2028432A1 (en) * 2007-08-06 2009-02-25 Université de Mons-Hainaut Devices and method for enhanced heat transfer
US9532649B2 (en) 2008-06-27 2017-01-03 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US11786036B2 (en) 2008-06-27 2023-10-17 Ssw Advanced Technologies, Llc Spill containing refrigerator shelf assembly
US11191358B2 (en) 2008-06-27 2021-12-07 Ssw Advanced Technologies, Llc Spill containing refrigerator shelf assembly
US10827837B2 (en) 2008-06-27 2020-11-10 Ssw Holding Company, Llc Spill containing refrigerator shelf assembly
US10130176B2 (en) 2008-06-27 2018-11-20 Ssw Holding Company, Llc Spill containing refrigerator shelf assembly
US9179773B2 (en) 2008-06-27 2015-11-10 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US9207012B2 (en) 2008-06-27 2015-12-08 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US9926478B2 (en) 2008-10-07 2018-03-27 Ross Technology Corporation Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
US9067821B2 (en) 2008-10-07 2015-06-30 Ross Technology Corporation Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
US9279073B2 (en) 2008-10-07 2016-03-08 Ross Technology Corporation Methods of making highly durable superhydrophobic, oleophobic and anti-icing coatings
US9243175B2 (en) 2008-10-07 2016-01-26 Ross Technology Corporation Spill resistant surfaces having hydrophobic and oleophobic borders
US9096786B2 (en) 2008-10-07 2015-08-04 Ross Technology Corporation Spill resistant surfaces having hydrophobic and oleophobic borders
US9074778B2 (en) 2009-11-04 2015-07-07 Ssw Holding Company, Inc. Cooking appliance surfaces having spill containment pattern
US9914849B2 (en) 2010-03-15 2018-03-13 Ross Technology Corporation Plunger and methods of producing hydrophobic surfaces
US10240049B2 (en) 2011-02-21 2019-03-26 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low VOC binder systems
US9546299B2 (en) 2011-02-21 2017-01-17 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low VOC binder systems
US10317129B2 (en) 2011-10-28 2019-06-11 Schott Ag Refrigerator shelf with overflow protection system including hydrophobic layer
US9139744B2 (en) 2011-12-15 2015-09-22 Ross Technology Corporation Composition and coating for hydrophobic performance
US9528022B2 (en) 2011-12-15 2016-12-27 Ross Technology Corporation Composition and coating for hydrophobic performance
US9388325B2 (en) 2012-06-25 2016-07-12 Ross Technology Corporation Elastomeric coatings having hydrophobic and/or oleophobic properties
CN109296864B (en) * 2018-12-17 2020-02-18 西安交通大学 Condensed water hammer strength weakening device based on hydrophilic and hydrophobic characteristics
CN109296864A (en) * 2018-12-17 2019-02-01 西安交通大学 Condensation water hammer strength reduction device based on hydrophobe characteristic

Also Published As

Publication number Publication date
DE19748295A1 (en) 1999-05-06

Similar Documents

Publication Publication Date Title
WO1999023437A1 (en) Element with extremely strong water-repellent dry zones on the surface thereof
DE69936719T2 (en) MICRO FLUID DEVICE
DE19929734B4 (en) Microfluidic device
DE60211857T2 (en) METHOD FOR PRODUCING AN EMULSION AND DEVICE THEREFOR
DE69837451T2 (en) Microstructured filter
DE60007128T2 (en) POLYMER VALVES
DE3742770A1 (en) MICRO / ULTRAFILTRATION MEMBRANES WITH DEFINED PORO SIZE BY IRRADIATION WITH PULSE LASERS AND METHOD FOR THE PRODUCTION THEREOF
EP1013341B1 (en) Device for draining a liquid from a capillary
DE112018001955B4 (en) Application-specific configurable microfluidic unit with programmable microfluidic nodes
DE10309583A1 (en) Microplate with an integrated microfluidic system for parallel processing of tiny fluid volumes
DE60209449T2 (en) Passive microvalve
EP2248588B1 (en) Mountable and dismountable microfluid system and method for flooding the system
WO2014191114A2 (en) Method for producing a plurality of measurement regions on a chip, and chip with measurement regions
EP1075326B1 (en) Device for transporting liquids along predetermined guideways
EP1165227B1 (en) Microcolumn reactor
DE102006035925B3 (en) Device for finely controllable movement and/or positioning of liquid drops on a surface, comprises first substrate or two flat substrates arranged between the surface, and electrode arrangement having individual electrodes
DE60213645T2 (en) METHOD FOR FILLING HOLES IN SUBSTRATES
EP2011630A1 (en) Method for manufacturing an analytical element
EP2593231A1 (en) Microfluidic system and production method for a microfluidic system
DE10310615B3 (en) Production of a bio-chip used in the micro-analysis of liquid streams of droplets with microstructures on a semiconductor chip comprises covering a wafer with a photo-lacquer layer, photo-lithographically structuring and further processing
DE102007018752A1 (en) Apparatus and method for the controlled transport of microfluidic samples
DE102016015587B4 (en) Substrate and its production
DE19823660C1 (en) Process and assembly to apply and fix biochemically-active micro- and nano- micro-spheres on a substrate, especially useful in biochemical analysis such as DNA, viral and genetic testing
DE102014109468B3 (en) Culture chamber device for generating flowless and time stable gradients
DE102012201714B4 (en) METHOD FOR PRODUCING MICROFLUID SYSTEMS

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase