WO1999052964A2 - Nanostrukturierte formkörper und schichten und deren herstellung über stabile wasserlösliche vorstufen - Google Patents

Nanostrukturierte formkörper und schichten und deren herstellung über stabile wasserlösliche vorstufen Download PDF

Info

Publication number
WO1999052964A2
WO1999052964A2 PCT/EP1999/002396 EP9902396W WO9952964A2 WO 1999052964 A2 WO1999052964 A2 WO 1999052964A2 EP 9902396 W EP9902396 W EP 9902396W WO 9952964 A2 WO9952964 A2 WO 9952964A2
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
sol
group
composition
nanostructured
Prior art date
Application number
PCT/EP1999/002396
Other languages
English (en)
French (fr)
Other versions
WO1999052964A3 (de
Inventor
Ertugrul Arpac
Gerhard Jonschker
Hermann Schirra
Helmut Schmidt
Original Assignee
Institut Für Neue Materialien Gem. Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7864255&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999052964(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CA002327312A priority Critical patent/CA2327312A1/en
Priority to BR9909521-1A priority patent/BR9909521A/pt
Priority to AT99920614T priority patent/ATE282058T1/de
Priority to AU38138/99A priority patent/AU3813899A/en
Priority to MXPA00009735A priority patent/MXPA00009735A/es
Priority to PL343590A priority patent/PL213503B1/pl
Priority to HU0101496A priority patent/HUP0101496A3/hu
Application filed by Institut Für Neue Materialien Gem. Gmbh filed Critical Institut Für Neue Materialien Gem. Gmbh
Priority to EP99920614.7A priority patent/EP1086162B2/de
Priority to JP2000543519A priority patent/JP4597368B2/ja
Priority to US09/647,971 priority patent/US6620514B1/en
Priority to DE59911048T priority patent/DE59911048D1/de
Publication of WO1999052964A2 publication Critical patent/WO1999052964A2/de
Publication of WO1999052964A3 publication Critical patent/WO1999052964A3/de
Priority to NO20004877A priority patent/NO331461B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • C03C1/008Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/12Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to nanostructured moldings and layers and their production via stable water-soluble precursors and in particular to nanostructured moldings and layers which are suitable for optical purposes.
  • JP-A-53-6339 describes the synthesis of a composite in which, starting from a reactive-organically modified silane and an inert-organically modified silane, the hydrolysis is carried out in the presence of aqueous silica sol and phosphoric acid as a catalyst for the hydrolysis. The alcohol formed in the condensation reaction is not removed.
  • JP-A-63-37168 describes the synthesis of a composite of monomers dispersed in an aqueous medium and free-radically crosslinking monomers based on acrylate and organically modified silanes, the organic remainder of these silanes also being a free-radically crosslinking system in the presence of colloidal silica and non-ionic surfactants.
  • the hydrolysis and condensation reactions are carried out in a separate process step. Here, too, the alcohol formed in the condensation reaction is not removed.
  • JP-A-63-37167 for a system in which the silane component has cationically crosslinking radicals.
  • US-A-5411787 describes the synthesis of a composite of polymeric binders dispersed in water, at least one aminosilane component and colloidal particles with a particle size of less than 20 nm. In this case too, the alcohol formed by the hydrolysis of the silane is not removed.
  • US Pat. No. 4,799,963 describes the production of silane-based composites, into which colloidal silica or nanoscale cerium oxide are additionally incorporated.
  • the object of the present invention was therefore to provide a process for the production of nanostructured moldings and layers, preferably those which are suitable for optical purposes, via stable water-soluble intermediates.
  • aqueous, electrostatically stabilized (and therefore extremely concentration-sensitive) colloidal suspensions can be coated with reactive monomeric or oligomeric components (silanes or precondensates thereof) and thereby the effect described by Stern (Z. Elektrochem., 508 (1924 )) of the aggregation of two particles charged in the same direction when they approach each other, but in particular also the otherwise spontaneous chemical reactions between reactive surface groups of two particles.
  • the concentration and shift of the reaction equilibrium to the product side, with the formation of the surface condensates, is carried out by vacuum removal of the alcohol formed in the condensation reaction (usually methanol or Ethanol) reached, with very high storage stability of the condensates (> 14 days) resulting in relatively low residual solvent contents (generally not more than 20% by weight and in particular not more than 10% by weight).
  • the process described above can be reversed when heat is added, so that the particles can be crosslinked with solidification, and a further reaction can also take place via appropriately selected organic groups on the surface modifier (for example reaction of these groups with one another).
  • aqueous sols such as boehmite, TiO 2 , ZrO 2 or SiO 2 sols, but also other aqueous sols of compounds of the main and subgroup metals can be reacted with organically modified alkoxysilanes in such a way that after the stripping of the solvent and optionally the subsequent dispersion of the liquid residue in water, clear solutions are obtained which are stable over a longer period of time.
  • This removal of the solvent (alcohol) is necessary in order to carry out the reaction of the coating of the particles with the organically modified alkoxysilanes to such an extent that a hydrolysis and condensation-stable liquid system is formed.
  • the present invention accordingly relates to a method for producing a composition for the provision of nanostructured moldings and layers, which comprises the contacting of an aqueous and / or alcoholic sols of a compound of an element selected from silicon and the main and subgroup metals with species having hydrolyzable alkoxy groups, which include at least one organically modified alkoxysilane or a precondensate derived therefrom, under conditions which lead to (further) hydrolysis of the species , and the subsequent removal of alcohol which may have been formed and which may already be present, and which is characterized in that the alcohol is removed in such an amount that the residual alcohol content of the composition does not exceed 20% by weight, preferably not more than 15 % By weight and in particular not more than 10% by weight.
  • the present invention also relates to the compositions obtainable by the above process and the use thereof for the production of nanostructured moldings and substrates provided with nanostructured layers.
  • the process according to the invention differs from similar processes of the prior art in particular in that a considerable part of the solvent (alcohol) present in the system is removed from the system. This shifts the hydrolysis and condensation equilibrium to the product side and stabilizes the corresponding liquid system.
  • at least 30% by weight, in particular at least 50% by weight and preferably at least 70% by weight, of the theory of the alcohol formed by hydrolysis of alkoxy groups are removed. At least 80% by weight and more preferably 90% by weight of this alcohol are particularly preferably removed. This calculation does not include any alcohol that may originally be present (e.g.
  • the amount of alcohol that was already in the manufacture of the pre-condensates used has arisen.
  • the alcohol is preferably removed from the reaction system under reduced pressure, so that excessive thermal stress on the system can be avoided.
  • a temperature of 60 ° C., in particular 50 ° C. and particularly preferably 40 ° C. should not be exceeded.
  • the sol used can be both an aqueous and an alcoholic or an aqueous / alcoholic sol. Purely aqueous brines are preferably used. If a sol with alcohol content is used, the alcohol is preferably one with 1 to 4 carbon atoms, i.e. Methanol, ethanol, propanol, isopropanol and the butanols.
  • the sol of the invention contains one or more compounds (preferably one compound) of one or more elements selected from silicon and the main and sub-group metals.
  • the main and subgroup metals are preferably those from the third and fourth main group (in particular Al, Ga, Ge and Sn) and the third to fifth subgroup of the periodic table (in particular Ti, Zr, Hf, V, Nb and Ta).
  • other metal compounds can also lead to advantageous results, such as those of Zn, Mo and W.
  • the corresponding element compounds are preferably oxides, oxide hydrates, sulfides, selenides or phosphates, with oxides and oxide hydrates being particularly preferred. Accordingly, the compounds present in the sol used according to the invention are in particular (and preferably) SiO 2 , Al 2 O 3 , AIOOH (in particular boehmite), TiO 2 , ZrO 2 and mixtures thereof.
  • the sol used in the process according to the invention generally has a solids content of 5 to 50% by weight, preferably 10 to 40 and particularly preferably 15 to 30% by weight.
  • the species to be used in the process according to the invention with hydrolyzable alkoxy groups include at least one organically modified alkoxysilane or a precondensate derived therefrom.
  • Organically modified alkoxysilanes which are preferred according to the invention are those of the general formula (I): ' 4-x Si (OR) x (I) in which the radicals R, the same or different from one another (preferably the same); optionally substituted (preferably unsubstituted) hydrocarbon groups having 1 to 8, preferably 1 to 6 and particularly preferably 1 to 4 carbon atoms (in particular methyl or ethyl), the radicals R ', identically or differently from one another, each represent an optionally substituted hydrocarbon group having 1 to 20 Represent carbon atoms and x is 1, 2 or 3.
  • At least one radical R ' has a group which can undergo a polyaddition (including polymerization) or polycondensation reaction.
  • This group capable of the polyaddition or polycondensation reaction is preferably an epoxy group or (preferably activated) carbon-carbon multiple bonds (in particular double bonds), a (meth) acrylate group being a particularly preferred example of the latter groupings.
  • particularly preferred organically modified alkoxysilanes of the general formula (I) for use in the present invention are those in which x is 2 or 3 and in particular 3 and one radical (the only radical) R "for ⁇ -glycidyloxy-C 2 _ 6 alkyl or ⁇ - (meth) acryloxy-C is alkyl. 2. 6
  • silanes are 3-glycidoxypropyltri (m) ethoxysilane, 3,4-epoxybutyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane as well as 3- (meth) acryloxypropyltri (m) ethoxysilane and 2- (meth) acryloxyethyltri (m ) ethoxysilane.
  • alkoxysilanes which can optionally be used as such, but preferably in combination with alkoxysilanes with the above groups capable of polyaddition or polycondensation reaction, are, for example, tetra-methoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, cyclo - hexyltrimethoxysilane, cyclopentyl trimethoxysilane, ethyltrimethoxysilane, phenylethyl trimethoxysilane, phenyltrimethoxysilane, n-propyltrimethoxysilane, cyclohexylmethyl dimethoxysilane, dimethyldimethoxysilane, diisopropyldimethoxysilane, phenylmethyl dimethoxysilane, Phenylethyltriethoxysil
  • silanes can also be used together with the organically modified alkoxysilane, which have fluorinated alkyl radicals with at least 4 carbon atoms (and preferably have at least 3 fluorine atoms), the carbon atoms in the ⁇ - and ⁇ -position relative to the silicon preferably not carrying any fluorine atoms, for example (tridecafluoro-1,1,2,2-tetrahydrooctyl) methyldiethoxysilane, (tridecafluoro-1,2,2- tetra-hydrooctyl) triethoxysilane, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) methyldiethoxysilane and (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane.
  • the organically modified alkoxysilane which have fluorinated alkyl radicals with at least 4 carbon atoms (and preferably have at least
  • the species with hydrolyzable alkoxy groups which are used according to the invention can also comprise species other than silanes.
  • alkoxides preferably with C 1-4 alkoxy groups
  • Such compounds are aluminum sec-butoxide, titanium isopropoxide, Titanium propoxide, titanium butoxide, zirconium isopropoxide, zirconium propoxide, zirconium butoxide, zirconium ethoxide, tantalum ethoxide, tantalum butoxide, niobium ethoxide, niobium butoxide, tin t-butoxide, tungsten (VI) ethoxide, germanium ethoxide, germanium isopropoxide and di-t-butoxysiloxane.
  • the more reactive alkoxides e.g. of Al, Ti, Zr etc.
  • suitable complexing agents e.g. unsaturated carboxylic acids and ⁇ -dicarbonyl compounds, e.g. Methacrylic acid, acetylacetone and ethyl acetoacetate.
  • the molar ratio of the organically modified alkoxysilanes to the species different therefrom is preferably at least 2: 1, in particular at least 5: 1 and particularly preferably at least 10: 1.
  • the preferably used organically modified alkoxysilanes with a group capable of a polycondensation or polyaddition reaction are used in the process according to the invention, it is preferred to also incorporate a starter component into the corresponding composition, the molar ratio of starter to organic group generally being 0. Does not exceed 15: 1.
  • imidazoles amines, acid anhydrides and Lewis acids are particularly suitable as starters. If imidazoles are to be used, 1-methylimidazole is particularly preferred. Other preferred examples of imidazole starters are 2-methylimidazole and 2-phenylimidazole.
  • starters from the group of primary, secondary and tertiary amines are ethylenediamine, diethylenetriamine, triethylenetetramine, 1,6-diaminohexane, 1,6-bis (dimethylamino) hexane, tetramethylethylenediamine, N, N, N ', N ", N" -pentamethyldiethylenetriamine, 1,4- Diazabicyclo [2.2.2] octane, cyclohexane-1,2-diamine, 2- (aminomethyl) -3,3,5-trimethylcyclopentylamine, 4,4'-diaminocyclohexylmethane, 1,3-bis (aminomethyl) cyclohexane, bis ( 4-amino-3-methylcyclohexyl) methane, 1, 8-diamino-p-menthan, 3- (aminoethyl) -3,3,5-trimethylcycte-
  • the amines used as starters can also be functionalized with silanes. Examples include N- (2-aminoethyl) -3- aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, aminopropyltrimethoxysilane and aminopropyltriethoxysilane.
  • boron trifluoride adducts of amines such as BF 3 -ethylamine, can be used.
  • Organic crosslinking can also be carried out using acid anhydrides (preferably in combination with tertiary amines), such as ethylbicyclo [2.2.1] heptene-2,3-dicarboxylic acid anhydride, hexahydronaphthalenedicarboxylic acid anhydride, phthalic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, but also [3- (Triethoxysilyl) propylsuccinic anhydride.
  • acid anhydrides preferably in combination with tertiary amines
  • Additional suitable catalysts for the crosslinking of epoxy groups in the present case are (optionally pre-hydrolyzed) alkoxides of aluminum, titanium and zirconium, for example Al (OC 2 H 4 OC 4 H 9 ) 3 , and organic carboxylic acids, such as propionic acid.
  • a conventional thermal polymerization catalyst or a conventional photopolymerization catalyst can be added to the composition.
  • preferred thermal catalysts are azobisisobutyronitrii, diacyl peroxides (e.g. dibenzoyiperoxide and dilauroyl peroxide), peroxydicarbonates, alkyl peresters, perketals, alkyl or aryl peroxides, ketone peroxides and hydroperoxides.
  • silanes (Meth) acrylate concrete examples of useful crosslinking agents bisacrylate bisphenol A, bisphenol A bismethacrylate, trimethylolpropane triacrylate, trimethylol propane trimethacrylate, neopentyl glycol dimethacrylate, neopentyl glycol acrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol diacrylate, Tetraethylenglycoldimeth-, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, 2,2 , 3,3-tetrafluoro-1,4-butanediol diacrylate and dimethacrylate, 1,1,5,
  • nanostructured moldings and layers with hydrophilic properties are desired, for example, to additionally incorporate components into the composition according to the invention which lead to such hydrophilic properties.
  • components that can be covalently attached to the inorganic matrix for example a component with a free hydroxyl group, such as (meth) acrylic acid-2-hydroxyethyl ester
  • a hydrophilic component that can move freely in the matrix for example a surfactant
  • the conditions to be used according to the invention which lead to (further) hydrolysis of the species having hydrolyzable alkoxy groups or the corresponding precondensates are preferably the presence of at least 0.5 mol of H 2 O per hydrolyzable alkoxy group.
  • This amount of water is usually already provided by the water present in the sol. If this is not the case, the corresponding amount of water should be added separately.
  • a catalyst for the hydrolysis (and condensation) of the alkoxy groups is present.
  • Preferred catalysts for this purpose are acidic catalysts, for example aqueous (mineral) acids such as, for example, HCl.
  • the quantitative ratio of the starting materials used is preferably chosen so that in the final molded body or in the final layer (after hardening) the solids content originating from the sol is 1 to 50% by weight and in particular 5 to 30% by weight .-% of the molded body or layer.
  • the process of contacting the aqueous and / or alcoholic sol with the species with hydrolyzable alkoxy groups under conditions which lead to hydrolysis of the species with alkoxy groups is familiar to the person skilled in the art and is further explained in the following examples.
  • After removal of the solvent (alcohol) from the composition (which generally leads to 10 to 80% and in particular 20 to 50% of the hydrolyzable starting alkoxy groups having undergone a condensation reaction), it can prove advantageous for certain purposes, adjust the resulting composition to a suitable viscosity by adding water.
  • the viscosity of the composition, in particular for coating purposes, is preferably below 5000 mPas, in particular below 3000 mPas.
  • nanostructured moldings and substrates provided with nanostructured layers with the aid of the composition according to the invention are either introduced into a mold or onto a substrate and then carried out - if appropriate after prior drying at room temperature or slightly elevated temperature, in particular in the case of production of layers - a thermal (and possibly also a photochemical) hardening by.
  • all conventional coating processes can be used, e.g. Dipping, flooding, rolling, spraying, knife coating, spinning or screen printing.
  • the curing temperature is generally in the range from 90 ° C. to 300 ° C., in particular 110 ° C. to 200 ° C., in the case of the production of the layer also in particular depending on the temperature resistance of the substrate to be coated.
  • the composition according to the invention is suitable for coating a wide variety of substrates and in many cases shows very good adhesion and extremely high scratch resistance even without surface treatment.
  • Particularly preferred substrates for the production of layers are glass, non-transparent and transparent plastics and metals. Examples of suitable plastics are polycarbonate, poly (meth) acrylates, polystyrene, polyvinyl chloride, polyethylene terephthalate, polypropylene and polyethylene, while a preferred metal substrate is aluminum.
  • compositions accessible according to the invention are suitable for a large number of applications.
  • examples include the following:
  • - Mg engine blocks, eyeglass frames, sports equipment, rims, gearboxes - AI: means of transport bodies, rims, facade elements, furniture, heat exchangers
  • optical components e.g. spectroscope mirrors and laser prisms
  • elements for encapsulation e.g. housing for meteorological devices
  • the resulting system was used to coat polycarbonate and aluminum plates as well as CR-39 lenses.
  • the polycarbonate sheets were pretreated by corona discharge.
  • the coated polycarbonate and aluminum plates were cured at 130 ° C. for 4 hours after being kept at room temperature for 30 minutes.
  • the CR-39 lenses were cured at 90 ° C for 4 hours after being stored at room temperature for 30 minutes.
  • Example 1 was repeated, but 3.05 g (0.001 mol) of [3- (triethoxysilyl) propyl] succinic anhydride (GF20) was used instead of DIAMO.
  • GF20 [3- (triethoxysilyl) propyl] succinic anhydride
  • Example 1 was repeated except that (2.78 g Disperal P3 ® in 25 g distilled water) was used in place of the silica sol is a boehmite suspension.
  • Example 3 was repeated, but 3.78 g (0.01 mol) of Al (OEtOBu) 3 were used as catalyst instead of DIAMO.
  • Ti (OiPr) 4 tetraisopropyl orthotitanate
  • Polycarbonate plates pretreated by corona discharge and plasma-pretreated CR-39 lenses were coated with the composition prepared in this way and cured thermally at 130 ° or 90 ° C. for one hour. ⁇
  • composition thus prepared was applied to polymethyl methacrylate plates pretreated by corona discharge and thermally cured at 95 ° C. for 4 hours.
  • Float glass substrates coated with the resulting composition were cured in a drying cabinet at 130 ° C. for 4 hours.
  • Example 1 was repeated, but instead of DIAMO, 1.32 g (0.005 mol) of trimethoxysilylpropyldiethylenetriamine (TRIAMO) were used.
  • Example 1 was repeated, but instead of DIAMO 0.74 g (0.01 mol) of propionic acid were used as starters.
  • Example 1 was repeated, but 3.87 g (0.01 mol) of AI (OEtOBu) 3 were used as starter instead of DIAMO.
  • Example 13
  • Example 1 was repeated, but instead of DIAMO, 0.41 g (0.005 mol) of 1-methylimidazole was used as the starter.
  • Example 1 was repeated, but instead of DIAMO, 5.27 g (0.01 mol) of a mixture was used, which had been obtained by combining 3-aminopropyltriethoxysilane (AMEO) with GF20 in a molar ratio of 1: 1 with ice cooling.
  • DIAMO 3-aminopropyltriethoxysilane
  • Example 6 was repeated, but 95.5 g of the silica sol described in Example 1 were used instead of the HCl-acid boehmite suspension and the amount of catalyst was quintupled.
  • Corona discharge-pretreated polycarbonate plates and plasma-pretreated CR-39 lenses were coated with the resulting composition and thermally cured for one hour at 130 ° C. or 90 ° C.
  • the polycarbonate sheets were pretreated by corona discharge.
  • the coated polycarbonate and aluminum plates were cured for 4 hours at 130 ° C. after 30 minutes of storage at room temperature.
  • the CR-39 lenses were cured for 4 hours at 90 ° C after 30 minutes at room temperature.
  • Corona-pretreated polycarbonate sheets or plasma-pretreated CR-39 lenses were coated and thermally cured for one hour at 130 ° C. or 90 ° C.

Abstract

Beschrieben wird ein Verfahren zur Herstellung einer Zusammensetzung für die Bereitstellung von nanostrukturierten Formkörpern und Schichten, umfassend die Kontaktierung eines wässrigen und/oder alkoholischen Sols einer Verbindung eines aus Silicium und den Haupt- und Nebengruppen-Metallen ausgewählten Elements mit über hydrolysierbare Alkoxygruppen verfügenden Spezies, die mindestens ein organisch modifiziertes Alkoxysilan oder ein davon abgeleitetes Vorkondensat enschliessen, unter Bedingungen, die zu einer (Weiter)hydrolyse der Spezies führen, und die anschliessende Entfernung von gebildetem und gegebenenfalls bereits ursprünglich vorhandenem Alkohol, dadurch gekennzeichnet, dass der Alkohol in einer solchen Menge entfernt wird, dass der Restalkohol-Gehalt in der Zusammensetzung nicht mehr als 20 Gew.-% ausmacht.

Description

NANOSTRUKTURIERTE FORMKÖRPER UND SCHICHTEN UND DEREN HERSTELLUNG ÜBER STABILE WASSERLÖSLICHE VORSTUFEN
Die vorliegende Erfindung betrifft nanostrukturierte Formkörper und Schichten und deren Herstellung über stabile wasserlösliche Vorstufen und insbesondere nanostrukturierte Formkörper und Schichten, die sich für optische Zwecke eignen. -
In der Literatur sind Verfahren zur Herstellung von transparenten Werkstoffen, welche aus organisch-anorganischen Kompositen bestehen und bei denen wasser- haltige Vorstufen eingesetzt werden, bereits für Beschichtungszwecke beschrieben.
Insbesondere beschreibt JP-A-53-6339 die Synthese eines Komposits, bei welcher ausgehend von einem reaktiv-organisch modifizierten Silan und einem inertorganisch modifizierten Silan die Hydrolyse in Anwesenheit von wäßrigem Kieselsol sowie Phosphorsäure als Katalysator für die Hydrolyse durchgeführt wird. Dabei wird der in der Kondensationsreaktion entstandene Alkohol nicht entfernt.
JP-A-63-37168 beschreibt die Synthese eines Komposits aus in einem wäßrigen Medium dispergierten und radikalisch vernetzenden Monomeren auf Acrylat-Basis und organisch modifizierten Silanen, wobei der organische Rest dieser Silane ebenfalls ein radikalisch vernetzendes System darstellt, in Anwesenheit von kolloidaler Kieselsäure und nicht-ionischen Tensiden. Hydrolyse- und Kondensationsreaktion werden in einem eigenen Verfahrensschritt durchgeführt. Auch hier wird der in der Kondensationsreaktion entstandene Alkohol nicht entfernt.
Eine ähnliche Beschreibung findet sich in JP-A-63-37167 für ein System, bei dem die Silan-Komponente über kationisch vernetzende Reste verfügt.
US-A-5411787 beschreibt die Synthese eines Komposits aus in Wasser dispergierten polymeren Bindemitteln, mindestens einer Aminosilan-Komponente und kolloidalen Teilchen mit einer Teilchengröße von weniger als 20 nm. Auch in diesem Fall wird der durch die Hydrolyse des Silans entstandene Alkohol nicht entfernt. In US-A-4799963 wird die Herstellung von Kompositen auf Silan-Basis beschrieben, in die zusätzlich kolloidale Kieselsäure oder nanoskaliges Ceroxid eingearbeitet werden.
In den genannten Literaturstellen finden sich keine Hinweise über den Wirkungsmechanismus und auch nur wenig Angaben über die Topfzeit der darm beschriebenen Systeme. Ebenso fehlen meist die Angaben über Restlösungsmittel- Gehalte, wobei aber ein rechnerisches Nachvollziehen der Synthesen auf Restlösungsmittel-Gehalte von größer als 10 Volumen-% schließen läßt.
Auf der Basis des soeben beschriebenen Standes der Technik wurde untersucht, inwieweit durch eine gezielte Beschichtung von kolloidalen Systemen mit funktionellen Silanen eine Reduzierung der Wasserempfindlichkeit, d.h. des Fort- schreitens der Hydrolyse- und Kondensationsreaktion, erzielbar ist und inwieweit damit stabile Systeme für die Herstellung von Formkörpern und Schichten herstellbar sind, die sich auch für die industrielle Anwendung eignen.
Aufgabe der vorliegenden Erfindung war somit die Bereitstellung eines Verfahrens zur Herstellung von nanostrukturierten Formkörpern und Schichten, vorzugsweise solchen, die für optische Zwecke geeignet sind, über stabile wasserlösliche Zwischenstufen.
Erfindungsgemäß wurde gefunden, daß wäßrige, elektrostatisch stabilisierte (und dadurch extrem konzentrationsempfindliche) kolloidale Suspensionen mit reaktiven monomeren oder oligomeren Komponenten (Silanen oder Vorkondensaten derselben) beschichtet werden können und dadurch beim Aufkonzentrieren den von Stern beschriebenen Effekt (Z. Elektrochem., 508 (1924)) der Aggregation zweier gleichsinnig geladener Teilchen bei deren Annäherung, insbesondere aber auch die ansonsten spontan ablaufenden chemischen Reaktionen zwischen reaktiven Oberflächengruppen zweier Teilchen, nicht zeigen. Die Aufkonzentrierung und Verschiebung des Reaktionsgleichgewichts auf die Produktseite unter Bildung der Oberflächenkondensate wird durch das im Vakuum durchgeführte Entfernen des in der Kondensationsreaktion entstandenen Alkohols (in der Regel Methanol oder Ethanol) erreicht, wobei sich bei sehr hoher Lagerstabilität der Kondensate (> 14 Tage) relativ geringe Restlösungsmittel-Gehalte (in der Regel nicht mehr als 20 Gew.-% und insbesondere nicht mehr als 10 Gew.-%) ergeben.
Durch die Reversibilität der Bindung Oberflächenmodifizierungsmittel-Teilchen (z.B. Wasserstoff-Brückenbindung oder Metall-Sauerstoff-Bindung (-Al-O-Si-, -Ti-0-Si= usw., siehe z.B. Chem. Mat. 7 (1995), 1050 - 52) kann bei Zuführung von Wärme der oben beschriebene Prozeß umgekehrt werden, so daß eine Vernetzung der Partikel unter Verfestigung erfolgen kann. Eine weitere Reaktion kann auch über entsprechend ausgewählte organische Gruppen am Oberflächenmodifizierungsmittel erfolgen (z.B. Reaktion dieser Gruppen untereinander).
So können z.B. wäßrige Sole, wie z.B. Böhmit-, TiO2-, ZrO2- oder SiO2-Sole, aber auch andere wäßrige Sole von Verbindungen der Haupt- und Nebengruppen-Metalle mit organisch modifizierten Alkoxysilanen derart umgesetzt werden, daß nach dem Abziehen des Lösungsmittels und gegebenenfalls der anschließenden Dispergierung des flüssigen Rückstandes in Wasser klare Lösungen erhalten werden, die über einen längeren Zeitraum stabil sind. Dieses Abziehen des Lösungsmittels (Alkohols) ist erforderlich, um die Reaktion der Beschichtung der Teilchen mit den organisch modifizierten Alkoxysilanen so weit zu führen, daß ein hydrolyse- und kondensationsstabiles flüssiges System entsteht. Diese Systeme können mit üblichen Verfahren beispielsweise für Beschichtungszwecke eingesetzt und je nach funktioneller Gruppe am organisch modifizierten Alkoxysilan gegebenenfalls mit Hilfe entsprechender Katalysatoren thermisch oder photochemisch gehärtet werden. Bei der thermischen Härtung bilden sich anorganische Netzwerke und bei Verwendung entsprechender organischer Gruppen parallel dazu auch organische Verknüpfungen. Die resultierenden Nanokomposite zeichnen sich durch eine hohe Transparenz aus. Wenn sie als Schicht verwendet werden, zeigen sie eine gute Haftung auf sehr vielen Substraten und außerordentlich hohe Kratzfestigkeit.
Ein Gegenstand der vorliegenden Erfindung ist demgemäß ein Verfahren zur Herstellung einer Zusammensetzung für die Bereitstellung von nanostrukturierten Formkörpern und Schichten, welches die Kontaktierung eines wäßrigen und/oder alkoholischen Sols einer Verbindung eines aus Silicium und den Haupt- und Nebengruppen-Metallen ausgewählten Elements mit über hydrolysierbare Alkoxygruppen verfügenden Spezies, die mindestens ein organisch modifiziertes Alkoxysilan oder ein davon abgeleitetes Vorkondensat einschließen, unter Bedingungen, die zu einer (Weiter)hydrolyse der Spezies führen, und die anschließende Entfernung von gebildetem und gegebenenfalls bereits ursprünglich vorhandenem Alkohol umfaßt und dadurch gekennzeichnet ist, daß der Alkohol in einer solchen Menge entfernt wird, daß der Restalkohol-Gehalt der Zusammensetzung nicht mehr als 20 Gew.-%, vorzugsweise nicht mehr als 15 Gew.-% und insbesondere nicht mehr als 10 Gew.- % ausmacht.
Gegenstand der vorliegenden Erfindung sind auch die durch das obige Verfahren erhältlichen Zusammensetzungen und die Verwendung derselben für die Herstellung von nanostrukturierten Formkörpern und mit nanostrukturierten Schichten versehenen Substraten.
Das erfindungsgemäße Verfahren unterscheidet sich von ähnlichen Verfahren des Standes der Technik insbesondere dadurch, daß ein beträchtlicher Teil des im System vorhandenen Lösungsmittels (Alkohols) aus dem System entfernt wird. Hierdurch wird das Hydrolyse- und Kondensationsgleichgewicht auf die Produktseite verschoben und eine Stabilisierung des entsprechenden flüssigen Systems erreicht. In der Regel werden mindestens 30 Gew.-%, insbesondere mindestens 50 Gew.-% und bevorzugt mindestens 70 Gew.-% der Theorie des durch Hydrolyse von Alkoxygruppen entstandenen Alkohols entfernt. Besonders bevorzugt werden mindestens 80 Gew.-% und noch bevorzugter 90 Gew.-% dieses Alkohols entfernt. In dieser Berechnung ist der gegebenenfalls ursprünglich vorhandene Alkohol (z.B. aus dem Sol-Ausgangsmaterial) nicht eingeschlossen (es wird davon ausgegangen, daß die entsprechende Alkoholmenge zu 100% entfernt wird), wohl aber die Menge an Alkohol, die bereits bei der Herstellung der gegebenenfalls eingesetzten Vorkondensate entstanden ist. Dadurch wird in der Regel erreicht, daß 10 - 80% (vorzugsweise 20 - 50%) aller anwesenden kondensationsfähigen (hydrolysierten) Gruppen des Silans eine Kondensationsreaktion eingehen. Die Entfernung des Alkohols aus dem Reaktionssystem erfolgt vorzugsweise unter vermindertem Druck, damit eine zu starke thermische Belastung des Systems vermieden werden kann. In der Regel sollte bei der Entfernung des Alkohols aus dem System eine Temperatur von 60°C, insbesondere 50°C und besonders bevorzugt 40°C, nicht überschritten werden.
Im folgenden werden die im erfindungsgemäßen Verfahren eingesetzten Ausgangsmaterialien näher beschrieben.
Bei dem eingesetzten Sol kann es sich sowohl um ein wäßriges als auch ein alkoholisches oder ein wäßrig/alkoholisches Sol handeln. Bevorzugt werden rein wäßrige Sole eingesetzt. Wird ein Sol mit Alkohol-Gehalt eingesetzt, handelt es sich bei dem Alkohol vorzugsweise um einen solchen mit 1 bis 4 Kohlenstoffatomen, d.h. Methanol, Ethanol, Propanol, Isopropanol und die Butanole.
Das erfindungsgemäße Sol enthält eine oder mehrere Verbindungen (vorzugsweise eine Verbindung) eines oder mehrerer Elemente, die aus Silicium und den Haupt- und Nebengruppen-Metallen ausgewählt sind. Bei den Haupt- und Nebengruppen- Metallen handelt es sich vorzugsweise um solche aus der dritten und vierten Haupt- gruppe (insbesondere AI, Ga, Ge und Sn) und der dritten bis fünften Nebengruppe des Periodensystems (insbesondere Ti, Zr, Hf, V, Nb und Ta). Es können jedoch auch andere Metallverbindungen zu vorteilhaften Ergebnissen führen, wie beispielsweise solche von Zn, Mo und W.
Bei den entsprechenden Elementverbindungen handelt es sich vorzugsweise um Oxide, Oxidhydrate, Sulfide, Selenide oder Phosphate, wobei Oxide und Oxidhydrate besonders bevorzugt sind. Demgemäß handelt es sich bei den im erfϊndungsgemäß eingesetzten Sol vorhandenen Verbindungen insbesondere (und bevorzugt) um SiO2, AI2O3, AIOOH (insbesondere Böhmit), TiO2, ZrO2 und Mischungen derselben.
Das im erfindungsgemäßen Verfahren eingesetzte Sol weist in der Regel einen Feststoffgehalt von 5 bis 50 Gew.-%, bevorzugt 10 bis 40 und besonders bevorzugt 15 bis 30 Gew.-%, auf. Die im erfindungsgemäßen Verfahren einzusetzenden Spezies mit hydrolysierbaren Alkoxygruppen schließen mindestens ein organisch modifiziertes Alkoxysilan bzw. ein davon abgeleitetes Vorkondensat ein. Organisch modifizierte Alkoxysilane, die erfindungsgemäß bevorzugt werden, sind solche der allgemeinen Formel (I): '4-xSi(OR)x (I) in welcher die Reste R, gleich oder verschieden voneinander (vorzugsweise gleich); gegebenenfalls substituierte (vorzugsweise unsubstituierte) Kohlenwasserstoffgruppen mit 1 bis 8, bevorzugt 1 bis 6 und besonders bevorzugt 1 bis 4 Kohlenstoffatomen darstellen (insbesondere Methyl oder Ethyl), die Reste R', gleich oder verschieden voneinander, jeweils eine gegebenenfalls substituierte Kohlenwasserstoffgruppe mit 1 bis 20 Kohlenstoffatomen darstellen und x 1 , 2 oder 3 ist.
Beispiele für Reste R' in der obigen Formel sind Alkyl-, Alkenyl-, Aryl-, Alkylaryl-, Arylalkyl-, Arylalkenyl-, Alkenylaryl-Reste (vorzugsweise mit jeweils 1 bis 12 und insbesondere 1 bis 8 Kohlenstoffatomen und cyclische Formen einschließend), die durch Sauerstoff-, Schwefel-, Stickstoffatome oder die Gruppe NR" (R" = Wasserstoff oder C^-Alkyl) unterbrochen sein können und einen oder mehrere Substituenten aus der Gruppe der Halogene und der gegebenenfalls substituierten Amino-, Amid-, Carboxy-, Mercapto-, Isocyanato-, Hydroxy-, Alkoxy-, Alkoxy- carbonyl-, Acryloxy-, Methacryloxy- oder Epoxygruppen tragen können.
Besonders bevorzugt befindet sich unter den obigen Alkoxysilanen der allgemeinen Formel (I) mindestens eines, in welchem mindestens ein Rest R' über eine Gruppierung verfügt, die eine Polyadditions- (einschließlich Polymerisations-) oder Polykondensationsreaktion eingehen kann.
Bei dieser zur Polyadditions- oder Polykondensationsreaktion befähigten Gruppierung handelt es sich vorzugsweise um eine Epoxygruppe oder (vorzugsweise aktivierte) Kohlenstoff-Kohlenstoff-Mehrfachbindungen (insbesondere Doppel- bindungen), wobei eine (Meth)acrylatgruppe ein besonders bevorzugtes Beispiel für die letztgenannten Gruppierungen ist. Demgemäß sind besonders bevorzugte organisch modifizierte Alkoxysilane der allgemeinen Formel (I) zur Verwendung in der vorliegenden Erfindung solche, in denen x 2 oder 3 und insbesondere 3 ist und ein Rest (der einzige Rest) R" für ω- Glycidyloxy-C2_6-alkyl oder ω-(Meth)acryloxy-C2.6-alkyl steht.
Konkrete Beispiele für derartige Silane sind 3-Glycidoxypropyltri(m)ethoxysilan, 3,4- Epoxybutyltrimethoxysilan und 2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilan sowie 3- (Meth)acryloxypropyltri(m)ethoxysilan und 2-(Meth)acryloxyethyltri(m)ethoxysilan. Weitere Beispiele für geeignete Verbindungen mit x = 1 oder 2 sind 3-Glycidoxy- propyldimethyl(m)ethoxysilan, 3-Glycidoxypropylmethyldi(m)ethoxysilan, 3-(Meth)- acryloxypropylmethyldi(m)ethoxysilan und 2-(Meth)acryloxyethylmethyldi(m)ethoxy- silan.
Weitere Alkoxysilane, die gegebenenfalls als solche, bevorzugt aber in Kombination mit Alkoxysilanen mit den obigen zur Polyadditions- bzw. Polykondensationsreaktion befähigten Gruppierungen eingesetzt werden können, sind beispielsweise Tetra- methoxysilan, Tetraethoxysilan, Tetra-n-propoxysilan, Tetra-n-butoxysilan, Cyclo- hexyltrimethoxysilan, Cyclopentyltrimethoxysilan, Ethyltrimethoxysilan, Phenylethyl- trimethoxysilan, Phenyltrimethoxysilan, n-Propyltrimethoxysilan, Cyclohexylmethyl- dimethoxysilan, Dimethyldimethoxysilan, Diisopropyldimethoxysilan, Phenylmethyl- dimethoxysilan, Phenylethyltriethoxysilan, Phenyltriethoxysilan, Phenylmethyldi- ethoxysilan und Phenyldimethylethoxysilan.
Insbesondere wenn den erfindungsgemäßen nanostrukturierten Formkörpern und Schichten schmutz- und wasserabweisende Eigenschaften und eine niedrige Oberflächenenergie verliehen werden sollen, können zusammen mit dem organisch modifizierten Alkoxysilan auch Silane eingesetzt werden, die über direkt an Silicium gebundene fluorierte Alkyl-Reste mit mindestens 4 Kohlenstoffatomen (und vorzugsweise mindestens 3 Fluoratomen) verfügen, wobei die Kohlenstoffatome in α- und ß-Stellung zum Silicium vorzugsweise keine Fluoratome tragen, z.B. (Tridecafluor-1 ,1 ,2,2-tetrahydrooctyl)methyldiethoxysilan, (Tridecafluor-1 ,1,2,2-tetra- hydrooctyl)triethoxysilan, (Heptadecafluor-1 , 1 ,2,2-tetrahydrodecyl)methyldiethoxy- silan und (Heptadecafluor-1 ,1 ,2,2-tetrahydrodecyl)triethoxysilan. Selbstverständlich können die Spezies mit hydrolysierbaren Alkoxygruppen, die erfindungsgemäß eingesetzt werden, zusätzlich zu den obigen Silanen (insbesondere den organisch modifizierten) auch von Silanen verschiedene Spezies umfassen. Beispiele hierfür sind Alkoxide (vorzugsweise mit C^-Alkoxygruppen) von Aluminium, Titan, Zirkonium, Tantal, Niob, Zinn, Zink, Wolfram, Germanium und Bor. Konkrete Beispiele für derartige Verbindungen sind Aluminium-sek.-butylat, Titaniso- propoxid, Titanpropoxid, Titanbutoxid, Zirkoniumisopropoxid, Zirkoniumpropoxid, Zirkoniumbutoxid, Zirkoniumethoxid, Tantalethoxid, Tantalbutoxid, Niobethoxid, Niobbutoxid, Zinn-t-butoxid, Wolfram(VI)ethoxid, Germaniumethoxid, Germanium- isopropoxid und Di-t-butoxyaluminotriethoxysilan.
Insbesondere bei den reaktionsfähigeren Alkoxiden (z.B. von AI, Ti, Zr usw.) kann es sich empfehlen, diese in kompexierter Form einzusetzen, wobei Beispiele für geeignete Komplexierungsmittel z.B. ungesättigte Carbonsäuren und ß-Dicarbonyl- Verbindungen, wie z.B. Methacrylsäure, Acetylaceton und Acetessigsäureethylester, sind. Werden von den organisch modifizierten Alkoxysilanen verschiedene Spezies mit hydrolysierbaren Alkoxygruppen eingesetzt, so beträgt das Molverhältnis der organisch modifizierten Alkoxysilane zu den davon verschiedenen Spezies vorzugsweise mindestens 2:1 , insbesondere mindestens 5:1 und besonders bevorzugt mindestens 10:1.
Wenn im erfindungsgemäßen Verfahren die bevorzugt eingesetzten organisch modifizierten Alkoxysilane mit zu einer Polykondensations- bzw. Polyadditions- reaktion befähigter Gruppierung eingesetzt werden, ist es bevorzugt, der entsprechenden Zusammensetzung auch eine Starterkomponente einzuverleiben, wobei das Molverhältnis von Starter zu organischer Gruppe in der Regel 0,15:1 nicht übersteigt.
Werden z.B. Silane der allgemeinen Formel (I) mit Epoxygruppen eingesetzt, eignen sich als Starter insbesondere Imidazole, Amine, Säureanhydride und Lewis-Säuren. Wenn Imidazole eingesetzt werden sollen, ist 1-Methylimidazol besonders bevorzugt. Andere bevorzugte Beispiele für Imidazol-Starter sind 2-Methylimidazol und 2-Phenylimidazol. Beispiele für Starter aus der Gruppe der primären, sekundären und tertiären Amine sind Ethylendiamin, Diethylentriamin, Triethylentetramin, 1 ,6-Diaminohexan, 1 ,6-Bis(dimethylamino)hexan, Tetramethyl- ethylendiamin, N,N,N',N",N"-Pentamethyldiethylentriamin, 1 ,4-Diazabicyclo[2.2.2]- octan, Cyclohexan-1 ,2-diamin, 2-(Aminomethyl)-3,3,5-trimethylcyclopentylamin, 4,4'- Diaminocyclohexylmethan, 1 ,3-Bis(aminomethyl)cyclohexan, Bis(4-amino-3-methyl- cyclohexyl)methan, 1 ,8-Diamino-p-menthan, 3-(Aminoethyl)-3,3,5-trimethylcycte- hexylamin (Isophorondiamin), Piperazin, Piperidin, Urotropin, Bis(4-aminophenyl)- methan und Bis(4-aminophenyl)sulfon. Die als Starter eingesetzten Amine können auch mit Silanen funktionalisiert sein. Beispiele hierfür sind N-(2-Aminoethyl)-3- aminopropyltriethoxysilan, N-(2-Aminoethyl)-3-aminopropyltrimethoxysilan, Amino- propyltrimethoxysilan und Aminopropyltriethoxysilan. Zusätzlich können Bortrifluorid- Addukte von Aminen, wie beispielsweise BF3-Ethylamin, eingesetzt werden. Weiter kann die organische Vernetzung mit Hilfe von Säureanhydriden (vorzugsweise in Kombination mit tertiären Aminen), wie Ethylbicyclo[2.2.1]hepten-2,3- dicarbonsäureanhydrid, Hexahydronaphthalindicarbonsäureanhydrid, Phthalsäure- anhydrid, 1 ,2-Cyclohexandicarbonsäureanhydrid, aber auch [3-(Triethoxysilyl)- propyljbernsteinsäureanhydrid bewerkstelligt werden. Zusätzlich geeignete Katalysatoren für die Vernetzung von Epoxygruppen im vorliegenden Fall sind (gegebenenfalls vorhydrolysierte) Alkoxide von Aluminium, Titan und Zirkonium, z.B. AI(OC2H4OC4H9)3, sowie organische Carbonsäuren, wie z.B. Propionsäure.
Im Falle der Verwendung von Silanen der obigen Formel (I), die über (Meth)acrylat- gruppen verfügen, kann der Zusammensetzung ein herkömmlicher thermischer Polymerisationskatalysator oder ein herkömmlicher Photopolymerisationskatalysator zugesetzt werden. Beispiele für bevorzugt eingesetzte thermische Katalysatoren sind Azobisisobutyronitrii, Diacylperoxide (z.B. Dibenzoyiperoxid und Dilauroylperoxid), Peroxydicarbonate, Alkylperester, Perketale, Alkyl- oder Arylperoxide, Ketonperoxide und Hydroperoxide.
Selbstverständlich ist es auch möglich, der Zusammensetzung rein organische Komponenten einzuverleiben, die mit reaktiven Gruppen an den Silanen der allgemeinen Formel (I) reagieren und so eine weitere Vernetzung bei der Härtung herbeiführen können. Zum Beispiel sind im Falle der Verwendung von Silanen mit (Meth)acrylatgruppe konkrete Beispiele für nützliche Vernetzungsmittel Bisphenol A- Bisacrylat, Bisphenol A-Bismethacrylat, Trimethylolpropantriacrylat, Trimethylol- propantrimethacrylat, Neopentylglycoldimethacrylat, Neopentylglycoldiacrylat, Diethylenglycoldiacrylat, Diethylenglycoldimethacrylat, Triethylenglycoldiacrylat, Triethylenglycoldimethacrylat, Tetraethylenglycoldiacrylat, Tetraethylenglycoldimeth- acrylat, Polyethylenglycoldiacrylat, Polyethylenglycoldimethacrylat, 2,2,3,3-Tetra- fluor-1 ,4-butandioldiacrylat und -dimethacrylat, 1 ,1 ,5,5-Tetrahydroperfluorpentyl-1 ,5- diacrylat und -dimethacrylat, Hexafluorbisphenol A-Diacrylat und -Dimethacrylat, Octafluorhexandiol-1 ,6-diacrylat und -dimethacrylat, 1 ,3-Bis(3-methacryloxypropyl)- tetrakis(trimethylsiloxy)disiloxan, 1 ,3-Bis(3-acryloxypropyl)tetrakis(trimethylsiloxy)di- siloxan, 1 ,3-Bis(3-methacryloxypropyl)tetramethyldisiloxan und 1 ,3-Bis(3-acryloxy- propyl)tetramethyldisiloxan.
Werden nanostrukturierte Formkörper und Schichten mit hydrophilen Eigenschaften gewünscht, ist es zum Beispiel möglich, der erfindungsgemäßen Zusammensetzung zusätzlich Komponenten einzuverleiben, die zu derartigen hydrophilen Eigenschaften führen. Hierzu können kovalent an die anorganische Matrix anbindbare Komponenten (z.B. eine Komponente mit freier Hydroxygruppe, wie (Meth)acryi- säure-2-hydroxyethylester) oder eine frei in der Matrix bewegliche hydrophile Komponente (z.B. ein Tensid) oder eine Kombination der beiden verwendet werden.
Bei den erfindungsgemäß einzusetzenden Bedingungen, die zu einer (Weiter)- hydrolyse der Spezies mit hydrolysierbaren Alkoxygruppen bzw. der entsprechenden Vorkondensate führen, handelt es sich vorzugsweise um die Anwesenheit von mindestens 0,5 Mol H2O pro hydrolysierbarer Alkoxygruppe. Diese Wassermenge wird in der Regel bereits durch das im Sol vorhandene Wasser bereitgestellt. Ist dies nicht der Fall, sollte die entsprechende Wassermenge separat zugesetzt werden.
Noch bevorzugter ist es, wenn ein Katalysator für die Hydrolyse (und Kondensation) der Alkoxygruppen anwesend ist. Bevorzugte Katalysatoren für diesen Zweck sind saure Katalysatoren, z.B. wäßrige (Mineral)säuren wie z.B. HCI. Das Mengenverhältnis der eingesetzten Ausgangsmaterialien (Sol und Spezies mit hydrolysierbaren Alkoxygruppen) wird vorzugsweise so gewählt, daß im endgültigen Formkörper bzw. in der endgültigen Schicht (nach Härtung) der vom Sol herrührende Feststoffgehalt 1 bis 50 Gew.-% und insbesondere 5 bis 30 Gew.-% des Formkörpers bzw. der Schicht ausmacht.
Das Verfahren der Kontaktierung des wäßrigen und/oder alkoholischen Sols mit den Spezies mit hydrolysierbaren Alkoxygruppen unter Bedingungen, die zu einer Hydrolyse der Spezies mit Alkoxygruppen führen, ist dem Fachmann geläufig und wird in den folgenden Beispielen weiter erläutert. Nach der Entfernung des Lösungsmittels (Alkohols) aus der Zusammensetzung (die in der Regel dazu führt, daß 10 bis 80% und insbesondere 20 bis 50% der hydrolysierbaren Ausgangs- Alkoxygruppen eine Kondensationsreaktion eingegangen sind) kann es sich für bestimmte Zwecke als vorteilhaft erweisen, die resultierende Zusammensetzung durch Zugabe von Wasser auf eine geeignete Viskosität einzustellen. Bevorzugt liegt die Viskosität der Zusammensetzung, insbesondere für Beschichtungszwecke, unter 5000 mPas, insbesondere unter 3000 mPas.
Zur Herstellung von nanostrukturierten Formkörpern und mit nanostrukturierten Schichten versehenen Substraten mit Hilfe der erfindungsgemäßen Zusammensetzung bringt man diese entweder in eine Form ein oder auf ein Substrat auf und führt anschließend - gegebenenfalls nach vorangehender Trocknung bei Raumtemperatur bzw. leicht erhöhter Temperatur, insbesondere im Falle der Herstellung von Schichten - eine thermische (und gegebenenfalls zusätzlich eine photo- chemische) Härtung durch. Im Falle der Herstellung von Schichten können alle herkömmlichen Beschichtungsverfahren eingesetzt werden, z.B. Tauchen, Fluten, Walzen, Sprühen, Rakeln, Schleudern oder Siebdruck.
Die Aushärtetemperatur liegt in der Regel im Bereich von 90°C bis 300°C, insbesondere 110°C bis 200°C, im Falle der Schichtherstellung insbesondere auch abhängig von der Temperaturbeständigkeit des zu beschichtenden Substrats. Wie bereits eingangs erwähnt, eignet sich die erfindungsgemäße Zusammensetzung zur Beschichtung der verschiedensten Substrate und zeigt auf diesen auch ohne Oberflächenbehandlung in vielen Fällen eine sehr gute Haftung sowie eine außerordentlich hohe Kratzfestigkeit. Besonders bevorzugte Substrate für die Schicht- herstellung sind Glas, nicht transparente und transparente Kunststoffe und Metalle. Beispiele für geeignete Kunststoffe sind Polycarbonat, Poly(meth)acrylate, Polystyrol Polyvinylchlorid, Polyethylenterephthalat, Polypropylen und Poiyethylen, während ein bevorzugtes Metall-Substrat Aluminium ist.
Demgemäß eignen sich die erfindungsgemäß zugänglichen Zusammensetzungen für eine Vielzahl von Anwendungen. Beispiele hierfür sind insbesondere die folgenden:
Beschichtung zur Erhöhung der Kratz- und Abriebfestigkeit auf:
- Decklacken von Haushaltsgegenständen und Transportmitteln
- transparenten und nicht-transparenten Polymerbauteilen
- metallischen Untergründen
- keramischen und Glasuntergründen
Beschichtung zur Verbesserung der Abrieb- und Korrosionsbeständigkeit von Edel- und Nicht-Edelmetallen:
- Mg: Motorblöcke, Brillengestelle, Sportgeräte, Felgen, Getriebegehäuse - AI: Transportmittel-Karosserien, Felgen, Fassadenelemente, Möbel, Wärmetauscher
- Stahl: Preßformen zur Bauteilherstellung, Sanitärarmaturen
- Zn: Dachkonstruktionen, Schußwaffen, Airbag-Beschleunigungsmassen
- Cu: Türbeschläge, Wärmetauscher, Waschbecken
Beschichtungen zur Verbesserung des Reinigungsverhaltens:
Hinsichtlich Beispielen für diese Anwendung sei auf die DE-A-19544763 verwiesen. Beschichtungen zur Verbesserung der Bauteilentformung und Verringerung der Anhaftung:
- Metall- und Polymertransportbänder - Walzen für Polymerisationsreaktionen
- Preßformen zur Herstellung von Polystyrol-Bauteilen -
- Antigraffϊti auf Decklacken und Fassaden
Beschichtungen für Antibeschlageffekt:
- Transportmittelverglasung
- Brillengläser
- Spiegel (z.B. Badezimmer-, Kfz-Rück- und Kosmetikspiegel)
- optische Bauteile (z.B. Spektroskopspiegel und Laserprismen) - Elemente zur Verkapselung (z.B. Gehäuse für meteorologische Geräte)
Beschichtungen für Antireflexeigenschaften:
- Polymer- oder Glasabdeckungen von Anzeigeelementen (z.B. Kfz-Armaturen- bretter, Schaufensterverglasungen)
Beschichtungen für lebensmitteltechnische Anwendungen:
- Diffusionssperrschichten (Verhinderung der Diffusion von z.B. Gasen, Acetaldehyd, Blei- oder Alkaliionen, Geruchs- und Geschmacksstoffen)
Beschichtung von Hohlglasartikeln:
- Beschichtungen von Getränkeflaschen zur Erhöhung des Berstdruckes - Einfärbung von farblosem Glas mittels einer Beschichtung Herstellung von optischen Formkörpern und selbsttragenden Folien:
- Nanokomposit-Brillengläser
- kratz- und abriebfeste Folien für Verpackungen
Die folgenden Beispiele dienen der weiteren Erläuterung der vorliegenden Erfindung. In allen diesen Beispielen wurde das durch die Hydrolyse entstandene Lösungsmittel (Ethanol) zu mindestens etwa 95% entfernt.
Beispiel 1
27,8 g (0,1 Mol) (3-Glycidyloxypropyl)triethoxysilan (GLYEO) wurden mit 27,8 g Kieselsol (30 gew.-%-ige wäßrige Lösung von SiO2, Levasil® 200S der Firma Bayer) versetzt. Das Gemisch wurde anschließend 5 Stunden bei Raumtemperatur gerührt. Darauf wurde das durch Hydrolyse entstandene Ethanol destillativ entfernt (Rotationsverdampfer, maximale Badtemperatur 40°C). Der Rückstand wurde mit 1 ,11 g (0,0005 Mol) N-(2-Aminoethyl)-3-aminopropyltrimethoxysilan (DIAMO) versetzt und eine Stunde bei Raumtemperatur gerührt.
Mit dem resultierenden System wurden Polycarbonat- und Aluminium-Platten sowie CR-39-Linsen beschichtet. Die Polycarbonat-Platten wurden durch Coronaentladung vorbehandelt. Die beschichteten Polycarbonat- und Aluminium-Platten wurden nach 30-minütiger Aufbewahrung bei Raumtemperatur 4 Stunden bei 130°C ausgehärtet. Die CR-39-Linsen wurden nach 30-minütiger Aufbewahrung bei Raumtemperatur 4 Stunden bei 90°C ausgehärtet.
Beispiel 2
Beispiel 1 wurde wiederholt, jedoch wurden statt DIAMO 3,05 g (0,001 Mol) [3-(Tri- ethoxysilyl)propyl]bernsteinsäureanhydrid (GF20) eingesetzt. Die Untersuchung der Abriebbeständigkeit von mit dieser Zusammensetzung beschichteten Polycarbonat- Platten ergab bem Taber-Abrasions-Test (Rollenmaterial CS 10F, 1000 Zyklen, Rollenlast 500 g) einen Streulichtverlust von 7%. Beispiel 3
Beispiel 1 wurde wiederholt, jedoch wurde statt des Kieselsols eine Böhmit- Suspension (2,78 g Disperal® P3 in 25 g destilliertem Wasser) verwendet.
Beispiel 4 -
Beispiel 3 wurde wiederholt, jedoch wurden als Katalysator statt DIAMO 3,78 g (0,01 Mol) AI(OEtOBu)3 verwendet.
Beispiel 5
27,8 g (0,1 Mol) GLYEO wurden mit 27,8 g des in Beispiel 1 beschriebenen Kieselsols versetzt. Das Gemisch wurde anschließend 5 Stunden bei Raumtemperatur gerührt, worauf sich eine Entfernung des durch Hydrolyse entstandenen Ethanols wie in Beispiel 1 beschrieben anschloß. Der Rückstand wurde mit 2,84 g (0,01 Mol) TiO2-haltigem Sol, das wie im folgenden beschrieben hergestellt worden war, versetzt und eine Stunde bei Raumtemperatur gerührt.
Zur Herstellung des TiO2-haltigen Sols wurden 28,42 g (0,1 Mol) Tetraisopropylortho- titanat (Ti(OiPr)4) in 60 ml Isopropanol gelöst und mit konzentrierter Salzsäure im Molverhältnis 1 :1 versetzt. Nach 2-stündigem Rühren bei Raumtemperatur wurden die flüchtigen Bestandteile abrotiert und der Rückstand wurde in 70 ml Wasser aufgenommen.
Beispiel 6
139,0 g (0,5 Mol) GLYEO wurden mit 62,4 g (0,3 Mol) Tetraethoxysilan (TEOS) gemischt. Das Reaktionsgemisch wurde mit einer HCI-sauren Böhmit-Suspension (12,82 g nanoskaliges Böhmitpulver in 128,20 g 0,1 n HCI-Lösung) versetzt und 5 Stunden bei Raumtemperatur gerührt. Das durch Hydrolyse entstandene Ethanol wurde wie in Beispiel 1 beschrieben destillativ entfernt. Darauf wurden der Mischung 3,78 g (0,01 Mol) AI(OEtOBu)3 zugesetzt, woran sich ein 1 -stündiges Rühren bei Raumtemperatur anschloß.
Durch Coronaentladung vorbehandelte Polycarbonat-Platten und Plasma- vorbehandelte CR-39-Linsen wurden mit der so hergestellten Zusammensetzung beschichtet und eine Stunde thermisch bei 130° bzw. 90°C ausgehärtet. ~
Beispiel 7
29,0 g (0,1 Mol) 3-Methacryloxypropyltriethoxysilan wurden mit 29,0 g des in Beispiel 1 beschriebenen Kieselsols versetzt und 16 Stunden bei Raumtemperatur gerührt. Anschließend wurde die Mischung mit 13,0 g (0,1 Mol) Methacrylsäure-2-hydroxy- ethylester (als hydrophiler Komponente) versetzt und 30 Minuten bei Raumtemperatur gerührt. Daran schloß sich eine destillative Entfernung (wie in Beispiel 1 beschrieben) des durch Hydrolyse entstandenen Alkohols aus dem Reaktionsgemisch an. Dem eingeengten Reaktionsgemisch wurden 0,48 g Dibenzoylperoxid (1 Mol-% bezogen auf vorhandene Doppelbindungen) zugesetzt.
Die so hergestellte Zusammensetzung wurde auf durch Coronaentladung vorbehandelte Polymethylmethacrylat-Platten aufgetragen und 4 Stunden thermisch bei 95°C gehärtet.
Beispiel 8
55,6 g 3-Glycidyloxypropyltriethoxysilan wurden mit 0,51 g Tridecafluor-1 ,1 ,2,2-tetra- hydrooctyl-1-triethoxysilan versetzt und gerührt. Die resultierende Mischung wurde mit 10,85 g 0,1 n HCI (entsprechend der stöchiometrischen Wassermenge für die Hydrolyse der Alkoxysilane) versetzt. Nach 24-stündigem Rühren bei Raumtemperatur wurden 55,6 g des in Beispiel 1 beschriebenen Kieselsols dazu- gegeben und es wurde 4 Stunden bei Raumtemperatur gerührt. Der durch die Hydrolyse entstandene Alkohol wurde wie in Beispiel 1 beschrieben am Rotationsverdampfer entfernt (abrotierte Menge 26,4 g). Darauf wurden 2,22 g DIAMO zugesetzt und es wurde eine weitere Stunde bei Raumtemperatur gerührt. Beispiel 9
278,42 g GLYEO wurden mit 54 g 0,1 n HCI unter Rühren 5 Stunden mit 10 g eines Reaktionsproduktes aus 3-lsocyanatopropyltriethoxysilan und Polyethylenglycol-600 bei Raumtemperatur cohydrolysiert. Das bei der Vorhydrolyse entstandene Ethanol wurde am Rotationsverdampfer abgezogen (Badtemperatur 25°C, 30 - 40 mbar). Anschließend wurden in dieses Gemisch 926 g des in Beispiel 1 beschriebenen Kieselsols eingerührt, worauf 16 Stunden bei Raumtemperatur gerührt wurde. Darauf wurden 11 ,12 g DIAMO als Starter zugesetzt und es wurde eine weitere Stunde bei Raumtemperatur gerührt. Unter starkem Rühren wurden dann 20 g eines nichtionischen Tensids auf Silicon-Basis zugesetzt.
Mit der resultierenden Zusammensetzung beschichtete Floatglas-Substrate wurden im Trockenschrank 4 Stunden bei 130°C ausgehärtet.
Beispiel 10
Beispiel 1 wurde wiederholt, aber statt DIAMO wurden 1 ,32 g (0,005 Mol) Trimethoxysilylpropyldiethylentriamin (TRIAMO) eingesetzt.
Beispiel 11
Beispiel 1 wurde wiederholt, jedoch wurden statt DIAMO 0,74 g (0,01 Mol) Propion- säure als Starter verwendet.
Beispiel 12
Beispiel 1 wurde wiederholt, jedoch wurden statt DIAMO 3,87 g (0,01 Mol) AI(OEtOBu)3 als Starter verwendet. Beispiel 13
Beispiel 1 wurde wiederholt, jedoch wurden statt DIAMO 0,41 g (0,005 Mol) 1- Methylimidazol als Starter verwendet.
Beispiel 14
Beispiel 1 wurde wiederholt, jedoch wurden statt DIAMO 5,27 g (0,01 Mol) einer Mischung verwendet, die durch Vereinigen von 3-Aminopropyltriethoxysilan (AMEO) mit GF20 im Molverhältnis 1 :1 unter Eiskühlung erhalten worden war.
Beispiel 15
Beispiel 6 wurde wiederholt, jedoch wurden statt der HCI-sauren Böhmit-Suspension 95,5 g des in Beispiel 1 beschriebenen Kieselsols verwendet und die Menge an Katalysator wurde verfünffacht.
Durch Coronaentladung vorbehandelte Polycarbonat-Platten und Plasma- vorbehandelte CR-39-Linsen wurden mit der resultierenden Zusammensetzung beschichtet und eine Stunde thermisch bei 130°C bzw. 90°C ausgehärtet.
Beispiel 16
27,8 g (0,1 Mol) GLYEO wurden mit 13,5 g 0,1 n HCI versetzt und 2 Stunden bei Raumtemperatur gerührt. Zu diesem Vorhydrolysat wurden 27,8 g Organosol (30 Gew.-% SiO2 in Isopropanol, Bayer PPL 6454-6456) gegeben und 5 Stunden bei Raumtemperatur gerührt. Anschließend wurden das durch Hydrolyse entstandene Ethanol sowie das Lösungsmittel Isopropanol destillativ entfernt. Der Rückstand wurde mit 18,9 g H2O (pH 3,2) versetzt. Anschließend wurden 1 ,11 g (0,0005 Mol) DIAMO unter starkem Rühren zugegeben und es wurde 1 Stunde bei Raumtemperatur gerührt. Mit der resultierenden Zusammensetzung wurden Polycarbonat- und Aluminium- Platten sowie CR-39-Linsen beschichtet. Die Polycarbonat-Platten wurden durch Coronaentladung vorbehandelt. Die beschichteten Polycarbonat- und Aluminium- Platten wurden nach 30-minütiger Aufbewahrung bei Raumtemperatur 4 Stunden bei 130°C ausgehärtet. Die CR-39-Linsen wurden nach 30 Minuten bei Raumtemperatur 4 Stunden bei 90°C ausgehärtet. -
Beispiel 17
139,0 g (0,5 Mol) GLYEO wurden mit 62,4 g (0,3 Mol) TEOS gemischt und stöchiometrisch mit 0,1 n Salzsäure versetzt. Das Reaktionsgemisch wurde 16 Stunden bei Raumtemperatur gerührt. Anschließend wurde das durch Hydrolyse und Kondensation entstandene Ethanol destillativ entfernt. Das eingeengte Reaktionsgemisch wurde nun mit einer HCI-sauren Böhmit-Suspension (12,82 g Böhmit-Pulver in 128,8 g 0,1 n HCI-Lösung) versetzt und 3 Stunden bei Raumtemperatur gerührt. Der Mischung wurden dann tropfenweise 3,78 g (0,01 Mol) AI(OEtOBu)3 zugesetzt. Das so hergestellte Beschichtungsmaterial wurde noch ca. 4 Stunden bei Raumtemperatur gerührt.
Corona-vorbehandelte Polycarbonat-Platten bzw. Plasma-vorbehandelte CR-39- Linsen wurden beschichtet und eine Stunde thermisch bei 130°C bzw. 90°C ausgehärtet.
Beispiel 18
139,0 g (0,5 Mol) GLYEO wurden mit 62,4 g (0,3 Mol) TEOS gemischt und stöchiometrisch mit 0,1 n Salzsäure versetzt. Das Reaktionsgemisch wurde 16 Stunden bei Raumtemperatur gerührt. Anschließend wurde das durch Hydrolyse und Kondensation entstandene Ethanol destillativ entfernt. Der eingeengten Reaktions- mischung wurden 30 Gew.-% angesäuerte Kieselsol-Lösung (siehe Beispiel 1) zugesetzt und 3 Stunden bei Raumtemperatur gerührt. Der Mischung wurden dann tropfenweise 18,9 g (0,05 Mol) AI(OEtOBu)3 zugesetzt. Das so hergestellte Beschichtungsmaterial wurde noch ca. 4 Stunden bei Raumtemperatur gerührt. Corona-vorbehandelte Polycarbonat-Platten bzw. Plasma-vorbehandelte CR-39- Linsen wurden beschichtet und eine Stunde thermisch bei 130°C bzw. 90°C ausgehärtet.
Beispiel 19
27,8 g (0,1 Mol) GLYEO wurden mit 0,51 g Fluorsilan (siehe Beispiel 8; 1 Mol-% bezüglich GLYEO) versetzt und gerührt. Die Mischung wurde mit 5,46 g 0,1 n HCI, die der stöchiometrischen Menge an Wasser zur Hydrolyse entsprechen, versetzt. Das Gemisch wurde anschließend 24 Stunden bei Raumtemperatur gerührt. Danach wurde der durch Hydrolyse und Kondensation entstandene Alkohol abrotiert. Der Rückstand wurde mit 3,87 g (0,01 Mol) AI(OEtOBu)3 und 27,8 g angesäuertem Kieselsol (siehe Beispiel 1) versetzt und 3 Stunden bei Raumtemperatur gerührt.
Beispiel 20
27,8 g (0,1 Mol) GLYEO wurden mit 0,255 g Fluorsilan (siehe Beispiel 8; 0,5 Mol-% bezüglich GLYEO) versetzt und gerührt. Die Mischung wurde mit 5,43 g 0,1 n HCI, die der stöchiometrischen Menge an Wasser zur Hydrolyse entsprechen, versetzt. Nach 24 Stunden Rühren bei Raumtemperatur wurde der durch die Hydrolyse entstandene Alkohol abrotiert. Die abrotierte Menge von ca. 13 g entspricht ca. 95%. Der Rückstand wurde mit einer Böhmit-Suspension (2,78 g Disperal® P3 in 25 ml 0,1 n Salzsäure-Lösung) dispergiert, mit 1 ,89 g (0,005 Mol) AI(OEtOBu)3 versetzt und eine Stunde bei Raumtemperatur gerührt.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer Zusammensetzung für die Bereitstellung von nanostrukturierten Formkörpern und Schichten, umfassend die Kontaktierung eines wäßrigen und/oder alkoholischen Sols einer Verbindung eines aus
Silicium und den Haupt- und Nebengruppen-Metallen ausgewählten Elements mit über hydrolysierbare Alkoxygruppen verfügenden Spezies, die mindestens ein organisch modifiziertes Alkoxysilan oder ein davon abgeleitetes Vorkondensat einschließen, unter Bedingungen, die zu einer (Weiter)hydrolyse der Spezies führen, und die anschließende Entfernung von gebildetem und gegebenenfalls bereits ursprünglich vorhandenem Alkohol, dadurch gekennzeichnet, daß der Alkohol in einer solchen Menge entfernt wird, daß der Restalkohol-Gehalt in der Zusammensetzung nicht mehr als 20 Gew.-% ausmacht.
2. Verfahren nach Anspruch 1 , in welchem die entfernte Alkohol-Menge die Menge ist, die zusätzlich zur Gesamtmenge des gegebenenfalls bereits ursprünglich vorhandenen Alkohols mindestens 30 Gew.-% und insbesondere mindestens 50 Gew.-% des Alkohols entspricht, der durch Hydrolyse aller ursprünglich vorhandenen Alkoxygruppen theoretisch gebildet werden kann.
3. Verfahren nach irgendeinem der Ansprüche 1 und 2, in welchem der Zusammensetzung nach der Entfernung des Alkohols Wasser zur Einstellung einer geeigneten Viskosität zugesetzt wird.
4. Verfahren nach irgendeinem der Ansprüche 1 bis 3, in welchem ein wäßriges Sol eingesetzt wird.
5. Verfahren nach irgendeinem der Ansprüche 1 bis 4, in welchem die das Sol aufbauenden Verbindungen von mindestens einem aus Silicium und den Metallen der dritten und vierten Hauptgruppe und der dritten bis fünften
Nebengruppe des Periodensystems ausgewählten Element, und insbesondere von Si, AI, Sn, Ti oder Zr, abgeleitet sind.
6. Verfahren nach irgendeinem der Ansprüche 1 bis 5, in welchem es sich bei den das Sol aufbauenden Verbindungen um mindestens ein Oxid(hydrat), Sulfid, Selenid oder Phosphat, insbesondere um ein Oxid(hydrat), handelt.
7. Verfahren nach irgendeinem der Ansprüche 1 bis 6, in welchem es sich bei dem Sol um ein solches von Si02, AI2O3, AIOOH, TiO2 und/oder ZrO2 handelt. ~
8. Verfahren nach irgendeinem der Ansprüche 1 bis 7, in welchem das organisch modifizierte Alkoxysilan mindestens eine Verbindung der allgemeinen Formel (I) einschließt:
R'4.xSi(OR)x (I) in welcher die Reste R gegebenenfalls substituierte Kohlenwasserstoffgruppen mit 1 bis 8 Kohlenstoffatomen darstellen, die Reste R', gleich oder verschieden voneinander, jeweils eine gegebenenfalls substituierte Kohlenwasserstoff- gruppe mit 1 bis 20 Kohlenstoffatomen darstellen und x 1 , 2 oder 3 ist.
9. Verfahren nach Anspruch 8, in welchem die Reste R C^-Alkylgruppen, insbesondere Methyl und Ethyl, repräsentieren, x 2 oder 3, insbesondere 3, ist und der bzw. mindestens einer der Rest(e) R' über eine Gruppierung verfügt, die zu einer Polyadditions- oder Polykondensationsreaktion befähigt ist.
10. Verfahren nach Anspruch 9, in welchem die zur Polyadditions- oder Polykondensationsreaktion befähigte Gruppierung eine Epoxygruppe oder eine vorzugsweise aktivierte Kohlenstoff-Kohlenstoff-Mehrfachbindung, ins- besondere eine (Meth)acrylatgruppe, ist.
11. Verfahren nach irgendeinem der Ansprüche 8 bis 10, in welchem es sich bei dem bzw. mindestens einem der Rest(e) R' um eine ω-Glycidoxy-C2.6- alkylgruppe oder eine ω-(Meth)acryloxy-C2^-alkylgruppe handelt.
12. Verfahren nach irgendeinem der Ansprüche 9 bis 11 , in welchem der Zusammensetzung ein Katalysator für die Polyadditions- bzw. Polykondensationsreaktion zugesetzt wird.
13. Verfahren nach irgendeinem der Ansprüche 1 bis 12, in welchem die Bedingungen, die zu einer (Weiter)hydrolyse der über hydrolysierbare Alkoxygruppen verfügenden Spezies führen, die Anwesenheit von (a) mindestens 0,5 Mol H2O pro hydrolysierbarer Alkoxygruppe und (b) einem vorzugsweise sauren Katalysator für die Hydrolysereaktion einschließen.
14. Verfahren nach irgendeinem der Ansprüche 1 bis 13, bei dem das Sol in einer solchen Menge eingesetzt wird, daß im fertiggestellten Formkörper bzw. in der fertiggestellten Schicht der Sol-Feststoffgehalt 1 bis 50 Gew.-% und insbesondere 5 bis 30 Gew.-% des Formkörpers bzw. der Schicht ausmacht.
15. Zusammensetzung für die Bereitstellung von nanostrukturierten Formkörpern und Schichten, erhältlich gemäß dem Verfahren nach irgendeinem der Ansprüche 1 bis 14.
16. Verfahren zur Herstellung von nanostrukturierten Formkörpern und mit nanostrukturierten Schichten versehenen Substraten, bei dem man eine gemäß dem Verfahren nach irgendeinem der Ansprüche 1 bis 14 hergestellte Zusammensetzung (a) in eine Form einbringt; oder
(b) auf ein Substrat aufbringt; und anschließend eine thermische und gegebenenfalls zusätzlich eine photochemische Härtung durchführt.
17. Verfahren nach Anspruch 16, bei dem es sich bei dem Substrat um ein solches aus Glas, Kunststoff oder Metall handelt.
18. Nanostrukturierte Formkörper und mit nanostrukturierten Schichten versehene Substrate, erhältlich nach dem Verfahren gemäß irgendeinem der Ansprüche 16 und 17.
19. Verwendung der nanostrukturierten Formkörper und mit nanostrukturierten Schichten versehenen Substrate nach Anspruch 18 für optische Zwecke.
PCT/EP1999/002396 1998-04-09 1999-04-08 Nanostrukturierte formkörper und schichten und deren herstellung über stabile wasserlösliche vorstufen WO1999052964A2 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE59911048T DE59911048D1 (de) 1998-04-09 1999-04-08 Nanostrukturierte formkörper und schichten und deren herstellung über stabile wasserlösliche vorstufen
HU0101496A HUP0101496A3 (en) 1998-04-09 1999-04-08 Nanostructured forms and layers and method for producing them using stable water-soluble precursors
AT99920614T ATE282058T1 (de) 1998-04-09 1999-04-08 Nanostrukturierte formkörper und schichten und deren herstellung über stabile wasserlösliche vorstufen
AU38138/99A AU3813899A (en) 1998-04-09 1999-04-08 Nanostructured forms and layers and method for producing them using stable water-soluble precursors
MXPA00009735A MXPA00009735A (es) 1998-04-09 1999-04-08 Formas y capas nanoestructuradas y metodo para producirlas usando precursores solubles en agua, estables..
PL343590A PL213503B1 (pl) 1998-04-09 1999-04-08 Sposób wytwarzania kompozycji do przygotowywania nanostrukturalnych ksztaltek i warstw
EP99920614.7A EP1086162B2 (de) 1998-04-09 1999-04-08 Nanostrukturierte formkörper und schichten und deren herstellung über stabile wasserlösliche vorstufen
CA002327312A CA2327312A1 (en) 1998-04-09 1999-04-08 Nanostructured forms and layers and method for producing them using stable water-soluble precursors
BR9909521-1A BR9909521A (pt) 1998-04-09 1999-04-08 Formas e camadas nano estruturadas e método para a produção das mesmas com a utilização de precursores estáveis solúveis em água
JP2000543519A JP4597368B2 (ja) 1998-04-09 1999-04-08 ナノ構造の成形体及び層並びに安定な水溶性前駆物質を用いたその製造方法
US09/647,971 US6620514B1 (en) 1998-04-09 1999-04-08 Nanostructured forms and layers and method for producing them using stable water-soluble precursors
NO20004877A NO331461B1 (no) 1998-04-09 2000-09-28 Nanostrukturerte formlegemer og sjikt og fremgangsmate for fremstilling av disse ved anvendelse av stabile, vannloselige forlopere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19816136A DE19816136A1 (de) 1998-04-09 1998-04-09 Nanostrukturierte Formkörper und Schichten und deren Herstellung über stabile wasserlösliche Vorstufen
DE19816136.0 1998-04-09

Publications (2)

Publication Number Publication Date
WO1999052964A2 true WO1999052964A2 (de) 1999-10-21
WO1999052964A3 WO1999052964A3 (de) 2000-01-20

Family

ID=7864255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/002396 WO1999052964A2 (de) 1998-04-09 1999-04-08 Nanostrukturierte formkörper und schichten und deren herstellung über stabile wasserlösliche vorstufen

Country Status (17)

Country Link
US (1) US6620514B1 (de)
EP (1) EP1086162B2 (de)
JP (1) JP4597368B2 (de)
KR (1) KR20010042528A (de)
CN (1) CN1145659C (de)
AT (1) ATE282058T1 (de)
AU (1) AU3813899A (de)
BR (1) BR9909521A (de)
CA (1) CA2327312A1 (de)
CZ (1) CZ20003683A3 (de)
DE (2) DE19816136A1 (de)
ES (1) ES2232135T5 (de)
HU (1) HUP0101496A3 (de)
MX (1) MXPA00009735A (de)
NO (1) NO331461B1 (de)
PL (1) PL213503B1 (de)
WO (1) WO1999052964A2 (de)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022039A1 (de) * 1998-10-09 2000-04-20 WKP Württembergische Kunststoffplatten-Werke GmbH & Co. KG Schichtwerkstoff und verfahren zum herstellen eines solchen
WO2002050191A2 (de) * 2000-12-20 2002-06-27 Nano-X Gmbh Lösungsmittelarme sol-gel-systeme
US6630205B2 (en) * 1999-12-03 2003-10-07 Institut Für Neue Materialien Gem. Gmbh Self-crosslinking compositions based on fluorine-containing polycondensates
WO2003095571A1 (de) * 2002-05-11 2003-11-20 Basf Coatings Ag Wässrige dispersion von anorganischen nanopartikeln, verfahren zu ihrer herstellung und ihre verwendung
WO2003095532A1 (de) * 2002-05-11 2003-11-20 Basf Coatings Ag Wässrige dispersion von anorganischen nanopartikeln, verfahren zu ihrer herstellung und ihre verwendung
WO2004087339A1 (de) * 2003-03-31 2004-10-14 Behr Gmbh & Co. Kg Wärmetauscher und verfahren zur oberflächenbehandlung eines solchen
WO2004099220A1 (de) * 2003-05-08 2004-11-18 Basf Coatings Ag Epoxyfunktionelle silane, verfahren zu ihrer herstellung und ihre verwendung
WO2005042647A1 (de) * 2003-11-03 2005-05-12 Basf Coatings Ag Strukturviskose, wässrige dispersionen, verfahren zu ihrer herstellung und ihre verwendung
WO2006010388A1 (en) * 2004-07-29 2006-02-02 Degussa Ag Aqueous silane nanocomposites
WO2007051662A1 (de) * 2005-11-03 2007-05-10 Evonik Degussa Gmbh Herstellung von beschichteten substraten
DE102008031360A1 (de) 2008-07-04 2010-01-14 K+S Ag Verfahren zum Herstellen von aushärtbaren Massen, enthaltend grob- und/oder nanoskalige, gecoatete, desagglomerierte und bevorzugt funktionalisierte Magnesiumhydroxidpartikel, sowie von ausgehärteten thermoplastischen oder duroplastischen Polymeren bzw. Kompositen, enthaltend desagglomerierte und homogen verteilte Magnesiumhydroxidfüllstoffpartikel
US7749606B2 (en) * 2004-03-31 2010-07-06 Nippon Sheet Glass Company, Limited Article with organic-inorganic composite film and process for producing the same
US7846409B2 (en) 2003-12-06 2010-12-07 Solvay Infra Bad Hoenningen Gmbh Deagglomerated barium sulfate
US8022119B2 (en) 2005-03-18 2011-09-20 Basf Coatings Ag Epoxy and silane group-containing oligomers and polymers and a method for the production and the use thereof
US8034872B2 (en) 2003-11-17 2011-10-11 Basf Coatings Gmbh Oligomers and polymers containing hydrolysates and/or condensates of epoxide groups and silane groups, method for their production and use thereof
WO2012013663A2 (en) 2010-07-28 2012-02-02 Basf Se Use of perlite based effect pigments for finishes with antique, or patina appearance
US8114513B2 (en) 2006-04-27 2012-02-14 Sachtleben Chemie Gmbh UV-curable undercoat
US9376544B2 (en) 2001-02-28 2016-06-28 Evonik Hanse Gmbh Silicon dioxide dispersion
DE10221009B4 (de) * 2002-05-11 2016-10-13 Basf Coatings Gmbh Beschichtungsstoffe, deren Verwendung, Verfahren zur Herstellung von Beschichtungen und transparente Beschichtungen
EP3978038A1 (de) 2020-10-04 2022-04-06 Elke Münch Durch eine temperaturdifferenz betreibbare, mobile vorrichtung zur reinigung und desinfizierung von raumluft und eine testvorrichtung hierfür
DE102020125921A1 (de) 2020-10-04 2022-04-07 Elke Münch Durch eine Temperaturdifferenz betreibbare, mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
DE102020125919A1 (de) 2020-10-04 2022-04-07 Elke Münch Durch eine Temperaturdifferenz betreibbare, mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft und eine Testvorrichtung hierfür
DE102020125920A1 (de) 2020-10-04 2022-04-07 Elke Münch Durch eine Temperaturdifferenz betreibbare, mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
DE102020125922A1 (de) 2020-10-04 2022-04-07 Elke Münch Mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
EP3981442A1 (de) 2020-10-04 2022-04-13 Elke Münch Durch eine temperaturdifferenz betreibbare, mobile vorrichtung zur reinigung und desinfizierung von raumluft
DE102022001868A1 (de) 2022-05-29 2023-11-30 Elke Hildegard Münch Biozid beschichtete, retikulierte Schaumstoffe aus Kunststoff, Verfahren zu ihrer Herstellung und ihre Verwendung

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909894A1 (de) 1999-03-06 2000-09-07 Basf Coatings Ag Sol-Gel-Überzug für einschichtige oder mehrschichtige Lackierungen
DE19940858A1 (de) 1999-08-27 2001-03-01 Basf Coatings Ag Sol-Gel-Überzug für einschichtige oder mehrschichtige Lackierungen
DE10018671C2 (de) * 2000-04-14 2002-09-26 Nanogate Technologies Gmbh Verfahren zur Erzeugung einer hydrophoben Oberfläche von Gegenständen aus silikatkeramischen Werkstoffen sowie Gegenstand mit einer hydrophoben Oberfläche
DE10134473B4 (de) * 2001-07-16 2007-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Beschichtung passivierter metallischer Oberflächen aus Chrom von Bauteilen sowie derart beschichtetes Bauteil und Verwendung des Verfahrens
DE10154030A1 (de) * 2001-11-02 2003-05-22 Basf Coatings Ag Effektgeber, wässriger Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung
DE10200929A1 (de) * 2002-01-12 2003-07-31 Basf Coatings Ag Polysiloxan-Sole, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10234588A1 (de) * 2002-07-30 2004-02-19 Robert Bosch Gmbh Bauteil eines Verbrennungsmotors mit einem tribologisch beanspruchten Bauelement
DE10253839A1 (de) 2002-11-14 2004-05-27 Hansgrohe Ag Beschichtungsverfahren
DE10253841A1 (de) * 2002-11-14 2004-05-27 Hansgrohe Ag Beschichtungsverfahren
DE10308949B4 (de) * 2003-02-28 2008-12-11 BAM Bundesanstalt für Materialforschung und -prüfung Verfahren zur Herstellung von anorganisch modifizierten cellulosehaltigen Werkstoffen sowie anorganisch modifizierter Werkstoff
DE10313630A1 (de) * 2003-03-26 2004-10-07 BSH Bosch und Siemens Hausgeräte GmbH Glasartige Bedruckung mittels Siebdruck
ATE388282T1 (de) * 2003-09-03 2008-03-15 Perlen Converting Ag Flammhemmfolie
DE10348954B3 (de) * 2003-10-18 2005-01-05 Clariant Gmbh Verfahren zur Herstellung von Beschichtungsformulierungen für wasser- und ölabweisende Beschichtungen
US20050104338A1 (en) * 2003-11-19 2005-05-19 Quin Soderquist Applique film airbag cover
DE102004008772A1 (de) * 2004-02-23 2005-09-08 Institut für Neue Materialien Gemeinnützige GmbH Abriebbeständige und alkalibeständige Beschichtungen oder Formkörper mit Niedrigenergieoberfläche
DE102004009287A1 (de) * 2004-02-26 2005-09-15 Institut Für Neue Materialien Gem. Gmbh Amphiphile Nanopartikel
MXPA06010676A (es) * 2004-03-19 2007-02-21 Doerken Ewald Ag Microrevestimiento comprendiendo siloxanos.
DE102004022400A1 (de) * 2004-05-06 2005-12-15 Consortium für elektrochemische Industrie GmbH Feuchtigkeitsvernetzbare alkoxysilyfunktionelle Partikel enthaltende Zusammensetzung
DE102004036073A1 (de) * 2004-07-24 2006-02-16 Degussa Ag Verfahren zur Versiegelung von Natursteinen
CN101072812A (zh) * 2004-10-12 2007-11-14 Sdc涂料有限公司 涂料组合物、制品以及涂覆制品的方法
JP2008533316A (ja) * 2005-03-09 2008-08-21 アステンジョンソン・インコーポレーテッド 耐汚染物質性ナノ粒子コーティングを有する製紙用ファブリックおよび現場塗布の方法
DE102006006655A1 (de) 2005-08-26 2007-03-01 Degussa Ag Cellulose- bzw. lignocellulosehaltige Verbundwerkstoffe auf der Basis eines auf Silan basierenden Komposits als Bindemittel
EP1941992A1 (de) * 2005-10-05 2008-07-09 Nippon Sheet Glass Company Limited Artikel mit darin ausgebildeter organisch-anorganischer verbundfolie
DE102005056620A1 (de) * 2005-11-25 2007-06-06 Merck Patent Gmbh Amphiphile Silane
WO2007073756A1 (en) * 2005-12-23 2007-07-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Easy-to-clean, mechanically stable coating composition for metallic surfaces and process for coating a substrate using said composition
DE102006003956A1 (de) * 2006-01-26 2007-08-02 Degussa Gmbh Korrossionsschutzschicht auf Metalloberflächen
DE102006003957A1 (de) * 2006-01-26 2007-08-02 Degussa Gmbh Wasserverdünnbare Sol-Gel-Zusammensetzung
KR100745745B1 (ko) * 2006-02-21 2007-08-02 삼성전기주식회사 나노복합재료 및 그 제조방법
DE102006024727A1 (de) 2006-05-26 2007-11-29 Cht R. Beitlich Gmbh Mit Wasser verdünnbares Konzentrat zur Beschichtung verschiedener Substrate
DE102006027480A1 (de) * 2006-06-14 2008-01-10 Evonik Degussa Gmbh Kratz- und abriebfeste Beschichtungen auf polymeren Oberflächen
DE102008014717A1 (de) 2006-09-18 2009-09-24 Nano-X Gmbh Verfahren zur Herstellung eines hoch abriebfesten Fahrzeuglackes, Fahrzeuglack und dessen Verwendung
DE102007020404A1 (de) * 2006-09-18 2008-10-30 Nano-X Gmbh Verfahren zur Herstellung eines Beschichtungsmaterials
DE102006044310A1 (de) * 2006-09-18 2008-03-27 Nano-X Gmbh Silanbeschichtungsmaterial und Verfahren zur Herstellung eines Silanbeschichtungsmaterials
WO2008075650A1 (ja) * 2006-12-20 2008-06-26 Nippon Sheet Glass Company, Limited 有機無機複合膜が形成された物品
FR2914631B1 (fr) 2007-04-06 2009-07-03 Eads Europ Aeronautic Defence Materiau nanostructure particulier, comme revetement protecteur de surfaces metalliques.
CA2691087C (en) * 2007-06-19 2016-04-05 The University Of Akron Singly-terminated polyisobutylenes and process for making same
US20090104438A1 (en) * 2007-10-17 2009-04-23 Jennifer Hoyt Lalli Abrasion resistant coatings
DE102007054627A1 (de) 2007-11-15 2009-05-20 Cht R. Beitlich Gmbh Wasserverträgliche Sole zur Beschichtung verschiedener Substrate
DE102007058712A1 (de) 2007-12-06 2009-06-10 Evonik Degussa Gmbh Modulares Sol-Gel-System und Verfahren zum Einstellen der Eigenschaften des Sol-Gel-Systems
CN101235284B (zh) * 2008-02-04 2011-11-09 厦门大学 溶胶-凝胶固定水溶性量子点的方法
EP2096151A1 (de) 2008-02-27 2009-09-02 Degussa Novara Technology S.p.A. Zusammensetzung
EP2250226A4 (de) * 2008-03-03 2012-05-23 Univ Florida Hybride transparente beschichtungsmaterialien aus nanoteilchen-sol-gel-verbundwerkstoff
WO2010062436A1 (en) * 2008-10-31 2010-06-03 University Of Florida Research Foundation, Inc. Transparent inorganic-organic hybrid materials via aqueous sol-gel processing
JP5072820B2 (ja) * 2008-12-22 2012-11-14 日東電工株式会社 シリコーン樹脂組成物
RU2522348C2 (ru) * 2009-03-13 2014-07-10 Акцо Нобель Кемикалз Интернэшнл Б.В. Водная дисперсия силанированного диоксида кремния
CN101941001B (zh) 2009-07-03 2014-04-02 3M创新有限公司 亲水涂层、制品、涂料组合物和方法
DE102010030115A1 (de) 2009-08-11 2011-02-17 Evonik Degussa Gmbh Glycidyloxyalkylalkoxysilan-basierte wässrige Silansysteme für den Blankkorrosionsschutz und Korrosionsschutz von Metallen
JP5182535B2 (ja) * 2010-05-28 2013-04-17 信越化学工業株式会社 水性シロキサン塗料組成物及びその製造方法、表面処理剤、表面処理鋼材並びに塗装鋼材
EP2591060B1 (de) * 2010-07-09 2016-12-21 Luna Innovations Incorporated Beschichtungssystem zur formung sehr langlebiger umgebungsgehärteter und wasserabweisender beschichtungen auf substraten
DE102011101179A1 (de) 2011-05-11 2012-11-15 Fachhochschule Kiel Beschichtungen für Polymere
US20130034722A1 (en) * 2011-08-01 2013-02-07 Intermolecular, Inc. Sol-gel based antireflective coatings using particle-binder approach with high durability, moisture resistance, closed pore structure and controllable pore size
DE102012111836A1 (de) * 2012-12-05 2014-06-05 Schott Ag Beschichtungsmaterial und Substrat mit einer semitransparenten Beschichtung
WO2018045467A1 (en) * 2016-09-09 2018-03-15 Mirapakon Inc. Hydrophobic xerogel film and method of use thereof for reducing condensation
CN109433174B (zh) * 2018-10-16 2021-11-12 上海申得欧有限公司 硅酸盐包覆二氧化钛光触媒粉体及其制备方法
CN110698679A (zh) * 2019-11-04 2020-01-17 哈尔滨工业大学 一种主链掺锆的绿色环保耐高温杂化有机硅树脂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0263428A2 (de) * 1986-10-03 1988-04-13 Ppg Industries, Inc. Beschichtungszusammensetzungen auf der Basis von Siloxanen und Metalloxiden
EP0486469A1 (de) * 1986-10-03 1992-05-20 Ppg Industries, Inc. Organisch-anorganisches Hybridpolymer
WO1998040444A1 (en) * 1997-03-12 1998-09-17 The Walman Optical Company Thermosetting coating composition

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1963439A1 (de) * 1969-12-18 1971-06-24 Dynamit Nobel Ag Verfahren zur Herstellung poroeser Kieselsaeure
US3707397A (en) * 1971-02-26 1972-12-26 Owens Illinois Inc Process for providing uniform organopolysiloxane coatings on polycarbonate and acrylic surfaces
US3834924A (en) * 1972-06-08 1974-09-10 Huber Corp J M Process for manufacturing surface modified inorganic pigments
US4455205A (en) * 1981-06-01 1984-06-19 General Electric Company UV Curable polysiloxane from colloidal silica, methacryloyl silane, diacrylate, resorcinol monobenzoate and photoinitiator
JPS60177079A (ja) * 1984-02-23 1985-09-11 Toshiba Silicone Co Ltd 被覆用組成物
JPS62256874A (ja) * 1986-05-01 1987-11-09 Toshiba Silicone Co Ltd 紫外線硬化型組成物の製造方法
US4814017A (en) * 1986-10-03 1989-03-21 Ppg Industries, Inc. Aqueous organoalkoxysilane/metal oxide sol-gel compositions
US4799963A (en) * 1986-10-03 1989-01-24 Ppg Industries, Inc. Optically transparent UV-protective coatings
JPH02175732A (ja) * 1988-12-28 1990-07-09 Central Glass Co Ltd 被覆用組成物、それを用いたプラスチック成形品およびその製造法
US5164003A (en) * 1990-03-28 1992-11-17 Ceram Tech International, Ltd. Room temperature curable surface coating and methods of producing and applying same
AU653825B2 (en) * 1991-06-25 1994-10-13 Itoh Optical Industrial Co., Ltd. Coating composition for optical plastic moldings
JP2520994B2 (ja) * 1991-09-13 1996-07-31 松下電工株式会社 反射鏡の製造方法
JPH05170486A (ja) * 1991-12-25 1993-07-09 Central Glass Co Ltd ガラス表面用撥水処理剤およびその撥水処理ガラス
US5307438A (en) * 1992-08-13 1994-04-26 Minnesota Mining And Manufacturing Company Index matching compositions with improved DNG/DT
US5873931A (en) * 1992-10-06 1999-02-23 Minnesota Mining And Manufacturing Company Coating composition having anti-reflective and anti-fogging properties
JP3545439B2 (ja) * 1993-10-13 2004-07-21 三菱レイヨン株式会社 紫外線硬化性被覆材の製法及びそれを用いた耐摩耗性被覆材組成物
JPH07207190A (ja) * 1994-01-24 1995-08-08 Shin Etsu Chem Co Ltd 紫外線硬化性ハードコーティング剤及びプラスチック製光学物品
JPH08311401A (ja) * 1995-03-01 1996-11-26 Seiko Epson Corp コーティング用組成物およびその製造方法および積層体
US5789476A (en) * 1995-03-03 1998-08-04 Seiko Epson Corporation Film-forming coating solution and synthetic resin lens
US5928127A (en) * 1995-04-03 1999-07-27 Asahi Glass Company Ltd. Alumina sol and recording sheet
JPH09194760A (ja) * 1996-01-23 1997-07-29 Mitsubishi Rayon Co Ltd 被覆材組成物、それを用いてなる機能性に優れた物品、及びプラスチックレンズ
JPH1025431A (ja) * 1996-07-11 1998-01-27 Kawaken Fine Chem Co Ltd 無機塗料バインダー組成物および無機塗料組成物
JPH1025451A (ja) * 1996-07-12 1998-01-27 Shima Boeki Kk 紫外線吸収性被覆用組成物
US5814137A (en) * 1996-11-04 1998-09-29 The Boeing Company Sol for coating metals
DE19708285C2 (de) * 1997-02-28 2002-04-11 Excor Korrosionsschutz Technol Korrosionsinhibierendes Kompositmaterial, Verfahren zu dessen Herstellung und seine Verwendung
DE19737328A1 (de) * 1997-08-27 1999-03-04 Bayer Ag Beschichtungszusammensetzungen auf der Basis von Epoxidgruppen enthaltenden Silanen
US6245833B1 (en) * 1998-05-04 2001-06-12 3M Innovative Properties Ceramer composition incorporating fluoro/silane component and having abrasion and stain resistant characteristics
JP3982933B2 (ja) * 1999-01-14 2007-09-26 触媒化成工業株式会社 被膜形成用塗布液および合成樹脂製レンズ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0263428A2 (de) * 1986-10-03 1988-04-13 Ppg Industries, Inc. Beschichtungszusammensetzungen auf der Basis von Siloxanen und Metalloxiden
EP0486469A1 (de) * 1986-10-03 1992-05-20 Ppg Industries, Inc. Organisch-anorganisches Hybridpolymer
WO1998040444A1 (en) * 1997-03-12 1998-09-17 The Walman Optical Company Thermosetting coating composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent Publications Ltd., London, GB; AN 85-265863 XP002115369 & JP 60 177079 A (TOSHIBA), 11. September 1985 (1985-09-11) *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022039A1 (de) * 1998-10-09 2000-04-20 WKP Württembergische Kunststoffplatten-Werke GmbH & Co. KG Schichtwerkstoff und verfahren zum herstellen eines solchen
US6663952B1 (en) 1998-10-09 2003-12-16 Wkp Wurttembergische Kunststoffplatten-Werke Gmbh & Co. Kg Stratified material and a method for producing the same
US6630205B2 (en) * 1999-12-03 2003-10-07 Institut Für Neue Materialien Gem. Gmbh Self-crosslinking compositions based on fluorine-containing polycondensates
WO2002050191A2 (de) * 2000-12-20 2002-06-27 Nano-X Gmbh Lösungsmittelarme sol-gel-systeme
WO2002050191A3 (de) * 2000-12-20 2002-07-25 Nano X Gmbh Lösungsmittelarme sol-gel-systeme
US7247350B2 (en) 2000-12-20 2007-07-24 Nano-X Gmbh Solvent-poor sol-gel-systems
US9376544B2 (en) 2001-02-28 2016-06-28 Evonik Hanse Gmbh Silicon dioxide dispersion
WO2003095571A1 (de) * 2002-05-11 2003-11-20 Basf Coatings Ag Wässrige dispersion von anorganischen nanopartikeln, verfahren zu ihrer herstellung und ihre verwendung
DE10221009B4 (de) * 2002-05-11 2016-10-13 Basf Coatings Gmbh Beschichtungsstoffe, deren Verwendung, Verfahren zur Herstellung von Beschichtungen und transparente Beschichtungen
WO2003095532A1 (de) * 2002-05-11 2003-11-20 Basf Coatings Ag Wässrige dispersion von anorganischen nanopartikeln, verfahren zu ihrer herstellung und ihre verwendung
US7803871B2 (en) 2002-05-11 2010-09-28 Basf Coatings Gmbh Aqueous dispersion of inorganic nanoparticles, method for the production and use thereof
US7488769B2 (en) 2002-05-11 2009-02-10 Basf Coatings Ag Aqueous dispersion of inorganic nanoparticles, method for the production and use thereof
WO2004087339A1 (de) * 2003-03-31 2004-10-14 Behr Gmbh & Co. Kg Wärmetauscher und verfahren zur oberflächenbehandlung eines solchen
CN100457293C (zh) * 2003-03-31 2009-02-04 贝洱两合公司 换热器及其表面处理方法
WO2004099220A1 (de) * 2003-05-08 2004-11-18 Basf Coatings Ag Epoxyfunktionelle silane, verfahren zu ihrer herstellung und ihre verwendung
US7592474B2 (en) 2003-05-08 2009-09-22 Basf Coatings Ag Epoxy functional silanes, method for the production thereof and use of the same
WO2005042647A1 (de) * 2003-11-03 2005-05-12 Basf Coatings Ag Strukturviskose, wässrige dispersionen, verfahren zu ihrer herstellung und ihre verwendung
US8034872B2 (en) 2003-11-17 2011-10-11 Basf Coatings Gmbh Oligomers and polymers containing hydrolysates and/or condensates of epoxide groups and silane groups, method for their production and use thereof
US7846409B2 (en) 2003-12-06 2010-12-07 Solvay Infra Bad Hoenningen Gmbh Deagglomerated barium sulfate
US7749606B2 (en) * 2004-03-31 2010-07-06 Nippon Sheet Glass Company, Limited Article with organic-inorganic composite film and process for producing the same
WO2006010388A1 (en) * 2004-07-29 2006-02-02 Degussa Ag Aqueous silane nanocomposites
US8022119B2 (en) 2005-03-18 2011-09-20 Basf Coatings Ag Epoxy and silane group-containing oligomers and polymers and a method for the production and the use thereof
US7993707B2 (en) 2005-11-03 2011-08-09 Evonik Degussa Gmbh Production of coated substrates
WO2007051662A1 (de) * 2005-11-03 2007-05-10 Evonik Degussa Gmbh Herstellung von beschichteten substraten
US8114513B2 (en) 2006-04-27 2012-02-14 Sachtleben Chemie Gmbh UV-curable undercoat
DE102008031360A1 (de) 2008-07-04 2010-01-14 K+S Ag Verfahren zum Herstellen von aushärtbaren Massen, enthaltend grob- und/oder nanoskalige, gecoatete, desagglomerierte und bevorzugt funktionalisierte Magnesiumhydroxidpartikel, sowie von ausgehärteten thermoplastischen oder duroplastischen Polymeren bzw. Kompositen, enthaltend desagglomerierte und homogen verteilte Magnesiumhydroxidfüllstoffpartikel
WO2012013663A2 (en) 2010-07-28 2012-02-02 Basf Se Use of perlite based effect pigments for finishes with antique, or patina appearance
EP3978038A1 (de) 2020-10-04 2022-04-06 Elke Münch Durch eine temperaturdifferenz betreibbare, mobile vorrichtung zur reinigung und desinfizierung von raumluft und eine testvorrichtung hierfür
DE102020125921A1 (de) 2020-10-04 2022-04-07 Elke Münch Durch eine Temperaturdifferenz betreibbare, mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
DE102020125919A1 (de) 2020-10-04 2022-04-07 Elke Münch Durch eine Temperaturdifferenz betreibbare, mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft und eine Testvorrichtung hierfür
DE102020125920A1 (de) 2020-10-04 2022-04-07 Elke Münch Durch eine Temperaturdifferenz betreibbare, mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
DE102020125922A1 (de) 2020-10-04 2022-04-07 Elke Münch Mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
EP3981442A1 (de) 2020-10-04 2022-04-13 Elke Münch Durch eine temperaturdifferenz betreibbare, mobile vorrichtung zur reinigung und desinfizierung von raumluft
DE102020125921B4 (de) 2020-10-04 2022-05-19 Elke Münch Durch eine Temperaturdifferenz betreibbare, mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
DE102020125920B4 (de) 2020-10-04 2022-05-19 Elke Münch Durch eine Temperaturdifferenz betreibbare, mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
DE102020125922B4 (de) 2020-10-04 2022-06-02 Elke Münch Mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
DE102020125919B4 (de) 2020-10-04 2022-06-23 Elke Münch Durch eine Temperaturdifferenz betreibbare, mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft und eine Testvorrichtung hierfür
DE102022001868A1 (de) 2022-05-29 2023-11-30 Elke Hildegard Münch Biozid beschichtete, retikulierte Schaumstoffe aus Kunststoff, Verfahren zu ihrer Herstellung und ihre Verwendung

Also Published As

Publication number Publication date
MXPA00009735A (es) 2002-04-24
CA2327312A1 (en) 1999-10-21
WO1999052964A3 (de) 2000-01-20
JP4597368B2 (ja) 2010-12-15
JP2002511509A (ja) 2002-04-16
ATE282058T1 (de) 2004-11-15
HUP0101496A3 (en) 2002-02-28
ES2232135T5 (es) 2014-02-24
AU3813899A (en) 1999-11-01
PL213503B1 (pl) 2013-03-29
NO331461B1 (no) 2012-01-09
NO20004877L (no) 2000-09-28
DE19816136A1 (de) 1999-10-14
US6620514B1 (en) 2003-09-16
HUP0101496A2 (hu) 2001-08-28
PL343590A1 (en) 2001-08-27
CN1301277A (zh) 2001-06-27
BR9909521A (pt) 2000-12-12
EP1086162B1 (de) 2004-11-10
ES2232135T3 (es) 2005-05-16
DE59911048D1 (de) 2004-12-16
CN1145659C (zh) 2004-04-14
KR20010042528A (ko) 2001-05-25
NO20004877D0 (no) 2000-09-28
EP1086162A2 (de) 2001-03-28
CZ20003683A3 (cs) 2001-01-17
EP1086162B2 (de) 2013-11-20

Similar Documents

Publication Publication Date Title
EP1086162B1 (de) Nanostrukturierte formkörper und schichten und deren herstellung über stabile wasserlösliche vorstufen
DE10063739B4 (de) Substrate mit selbstreinigender Oberfläche, Verfahren zu deren Herstellung und deren Verwendung
EP0973958B1 (de) Verfahren zum versehen einer metallischen oberfläche mit einer glasartigen schicht
EP1288245B1 (de) Siliciumverbindungen enthaltendes Mittel zur Beschichtung von Oberflächen
EP0728164B1 (de) Verfahren zur herstellung von zusammensetzungen auf der basis von epoxidgruppen-haltigen silanen
EP2484732B1 (de) Verbundstoff und Verfahren zu seiner Herstellung
DE19540623A1 (de) Verfahren zur Herstellung von Kompositmaterialien mit hohem Grenzflächenanteil und dadurch erhältliche Kompositmaterialien
WO2001030922A2 (de) Substrat mit einem abriebfesten diffusionssperrschichtsystem
KR102445099B1 (ko) 철 함유 루틸형 산화티탄 미립자 분산액의 제조방법, 철 함유 루틸형 산화티탄 미립자 및 그의 용도
EP1183107A2 (de) Mit einer mikrostrukturierten oberfläche versehene substrate, verfahren zu ihrer herstellung und ihre verwendung
WO2004110671A2 (de) Antiadhäsive hochtemperaturschichten
DE4217432A1 (de) Verfahren zur Herstellung von Glas mit verbesserter Langzeitstandfähigkeit bei erhöhten Temperaturen
EP1363979A1 (de) Verfahren zur herstellung von sol-gel-kondensaten auf basis polyfunktioneller organosilane sowie deren verwendung
EP1633805A1 (de) Verfahren zur herstellung von beschlagsfreien kratzfest-schichtsystemen
DE19746885A1 (de) Nanostrukturierte Formkörper und Schichten sowie Verfahren zu deren Herstellung
DE19719948A1 (de) Nanostrukturierte Formkörper und Schichten sowie Verfahren zu deren Herstellung
EP1230187A1 (de) Beschichtungszusammensetzung auf basis organisch modifizierter anorganischer kondensate
DE10215941A1 (de) Anorganische UV-Absorber enthaltene Bindemittel
DE19828231C2 (de) Verfahren zur Abscheidung poröser optischer Schichten
EP1587638A1 (de) Verfahren zur herstellung von ultrahydrophoben oberflächen auf substraten
DE102013009881B3 (de) Verfahren zur Herstellung einer SiO2-Antireflexbeschichtung, SiO2 -Antireflexbeschichtetes Substrat und dessen Verwendung
JP2002356320A (ja) シリカ・酸化チタン複合ゾル組成物及びその製造方法
WO2004096914A1 (de) Verfahren zur herstellung von funktionsmaterialien zur erzeugung dauerhafter niedrigenergiebeschichtungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99806344.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1999920614

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/009735

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2327312

Country of ref document: CA

Ref document number: 2327312

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2000-3683

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 09647971

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007011168

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV2000-3683

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1999920614

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007011168

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: CA

WWR Wipo information: refused in national office

Ref document number: PV2000-3683

Country of ref document: CZ

WWW Wipo information: withdrawn in national office

Ref document number: 1020007011168

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999920614

Country of ref document: EP