WO2002034687A1 - Light-transmitting substrate, process for producing the same, and building and vehicle - Google Patents

Light-transmitting substrate, process for producing the same, and building and vehicle Download PDF

Info

Publication number
WO2002034687A1
WO2002034687A1 PCT/JP2001/009193 JP0109193W WO0234687A1 WO 2002034687 A1 WO2002034687 A1 WO 2002034687A1 JP 0109193 W JP0109193 W JP 0109193W WO 0234687 A1 WO0234687 A1 WO 0234687A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
substrate according
light
group
water
Prior art date
Application number
PCT/JP2001/009193
Other languages
French (fr)
Japanese (ja)
Inventor
Kazufumi Ogawa
Norihisa Mino
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2001295975A priority Critical patent/AU2001295975A1/en
Publication of WO2002034687A1 publication Critical patent/WO2002034687A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B01J35/30
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/75Hydrophilic and oleophilic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate

Definitions

  • the present invention relates to a light-transmitting substrate such as a glass plate or a plastic plate having a water- and oil-repellent coating on one surface and a hydrophilic coating on the other surface, a method for producing the same, and a building and a vehicle using the same. It is about. More specifically, the present invention relates to an invention in which a base (undercoat) layer is provided on the surface of a substrate, and a water / oil repellent coating or a hydrophilic and antifogging coating is provided thereon.
  • window glass for buildings and vehicles has been required to have an ultra-thin coating that is transparent, heat-resistant, weather-resistant, and abrasion-resistant and has water-repellent, anti-fog, and anti-fouling functions.
  • an alkoxysilane or chlorosilane containing a fluorocarbon (fluorocarbon) group is applied, and after drying, baking (baking or baking treatment) is performed at about 300 ° C for about 1 hour.
  • baking baking or baking treatment
  • a titanium oxide fine particle having a photocatalytic function as disclosed in Japanese Patent Application Laid-Open No. 09 (1997)- There is known a method of dispersing, coating and baking.
  • the method of burning fluorocarbon polymer is When used on both sides of windows of objects and vehicles, the coating is water-repellent, so when raindrops fall on the outside, waterdrops can be repelled to improve visibility, but conversely, the inside tends to become cloudy and visibility is poor. Become.
  • the coating becomes hydrophilic, so that the fogging can be improved in the inward direction. It gets wet and visibility deteriorates.
  • the conventional method of applying a photocatalyst has a problem that the durability is short and the photocatalyst is peeled off in a few months.
  • a first object of the present invention is to improve and improve the visibility of windows of buildings and vehicles in rainy weather in order to solve the conventional problems.
  • a second object of the present invention is to improve the durability of the photocatalyst layer.
  • the light-transmitting substrate of the present invention has a light-transmitting substrate in which one surface is covered with a water-repellent and oil-repellent film and the other surface is covered with a hydrophilic and anti-fog film.
  • the method for producing a light-transmitting substrate according to the present invention is directed to a method for manufacturing a light-transmitting substrate in which one surface is covered with a water- and oil-repellent film and the other surface is covered with a hydrophilic and anti-fog film.
  • the manufacturing method wherein the water- and oil-repellent coating has the hydrophilicity and anti-fogging property by treating perfluoroalkylalkylalkylsilane on the surface of a light-transmitting substrate and chemically bonding it by a low-molecular elimination reaction.
  • the coating is characterized by being formed of a layer containing titanium oxide having photocatalytic ability.
  • the building of the present invention comprises a window having a light-transmitting substrate, one surface of which is covered with a water-repellent and oil-repellent coating, and the other surface of which is covered with a hydrophilic and anti-fog coating.
  • the water- and oil-repellent coating is a perfluoroalkyl An alkylsiloxane, wherein the hydrophilic and anti-fog coating is a photocatalyst layer, the water- and oil-repellent coating surface is installed on the outdoor side, and the photocatalyst layer is installed on the indoor side. I do.
  • the vehicle of the present invention is a vehicle having a window made of a light-transmitting substrate, one surface of which is covered with a water / oil repellent coating, and the other surface of which is covered with a hydrophilic and anti-fog coating.
  • the water- and oil-repellent coating is perfluoroalkylalkylsiloxane
  • the hydrophilic and anti-fog coating is a photocatalyst layer
  • the water- and oil-repellent coating is on the outdoor side.
  • the optical catalyst layer is installed on the indoor side.
  • FIG. 1 is a conceptual cross-sectional view of a glass having a hydrophilic surface on one side and a water-repellent surface on the other side in Example 1 of the present invention.
  • FIG. 2 is a conceptual cross-sectional view of a glass having a hydrophilic surface on one side and a water-repellent surface on the other side in Example 2 of the present invention.
  • FIG. 3 is a conceptual cross-sectional view of a glass having a hydrophilic surface on one side and a water-repellent surface on the other side in Example 3 of the present invention.
  • FIG. 4 is a conceptual cross-sectional view of a glass having a hydrophilic surface on one side and a water-repellent surface on the other side in Example 4 of the present invention.
  • 1 is a glass substrate
  • 2 is a hydrophilic and anti-fog film
  • 3 is a water repellent film
  • 4 is a silica base layer.
  • the translucent substrate is preferably at least one selected from a glass plate and a plastic plate.
  • One surface of the light-transmitting substrate is preferably water- and oil-repellent, and the other surface is hydrophilic and anti-fog. This is because it may be required.
  • a polymeric or Bae Le Full O b alkyl alkyl silane which is a monomolecular film-like water repellent leather coatings, general formula CF 3 - (CF 2) n -R- S i X P C 13 _ p (n is 0 or an integer, R is an alkylene group, a vinylene group, an ethynylene group, or Si, a substituent containing an oxygen atom, is selected from H or an alkyl group, a cycloalkyl group, an aryl group, or a derivative thereof.
  • p is 0, 1 or 2), CF 3- (CF 2 ) n -R—S i X q (OA) 3 -q (n is 0 or an integer, R is an alkylene group, a vinylene group, Ethynylene group, or a substituent containing an Si or oxygen atom, X is a substituent selected from H or an alkyl group, a cycloalkyl group, an aryl group or a derivative thereof, and OA is an alkoxy group (where A is H or alkyl) Group), q is 0, 1 or 2), and / or CF 3 — (CF 2 ) n — R-S i X r Z 3 - r (n is 0 or an integer, R represents an alkylene group, vinylene group, Echiniren group or S i, a substituent containing an oxygen atom, X is H or aralkyl kill group, a cycloalkyl group,
  • the surface of the substrate is roughened to a submicron to micron-order unevenness by the silica underlayer, the water / oil repellency and hydrophilicity can be enhanced. Furthermore, if the silica base layer is treated by a dehydrochlorination reaction, a dealcohol reaction, or a dehydrocarbon reaction with perfluoroalkyl / alkyl / silane, the resulting coating has high peeling strength. In addition, if the silica underlayer is formed by applying a silica glass to the surface of a glass substrate and then performing a heat treatment or a plasma assing process, elution from the surface of the substrate is suppressed, and durability is improved. High glass plate.
  • silica primer layer S i C 1 4 surface of the glass substrate, S i HC 1 3, S i H 2 C l 2, CI - (S i C l 2 ⁇ ) n - S i C 1 3 ( n is an integer)
  • a film having high peeling resistance is obtained.
  • a hydrophilic photocatalyst layer a coating containing fine titanium particles is formed, and when organic substances attached to the surface are oxidized and decomposed in response to photoexcitation, the glass surface is always cleaned, and glass with excellent anti-fog effect is obtained. It becomes a board.
  • the coating containing titanium oxide fine particles has a sili- sion force, a glass plate with excellent scratch resistance is obtained.
  • the coating containing the titanium oxide fine particles contains an inorganic oxide other than silica and silicic acid, the hydrophilicity-imparting effect can be increased.
  • a phosphor obtained by adding a divalent metal aluminate such as calcium or strontium to a rare earth metal such as europium, prosodymium, or Z or neodymium or dysprosium has a catalytic effect. It is convenient for strengthening. Further, as a material for the glass substrate, it is better to use glass of a material that transmits at least 350 to 400 nm ultraviolet light, so that outdoor light can be used effectively and organic substances can be decomposed efficiently.
  • a step of forming a silica underlayer on one surface of a glass substrate, a step of treating with a perfluoroalkylalkylalkylsilane through the silica underlayer By forming a photocatalytic layer having a hydrophilic property, a glass plate having water- and oil-repellency on one side and anti-fogging on the other side can be produced.
  • a step of forming a silica underlayer on one side of the glass substrate, a step of forming a hydrophilic photocatalyst layer via the above-mentioned silica underlayer, and a step of treating the other side with perfluoroalkylalkylalkylsilane A method for producing a glass plate having a water- and oil-repellent property on one side and an antifogging property on the other side can be manufactured.
  • a hydrophilic photocatalytic layer By the forming step, a glass plate having one surface having water and oil repellency and the other surface having antifogging properties can be manufactured.
  • the step of treating one surface with perfluoroalkylalkylalkylsilane it is effective to perform a step of forming a water- and oil-repellent film by performing a dehydrochlorination reaction, a dealcohol reaction, or a de-HNCO reaction.
  • Water- and oil-repellent coatings can be manufactured.
  • a glass plate having higher performance of water repellency, oil repellency and anti-fog performance can be manufactured.
  • a method of applying and sintering a photocatalytic coating composition containing titanium oxide fine particles can be used to form a hydrophilic photocatalytic layer.
  • silica is included in the photocatalytic coating composition containing titanium oxide fine particles, a photocatalytic coating having high durability can be formed.
  • a photocatalytic coating composition containing titanium oxide fine particles was added to a silicic acid and an aluminate of a bivalent metal such as calcium or strontium, and a rare earth metal such as europium, prosodymium, and / or neodymium or dysprosium was added. Mixing the phosphor makes it possible to increase the catalytic activity.
  • the step of applying and sintering the photocatalytic coating composition containing the titanium oxide fine particles is performed simultaneously with the step of strengthening the air cooling of the glass substrate, the energy saving effect can be improved.
  • the step of forming the silica underlayer is performed simultaneously with the step of strengthening the air cooling of the glass substrate, the energy saving effect can be improved.
  • the glass of the present invention is used in a bathroom, a washroom, a dining room or a kitchen where the glass windows are easily fogged.
  • a building having more excellent water / oil repellency and Z or antifogging property can be provided.
  • the vehicle of the present invention when at least one or both surfaces of the film surface are processed to have an unevenness not more than the wavelength of visible light, water / oil repellency and / or antifogging properties are more excellent.
  • a vehicle with excellent safety can be provided.
  • At least a glass substrate is formed by a step of treating one surface of a glass substrate with perfluoroalkyl / alkyl / silane and a step of forming a hydrophilic photocatalytic layer on the other surface.
  • a glass plate could be manufactured in which one surface of the substrate surface was treated with perfluoroalkyl / alkyl / silane and the other surface was covered with a hydrophilic photocatalytic layer.
  • a step of forming a silica underlayer on one surface of a glass substrate a step of treating with a perfluoroalkylalkylsilane through the silica underlayer, Forming a hydrophilic photocatalytic layer on the other surface, at least one surface of the surface of the glass substrate is treated with a perfluoroalkylalkylalkylsilane via a silica underlayer, and the other surface Was able to produce a glass plate covered with a hydrophilic photocatalyst layer.
  • a third embodiment of the present invention includes a step of forming a silica base layer on one side of a glass substrate, Forming a hydrophilic and anti-fog photocatalyst layer, and treating the other surface with perfluoroalkyl, alkyl, and silane, so that at least one of the surfaces of the glass substrate is perfluorinated.
  • a glass sheet other surface is covered with a photocatalyst layer hydrophilic through a silica primer layer.
  • a hydrophilic and anti-fog photocatalytic layer for example, an anatase-type titanium oxide fine particle layer having high photocatalytic ability
  • the titanium oxide fine particles are formed by the presence of alkali components present in the glass due to moisture.
  • the particle layer was hydrolyzed, easily peeled off, and had a problem in durability.
  • the silica underlayer can block the alkali components present in the glass, so that the durability is significantly improved.
  • the conventional method has a durability of several months, but the present invention has a durability of several years to 10 years or more.
  • a step of forming a silica underlayer on both sides of a glass substrate a step of treating one side with perfluoroalkylalkylsilane through the silica underlayer, Forming a hydrophilic photocatalyst layer via the silica underlayer, whereby at least one surface of the surface of the glass substrate is treated with perfluoroalkylalkylalkylsilane via the silica underlayer.
  • a glass plate whose other surface was covered with a hydrophilic photocatalytic layer via a silica base layer could be manufactured.
  • a building was constructed in which the hydrophilic coating surface of the glass plate was installed on the room side and the water- and oil-repellent coating surface was installed on the outdoor side, and the visibility of the windows was confirmed. It was particularly effective in bathrooms, washrooms, diving or kitchens where the glass windows tend to be cloudy. At this time, if at least one or both of the film surfaces were processed to be uneven at or below the wavelength of visible light, a building with even better water and oil repellency and Z or antifogging properties could be provided. .
  • % means “% by weight”.
  • a three-fold molar amount of ammonia is added to an aqueous solution of titanium oxychloride or titanium oxysulfate in advance and mixed, and heated at 80 ° C for about 1 hour, and orthotitanic acid, titanium (IV) ion, peroxotitanic acid, and titanium oxide fine particles was prepared by mixing and dispersing.
  • the solid content of this paint after drying was adjusted so as to be about 10% in total weight.
  • an alkoxysilane such as tetraethoxysilane is added, it is converted into silica after film formation, and has an effect of maintaining the hydrophilic effect of the film.
  • the paint was applied to one surface of the well-washed air-cooled tempered float glass substrate 1 (the tin side is the inside of the car for window glass, and the indoor side is the building).
  • the film was uniformly applied to a film thickness of about 2 zm using a roll coater.
  • the coating film (hydrophilic and anti-fogging film) 2 containing titanium oxide fine particles having a thickness of about 0.1 m was formed by heating at 200 ° C. for about 30 minutes.
  • the heat treatment can be performed at 100 to 65 ° C., and plastic can be generally performed at a temperature equal to or lower than the softening point of the substrate. Can be higher.
  • the thickness is not more than 400 nm, the optical characteristics of the substrate are hardly deteriorated.
  • the thickness of the film containing the titanium oxide fine particles was practically optimal at about 1 nm to 3 nm.
  • a substance (perfluoroalkyl-alkyl'silane) containing a fluorocarbon group and a chlorosilane group is mixed on the surface opposite to the surface.
  • a non-aqueous solvent for example, CF 3 — (CF 2 ) 7 — (CH 2 ) 2 — SiC 1 at a concentration of 1% by weight in a solvent of hexanemethyldisiloxane,
  • the OH group is exposed on the surface of the glass, so the chlorosilyl group of the chlorosilane surfactant containing fluorine and the --OH group are dehydrochlorinated.
  • a perfluoroalkylalkylalkylsilane solution is applied in an atmosphere with a humidity of 35% or less and allowed to react with the glass surface for about 1 to 2 hours. Then, a nonaqueous organic solvent such as normal hexane is used. By washing and removing the unreacted perfluoroalkyl-alkyl-silane solution, a monomolecular film-like siloxane fluorocarbon film containing fluorine was formed on the surface of the glass substrate. The water repellency (118 degrees in contact angle) of this film was slightly higher than that of the polymer film.
  • alkoxysilane or isocyanatesilane is used as perfluoroalkylalkylalkylsilane
  • a dealcoholization reaction or a dehydrogenation reaction with HNCO water hydrolysis reaction with water occurs instead of a dehydrochlorination reaction
  • a similar siloxane-fluorocarbon-based polymer film could be prepared by the reaction of removing NH 2 and removing C ⁇ 2 ).
  • the glass surface becomes water-repellent as time elapses due to the adhesion of organic substances in the air.
  • the photocatalyst of the coating containing titanium oxide fine particles is formed on the indoor side. Due to the effect, the attached organic matter was oxidatively decomposed and the hydrophilic property was always maintained.
  • silica primer layer to form a surface unevenness of submicron to the previously roughened uneven micro N'oda water-repellent or hydrophilic effect was improved in c such submicron to micron order of the substrate
  • a method of mixing fine particles into silica glass at the time of forming a silicon underlayer was practically available.
  • the creation of the silica primer layer changes to Ri of the silicate one sharpened forming solution, S i C l 4, S i HC l 3, S i H 2 C l 2, CI - (S i C 1 2 ⁇ ) n - S i C 1 3 ( n is an integer) using at least one compound selected from, could also be used a method of contacting the glass substrate to cause a dehydrochlorination reaction to form silica under formation. In particular, this method was effective for forming a nanometer-level silica coating.
  • the coating containing the titanium oxide fine particles functions as a hydrophilic photocatalytic layer, and has an action of oxidatively decomposing organic substances attached to the surface in response to photoexcitation such as ultraviolet rays. This has the effect of preventing deterioration of the properties. Therefore, it is more effective to use glass made of a material that transmits ultraviolet light as the glass substrate. Even if glass that easily transmits ultraviolet light is used, there is no problem in using windows for automobiles or buildings, because the ultraviolet light that penetrates the glass can be almost completely cut by the coating containing titanium oxide fine particles inside. Practically, ultraviolet light with a wavelength of 350 nm to 400 nm Better results were obtained with more transparent white plate glass.
  • silica when silica is included together with the titanium oxide fine particles, there is an effect that the duration of hydrophilicity can be extended.
  • a coating containing titanium oxide fine particles a phosphor obtained by adding aluminate of calcium or strontium, which is a divalent metal other than silica and silica, to which europium, prosodymium, and Z or rare earth metals such as neodymium and dysprosium are added.
  • the use of a coating containing an inorganic oxide such as that described above could shift the wavelength at which the catalytic effect can be exhibited to longer wavelengths.
  • the step of applying the photocatalytic coating composition containing titanium oxide fine particles is performed before the step of strengthening the glass by air cooling. The effect was high.
  • the surface of the plastic substrate is previously treated with an ozone oxidation method, a corona treatment method, an oxygen plasma treatment method, etc. before being treated with perfluoroalkyl / alkyl / silane. If an active hydrogen group such as a hydroxyl group, an amino group, or an amide group is introduced, the same processing as for a glass substrate can be performed.
  • a solution for forming a silicide glass is sprayed on one side of the float glass substrate 1 to a thickness of about 2 zx m on each of the reinforced, non-reinforced, tin side and non-tin side.
  • the silicate glass forming solution may be, for example, a hard coating agent K P—
  • a glassy silica underlayer with a thickness of 800 nm (Although it is also referred to as a silica coating, titanium may be included.) 4 was formed.
  • plasma assing about 300 W, about 20 minutes
  • This method is effective for plastics because it is not necessary to heat the substrate to a high temperature.
  • a titanium oxide film (hydrophilic and anti-fogging film) 2 was formed on the opposite side of the surface on which the silica film was formed.
  • a glass sample B having a water-repellent film 3 formed on the surface was prepared (Fig. 2).
  • a silica coating 4 was formed on one side (a reinforced, non-reinforced, tin side and a non-tin side were created) in the same manner as in Example 2, and then the same as in Example 1 was performed.
  • a titanium oxide film (hydrophilic and anti-fog film) 2 was formed on the surface on which the silica layer was formed, and a water-repellent film 3 was formed on the surface on which the silica film was not formed by using the method.
  • Glass sample C was prepared (Fig. 3).
  • Nozzle diameter about 1 mm
  • C had a higher initial hydrophilicity effect than A. Contact angles could not be measured. In addition, when evaluated at the time when the contact angle becomes 20 degrees, the durability of the hydrophilicity was about 10 times better.
  • the titanium oxide film formed by adding about 30% of silica when forming the titanium oxide film was able to improve the hydrophilicity duration after light irradiation by about 10 times.
  • a silicate glass forming solution for example, Shin-Etsu Chemical Co., Ltd. hard coating agent KP-110 OA or 110 B) or Tokyo Ohka Kogyo Co., Ltd. These coating agents could be diluted with ethanol.)) And diluted with ethanol to about 1Z5, and cast to a thickness of about 0.5 zxm on both sides of the float glass substrate by casting. After heating, the substrate was heated at a temperature of 350 ° C for 30 minutes to form a glassy silicon-based underlayer (may contain titanium oxide) 4 with a thickness of about 50 nm on both sides. .
  • a titanium oxide film (hydrophilic film) 2 was formed on one surface of the piece on which the silica film was formed, and further on the opposite side.
  • a glass plate having a water-repellent film 3 formed on the surface of the silica coating was manufactured (FIG. 4).
  • the glass manufactured in this way is installed on the window of a building so that the water-repellent surface is outdoors and the hydrophilic surface is indoors, and the glass is exposed to sunlight from outside and the humidity is changed in the room.
  • the glass surface on the indoor side was not fogged even one week after sunlight was irradiated for one day in winter.
  • the glass surface becomes water-repellent as the organic matter in the air adheres to it over time, but in this case, the inside of the car is covered with a coating containing ultraviolet light and titanium oxide fine particles that pass through the glass. Due to the photocatalytic effect, the attached organic matter was oxidized and decomposed, and the hydrophilicity was always maintained.
  • the glass surface becomes water-repellent with the passage of time due to the attachment of organic matter in the air, but in this case, the inside of the car contains ultraviolet light and titanium oxide fine particles that pass through the glass. Due to the photocatalytic effect of the coating containing The organic matter was oxidatively decomposed and kept hydrophilic at all times.
  • silica primer layer to form a surface unevenness of submicron to the previously roughened uneven micro N'oda water-repellent or hydrophilic effect was improved in c such submicron to micron order of the substrate
  • a method of mixing fine particles into silicate glass at the time of forming a silicon underlayer was practically available.
  • silica primer layer the Ri river of the silicon gate glass forming solution, S i C l 4, S i HC l 3, S i H 2 C l 2, CI one (S i C 1 2 O)
  • n-SiC13 n is an integer
  • this method was effective for forming a nanometer-level silica coating.
  • an automobile or a building having windows with the hydrophilic coating surface of the glass plate on the inside and the water- and oil-repellent coating surface on the outside is manufactured. This greatly improves outdoor visibility in rainy weather and is durable. As a result, it is possible to provide vehicles and comfortable buildings with excellent safety.

Abstract

A light-transmitting substrate which is coated on one side with a water-and-oil repellent film and on the other side with a hydrophilic film having antifogging properties, wherein the water-and-oil repellent film is made of a perfluoroalkylalkylsiloxane and the hydrophilic film is a photocatalyst layer. The substrate is effective in improving the view through windows of a building or vehicle in a rainy day. Durability can be improved by forming a silica primer layer between the light-transmitting substrate and the photocatalyst layer.

Description

明 細 書  Specification
透光性基板とその製造方法及び建物と乗り物  Transparent substrate, method of manufacturing the same, and building and vehicle
技術分野 Technical field
本発明は、 一方の面に撥水撥油性被膜を有し他の面に親水性被膜を有 するガラス板またはプラスチック板等の透光性基板とその製造方法とそ れを用いた建物と乗り物に関するものである。 さらに詳しくは、 基板表 面に下地 (アンダーコート) 層を設け、 その上に撥水撥油性被膜または 親水性かつ防曇性被膜を設ける発明に関する。  The present invention relates to a light-transmitting substrate such as a glass plate or a plastic plate having a water- and oil-repellent coating on one surface and a hydrophilic coating on the other surface, a method for producing the same, and a building and a vehicle using the same. It is about. More specifically, the present invention relates to an invention in which a base (undercoat) layer is provided on the surface of a substrate, and a water / oil repellent coating or a hydrophilic and antifogging coating is provided thereon.
背景技術 Background art
従来、 建物や乗り物の窓ガラスには、,透明でかつ耐熱性、 耐候性、 耐 摩耗性で撥水、 防曇、 防汚機能を有する超薄膜コーティングが要求され ている。  Conventionally, window glass for buildings and vehicles has been required to have an ultra-thin coating that is transparent, heat-resistant, weather-resistant, and abrasion-resistant and has water-repellent, anti-fog, and anti-fouling functions.
このような防汚を目的としたコーティング膜の製造方法として、 現在、 撥水撥油機能を有するフロロカーボン系ポリマーを焼き付ける方法が知 られている。  As a method for producing such a coating film for the purpose of antifouling, a method of baking a fluorocarbon polymer having a water / oil repellent function is currently known.
この方法では、 基板の表面を良く洗浄後、 フルォロカーボン (フッ化 炭素) 基を含むアルコキシシランやクロロシランを塗布し、 乾燥後 3 0 0 °C程度で 1時間程度べ一キング (焼成、 あるいは焼き付け処理) をお こない、 基板表面に S iを含むフロロカーボン系ポリマーを焼き付ける 方法が一般的である。  In this method, after thoroughly cleaning the surface of the substrate, an alkoxysilane or chlorosilane containing a fluorocarbon (fluorocarbon) group is applied, and after drying, baking (baking or baking treatment) is performed at about 300 ° C for about 1 hour. In general, a method of baking a fluorocarbon-based polymer containing Si on the surface of a substrate without causing the above problems is common.
一方、 ガラス表面に光触媒を塗布し、 付着した有機物を光で分解する 方法も提案されている。  On the other hand, a method has been proposed in which a photocatalyst is applied to the glass surface and the attached organic matter is decomposed by light.
この方法では、 特開平 0 9 (1997)— 2 2 7 1 6 0号公報ゃ特開平 1 0 (1998)— 1 1 4 8 7 0号公報のような光触媒機能を有する酸化チタン微 粒子をバインダ一に分散し、 塗布焼成する方法が知られている。  According to this method, a titanium oxide fine particle having a photocatalytic function as disclosed in Japanese Patent Application Laid-Open No. 09 (1997)- There is known a method of dispersing, coating and baking.
しかしながら、 フロロカーボン系ポリマ一を焼き付ける方法では、 建 物や乗り物の窓の両面に用いた場合、 被膜が撥水性であるため、 外側に 雨滴がかかる時には、 水滴をはじいて視認性を向上できるが、 反対に内 側では曇り易くなり視認性が悪くなる。 However, the method of burning fluorocarbon polymer is When used on both sides of windows of objects and vehicles, the coating is water-repellent, so when raindrops fall on the outside, waterdrops can be repelled to improve visibility, but conversely, the inside tends to become cloudy and visibility is poor. Become.
一方、 光触媒を塗布する方法では、 建物や乗り物の窓の両面に用いた 場合、 被膜が親水性となるため、 内側方向では曇りを改善できるが、 反 対に外側に雨滴がかかる時には、 水滴で濡れて視認性が悪くなる。 また, 従来の光触媒を塗布する方法では、 耐久性が短く、 数ケ月で剥離してし まうという問題があった。  On the other hand, in the method of applying a photocatalyst, when it is used on both sides of a window of a building or a vehicle, the coating becomes hydrophilic, so that the fogging can be improved in the inward direction. It gets wet and visibility deteriorates. In addition, the conventional method of applying a photocatalyst has a problem that the durability is short and the photocatalyst is peeled off in a few months.
発明の開示 Disclosure of the invention
本発明は、 前記従来の問題を解決するため、 雨天における建物や乗り 物の窓の視認性を改善向上させることを第 1の目的とする。 本発明の第 2の目的は、 光触媒層の耐久性を向上することにある。  A first object of the present invention is to improve and improve the visibility of windows of buildings and vehicles in rainy weather in order to solve the conventional problems. A second object of the present invention is to improve the durability of the photocatalyst layer.
前記目的を達成するため、 本発明の透光性基板は、 一方の面が撥水撥 油性被膜で覆われ、 他方の面が親水性かつ防曇性を有する被膜で覆われ ている透光性基板であって、 前記撥水撥油性被膜がペルフルォロアルキ ル ·アルキル · シロキサンであり、 前記親水性かつ防曇性を有する被膜 が光触媒層であることを特徴とする。  In order to achieve the above object, the light-transmitting substrate of the present invention has a light-transmitting substrate in which one surface is covered with a water-repellent and oil-repellent film and the other surface is covered with a hydrophilic and anti-fog film. A substrate, wherein the water- and oil-repellent coating is perfluoroalkyl-alkyl-siloxane, and the hydrophilic and anti-fog coating is a photocatalytic layer.
次に本発明の透光性基板の製造方法は、 一方の面が撥水撥油性被膜で 覆われ、 他方の面が親水性かつ防曇性を有する被膜で覆われている透光 性基板の製造方法であって、 前記撥水撥油性被膜は、 ペルフルォロアル キル ·アルキル · シランを透光性基板の表面に処理して低分子脱離反応 により化学結合させ、 前記親水性かつ防曇性を有する被膜は、 光触媒能 を有する酸化チタンを含む層で形成することを特徴とする。  Next, the method for producing a light-transmitting substrate according to the present invention is directed to a method for manufacturing a light-transmitting substrate in which one surface is covered with a water- and oil-repellent film and the other surface is covered with a hydrophilic and anti-fog film. The manufacturing method, wherein the water- and oil-repellent coating has the hydrophilicity and anti-fogging property by treating perfluoroalkylalkylalkylsilane on the surface of a light-transmitting substrate and chemically bonding it by a low-molecular elimination reaction. The coating is characterized by being formed of a layer containing titanium oxide having photocatalytic ability.
次に本発明の建物は、 一方の面が撥水撥油性被膜で覆われ、 他方の面 が親水性かつ防曇性を有する被膜で覆われている透光性基板からなる窓 を備えた建物であって、 前記撥水撥油性被膜がペルフルォロアルキル · アルキル · シロキサンであり、 前記親水性かつ防曇性を有する被膜が光 触媒層であり、 前記撥水撥油性被膜面を屋外側に設置し、 前記光触媒層 を室内側に設置したことを特徴とする。 Next, the building of the present invention comprises a window having a light-transmitting substrate, one surface of which is covered with a water-repellent and oil-repellent coating, and the other surface of which is covered with a hydrophilic and anti-fog coating. The water- and oil-repellent coating is a perfluoroalkyl An alkylsiloxane, wherein the hydrophilic and anti-fog coating is a photocatalyst layer, the water- and oil-repellent coating surface is installed on the outdoor side, and the photocatalyst layer is installed on the indoor side. I do.
に本発明の乗り物は、 一方の面が撥水撥油性被膜で覆われ、 他方の 面が親水性かつ防曇性を有する被膜で覆われている透光性基板からなる 窓を備えた乗り物であって、 前記撥水撥油性被膜がペルフルォロアルキ ル ·アルキル · シロキサンであり、 前記親水性かつ防曇性を有する被膜 が光触媒層であり、 前記撥水撥油性被膜面を屋外側に設置し、 前記光触 媒層を室内側に設置したことを特徴とする。  The vehicle of the present invention is a vehicle having a window made of a light-transmitting substrate, one surface of which is covered with a water / oil repellent coating, and the other surface of which is covered with a hydrophilic and anti-fog coating. The water- and oil-repellent coating is perfluoroalkylalkylsiloxane, the hydrophilic and anti-fog coating is a photocatalyst layer, and the water- and oil-repellent coating is on the outdoor side. The optical catalyst layer is installed on the indoor side.
次に本発明の第 2番目の目的を達成するため、 光触媒層の基板側に、 さらにシリカ下地層を形成することが好ましい。  Next, in order to achieve the second object of the present invention, it is preferable to further form a silica underlayer on the substrate side of the photocatalytic layer.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の実施例 1における片面が親水性で他面が撥水性のガラ スの断面概念図である。  FIG. 1 is a conceptual cross-sectional view of a glass having a hydrophilic surface on one side and a water-repellent surface on the other side in Example 1 of the present invention.
図 2は本発明の実施例 2における片面が親水性で他面が撥水性のガラ スの断面概念図である。  FIG. 2 is a conceptual cross-sectional view of a glass having a hydrophilic surface on one side and a water-repellent surface on the other side in Example 2 of the present invention.
図 3は本発明の実施例 3における片面が親水性で他面が撥水性のガラ スの断面概念図である。  FIG. 3 is a conceptual cross-sectional view of a glass having a hydrophilic surface on one side and a water-repellent surface on the other side in Example 3 of the present invention.
図 4は本発明の実施例 4における片面が親水性で他面が撥水性のガラ スの断面概念図である。  FIG. 4 is a conceptual cross-sectional view of a glass having a hydrophilic surface on one side and a water-repellent surface on the other side in Example 4 of the present invention.
前記図において、 1はガラス基板、 2は親水性かつ防曇性膜、 3は撥 水性膜、 4はシリカ下地層である。  In the figure, 1 is a glass substrate, 2 is a hydrophilic and anti-fog film, 3 is a water repellent film, and 4 is a silica base layer.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明においては、 透光性基板が、 ガラス板及びプラスチック板から 選ばれる少なくとも一つであることが好ましい。 透光性基板の一方の面 は、 撥水撥油性が好ましく、 他方の面は親水性かつ防曇性であることが 要求される場合もあるからである。 In the present invention, the translucent substrate is preferably at least one selected from a glass plate and a plastic plate. One surface of the light-transmitting substrate is preferably water- and oil-repellent, and the other surface is hydrophilic and anti-fog. This is because it may be required.
本発明において、 ポリマー状または単分子膜状の撥水皮被膜となるぺ ルフルォロアルキル · アルキル · シランとして、 一般式 C F 3—(C F 2)n-R- S i XPC 13 _ p (nは 0または整数、 Rはアルキレン基、 ビニレン基、 ェチニレン基、 または S i、 酸素原子を含む置換基、 は Hまたはアルキル基、 シクロアルキル基、 ァリル基またはこれらの誘導 体から選ばれる置換基、 pは 0, 1または 2) 、 C F 3- (C F2) n - R— S i Xq (OA) 3 - q (nは 0または整数、 Rはアルキレン基、 ビ 二レン基、 ェチニレン基、 または S i、 酸素原子を含む置換基、 Xは H またはアルキル基、 シクロアルキル基、 ァリル基またはこれらの誘導体 から選ばれる置換基、 OAはアルコキシ基 (ただし、 Aは Hまたはアル キル基) 、 qは 0, 1または 2) 、 及びまたは C F 3— (C F 2) n— R - S i Xr Z 3 - r (nは 0または整数、 Rはアルキレン基、 ビニレン基、 ェチニレン基、 または S i、 酸素原子を含む置換基、 Xは Hまたはアル キル基、 シクロアルキル基、 ァリル基またはこれらの誘導体から選ばれ る置換基、 Zはイソシァネート (一 NCO) 基、 rは 0, 1または 2) から選ばれる少なくとも一つの化合物を用いると密度の高いポリマー状 または単分子膜状の撥水撥油被膜を形成する上で都合がよい。 さらに、 例えばペルフルォロアルキル · アルキル · シランとして、 下記の化合物 から選ばれる少なくとも一つを使用できる。 In the present invention, a polymeric or Bae Le Full O b alkyl alkyl silane which is a monomolecular film-like water repellent leather coatings, general formula CF 3 - (CF 2) n -R- S i X P C 13 _ p (n is 0 or an integer, R is an alkylene group, a vinylene group, an ethynylene group, or Si, a substituent containing an oxygen atom, is selected from H or an alkyl group, a cycloalkyl group, an aryl group, or a derivative thereof. Substituents, p is 0, 1 or 2), CF 3- (CF 2 ) n -R—S i X q (OA) 3 -q (n is 0 or an integer, R is an alkylene group, a vinylene group, Ethynylene group, or a substituent containing an Si or oxygen atom, X is a substituent selected from H or an alkyl group, a cycloalkyl group, an aryl group or a derivative thereof, and OA is an alkoxy group (where A is H or alkyl) Group), q is 0, 1 or 2), and / or CF 3 — (CF 2 ) n — R-S i X r Z 3 - r (n is 0 or an integer, R represents an alkylene group, vinylene group, Echiniren group or S i, a substituent containing an oxygen atom, X is H or aralkyl kill group, a cycloalkyl group, Ariru group or When a substituent selected from these derivatives, Z is an isocyanate (1-NCO) group, and r is at least one compound selected from 0, 1 or 2), a high-density polymer or monomolecular water repellent is used. This is convenient for forming an oil-repellent coating. Further, for example, at least one selected from the following compounds can be used as perfluoroalkyl / alkyl / silane.
(1) CF3 (CF2) 5 (CH2) 2 S i C 13 (1) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiC 13
(2) C F a (C F 2) 7 (CH2) 2 S i C 1 3 (2) CF a (CF 2 ) 7 (CH 2 ) 2 SiC 13
(3) C F a CH20 (CH2) x 5 S i C 1 3 (3) CF a CH 2 0 (CH 2 ) x 5 S i C 13
(4) C F 3 (CH2) 2 S i (CH3) 2 (CH2) S i C 1 (4) CF 3 (CH 2 ) 2 S i (CH 3 ) 2 (CH 2 ) S i C 1
(5) C F 3 (CF2) 3 (CH2) 2S i (CH3) (CH?) oS i C 1(5) CF 3 (CF 2 ) 3 (CH 2 ) 2 S i (CH 3 ) (CH ? ) OS i C 1
(6) C F 3 C OO (CH2) ! 5 S i C 13 (7) C F 3 (C F 2) 5 (CH2) 2 S i C 13 (6) CF 3 C OO (CH 2 )! 5 SiC 13 (7) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiC 13
(8) C F a (CF2) 7 (CH2) 2S i (CH3) 2 (CH2) 9S i C 1 3 (8) CF a (CF 2 ) 7 (CH 2) 2 S i (CH 3) 2 (CH 2) 9 S i C 1 3
(9) C F 3 (C F 2) 7 (CH2) 2 S i (CH3) 2 (CH2) 6 S i C 1 3 (9) CF 3 (CF 2 ) 7 (CH 2) 2 S i (CH 3) 2 (CH 2) 6 S i C 1 3
(10) C F 3 CH20 (CH2) 15S i (O CH3) 3 (10) CF 3 CH 2 0 (CH 2 ) 15 S i (O CH 3 ) 3
(11) C F a (C F 2) 7 (CH2) 2 S i (O C2H5) 3 (11) CF a (CF 2 ) 7 (CH 2 ) 2 S i (OC 2 H 5 ) 3
(12) C F 3 (CH2) 2S i (CH3) 2 (CH2) 15S i (OCH3) 3 (12) CF 3 (CH 2 ) 2 S i (CH 3 ) 2 (CH 2 ) 15 S i (OCH 3 ) 3
(13) C F 3 (C F 2) 7 (CH2) 2 S i (CH3) 2 (CH2) 9 S i (OCH3) 3 (13) CF 3 (CF 2 ) 7 (CH 2 ) 2 S i (CH 3 ) 2 (CH 2 ) 9 S i (OCH 3 ) 3
(14) CF3COO (CH2) 15S i (〇C2H5) 3 (14) CF 3 COO (CH 2 ) 15 S i (〇C 2 H 5 ) 3
(15) C F 3 (C F 2) 5 (CH2) 2 S i (NCO) 3 (15) CF 3 (CF 2 ) 5 (CH 2 ) 2 S i (NCO) 3
(16) C F 3 (C F 2) 7 (CH2) 2S i (NCO) 3 (16) CF 3 (CF 2 ) 7 (CH 2 ) 2 S i (NCO) 3
(17) C F 3 CH20 (CH2) 15S i (NCO) 3 (17) CF 3 CH 2 0 (CH 2 ) 15 S i (NCO) 3
(18) C F 3 (CH2) 2S i (CH3) 2 (CH2) 15S i (NCO) 3 (18) CF 3 (CH 2 ) 2 S i (CH 3 ) 2 (CH 2 ) 15 S i (NCO) 3
(19) CF3(CF2)3(CH2)2S i (C H 3) 2 (C H 2) 9 S i (NCO)3 (19) CF 3 (CF 2 ) 3 (CH 2 ) 2 S i (CH 3 ) 2 (CH 2 ) 9 S i (NCO) 3
(20) C F 3 C OO (CH2) 15 S i (NCO) 3 (20) CF 3 C OO (CH 2 ) 15 S i (NCO) 3
(21) C F 3 (CF2) 5 (CH2) 2 S i CH3 (NCO) 2 (21) CF 3 (CF 2 ) 5 (CH 2 ) 2 S i CH 3 (NCO) 2
(22) C F 3 (CF2) 7 (CH2) 2 S i CH3 (NCO) 2 (22) CF 3 (CF 2 ) 7 (CH 2 ) 2 S i CH 3 (NCO) 2
また、 シリカ下地層により、 基板の表面をサブミクロン乃至ミクロン オーダの凸凹に粗面化しておくと、 撥水撥油性および親水性を強くでき る。 さらにまた、 シリカ下地層がペルフルォロアルキル ·アルキル · シ ランとの脱塩化水素反応または脱アルコール反応または脱 HN CO反応 により処理されていると耐剥離強度の高い被膜となる。 また、 シリカ下 地層が、 ガラス基材表面にシリケ一トグラスを塗布し、 さらに加熱処理 またはプラズマアツシング処理することにより形成されていると、 基材 表面からのアル力リ溶出が抑えられ耐久性の高いガラス板となる。 また, シリカ下地層が、 ガラス基材表面に S i C 14、 S i HC 13、 S i H2 C l 2、 C I — (S i C l 2〇) n- S i C 1 3 (nは整数) から選ばれ る少なくとも一つの化合物を接触させ、 脱塩化水素反応処理させて形成 されていると耐剥離性の高い被膜となる。 If the surface of the substrate is roughened to a submicron to micron-order unevenness by the silica underlayer, the water / oil repellency and hydrophilicity can be enhanced. Furthermore, if the silica base layer is treated by a dehydrochlorination reaction, a dealcohol reaction, or a dehydrocarbon reaction with perfluoroalkyl / alkyl / silane, the resulting coating has high peeling strength. In addition, if the silica underlayer is formed by applying a silica glass to the surface of a glass substrate and then performing a heat treatment or a plasma assing process, elution from the surface of the substrate is suppressed, and durability is improved. High glass plate. Further, silica primer layer, S i C 1 4 surface of the glass substrate, S i HC 1 3, S i H 2 C l 2, CI - (S i C l 2 〇) n - S i C 1 3 ( n is an integer) When at least one compound is brought into contact and subjected to a dehydrochlorination reaction treatment, a film having high peeling resistance is obtained.
一方、 親水性の光触媒層として、 醇化チタン微粒子を含む被膜が形成 されており、 光励起に応じて表面に付着した有機物が酸化分解されると ガラス表面が常に清浄となり、 防曇効果の優れたガラス板となる。 また, 酸化チタン微粒子を含む被膜がシリ力を含んでいると耐擦傷性の優れた ガラス板となる。 さらに、 酸化チタン微粒子を含む被膜がシリカとシリ 力以外の無機酸化物を含んでいると親水性化作用を大きくできる。 また, シリカ以外の無機酸化物として、 カルシウムまたはストロンチウム等の 2価の金属のアルミン酸塩にユーロピウム、 プロセォジゥム、 及び Zま たはネオジゥム、 ジスプロシウム等の希土類金属を添加した蛍光体が触 媒効果を強くする上で都合がよい。 さらに、 ガラス基板の材質としては, 少なくとも 3 5 0〜 4 0 0 n m紫外線多少とも透す材質のガラスを用い たほうが屋外の光を有効に利用でき、 効率よく有機物を分解できる。 次に、 本発明の好ましい製造方法においては、 ガラス基板の片面にシ リカ下地層を形成する工程と、 前記シリカ下地層を介してペルフルォロ アルキル ·アルキル · シランで処理する工程と、 他面に親水性の光触媒 層を形成する工程により、 片面が撥水撥油性で他面が防曇性のガラス板 を製造できる。  On the other hand, as a hydrophilic photocatalyst layer, a coating containing fine titanium particles is formed, and when organic substances attached to the surface are oxidized and decomposed in response to photoexcitation, the glass surface is always cleaned, and glass with excellent anti-fog effect is obtained. It becomes a board. In addition, if the coating containing titanium oxide fine particles has a sili- sion force, a glass plate with excellent scratch resistance is obtained. Furthermore, when the coating containing the titanium oxide fine particles contains an inorganic oxide other than silica and silicic acid, the hydrophilicity-imparting effect can be increased. In addition, as an inorganic oxide other than silica, a phosphor obtained by adding a divalent metal aluminate such as calcium or strontium to a rare earth metal such as europium, prosodymium, or Z or neodymium or dysprosium has a catalytic effect. It is convenient for strengthening. Further, as a material for the glass substrate, it is better to use glass of a material that transmits at least 350 to 400 nm ultraviolet light, so that outdoor light can be used effectively and organic substances can be decomposed efficiently. Next, in a preferred production method of the present invention, a step of forming a silica underlayer on one surface of a glass substrate, a step of treating with a perfluoroalkylalkylalkylsilane through the silica underlayer, By forming a photocatalytic layer having a hydrophilic property, a glass plate having water- and oil-repellency on one side and anti-fogging on the other side can be produced.
また、 ガラス基板の片面にシリカ下地層を形成する工程と、 前記シリ 力下地層を介して親水性の光触媒層を形成する工程と、 他面をペルフル ォロアルキル ·アルキル · シランで処理する工程により、 片面が撥水撥 油性で他面が防曇性のガラス板の製造方法を製造できる。  Further, a step of forming a silica underlayer on one side of the glass substrate, a step of forming a hydrophilic photocatalyst layer via the above-mentioned silica underlayer, and a step of treating the other side with perfluoroalkylalkylalkylsilane A method for producing a glass plate having a water- and oil-repellent property on one side and an antifogging property on the other side can be manufactured.
また、 ガラス基板の両面にシリカ下地層を形成する工程と、 前記シリ 力下地層を介して片面をペルフルォロアルキル ·アルキル ·シランで処 理する工程と、 他面に前記シリカ下地層を介して親水性の光触媒層を形 成する工程により、 片面が撥水撥油性で他面が防曇性のガラス板を製造 できる。 A step of forming a silica underlayer on both sides of the glass substrate; a step of treating one side with perfluoroalkyl-alkyl-silane via the silicon underlayer; and a step of forming the silica underlayer on the other side. To form a hydrophilic photocatalytic layer By the forming step, a glass plate having one surface having water and oil repellency and the other surface having antifogging properties can be manufactured.
このとき、 片面をペルフルォロアルキル ·アルキル · シランで処理す る工程において、 脱塩化水素反応、 脱アルコール反応または脱 H N C O 反応させて撥水撥油性の膜を形成する工程を行うと効率よく撥水撥油性 の被膜を製造できる。  At this time, in the step of treating one surface with perfluoroalkylalkylalkylsilane, it is effective to perform a step of forming a water- and oil-repellent film by performing a dehydrochlorination reaction, a dealcohol reaction, or a de-HNCO reaction. Water- and oil-repellent coatings can be manufactured.
このとき、 微粒子を混合しておき、 基板の表面を粗面化するとより高 性能な撥水撥油性や防曇性能を備えたガラス板を製造できる。 一方、 親 水性の光触媒層の形成には、 酸化チタン微粒子を含む光触媒性塗膜組成 物を塗布焼結する方法が利用できる。 ここで、 酸化チタン微粒子を含む 光触媒性塗膜組成物にシリカを含めておくと耐久性の高い光触媒被膜を 形成できる。 また、 酸化チタン微粒子を含む光触媒性塗膜組成物にシリ 力とカルシウムまたはストロンチウム等の 2価の金属のアルミン酸塩に ユーロピウム、 プロセォジゥム、 及び/またはネオジゥム、 ジスプロシ ゥム等の希土類金属を添加した蛍光体を混合しておくと触媒活性を高め ることが可能となる。 なお、 酸化チタン微粒子を含む光触媒性塗膜組成 物を塗布焼結する工程を、 ガラス基板の風冷強化工程と同時に行うと省 エネ効果を向上できる。 また、 同様に、 シリカ下地層の形成工程を、 ガ ラス基板の風冷強化工程と同時に行うと省エネ効果を向上できる。 また本発明の建物においては、 ガラス窓が曇りやすい浴室、 洗面所、 ダイニングまたはキッチンに前記本発明のガラスを用いると、 特に高い 効果を発揮できる。 このとき、 少なくともいずれか一方あるいは両面の 膜面の表面を可視光の波長以下の凸凹に加工しておくと、 撥水撥油性及 び Zまたは防曇性のさらに優れた建物を提供できる。 なお、 内面に酸化 チタン微粒子を含む光触媒性塗膜組成物を塗布焼結しておくことで、 室 内へガラスを透過して入って来る紫外線を吸収できる効果がある。 また、 本発明の乗り物においては、 少なくともいずれか一方あるいは 両面の膜面の表面を可視光の波長以下の凸凹に加工しておくと、 撥水撥 油性及び または防曇性のさらに優れた、 すなわち、 安全性に優れた乗 り物を提供できる。 なお、 内面に酸化チタン微粒子を含む光触媒性塗膜 組成物を塗布焼結しておくことで、 車内へガラスを透過して入って来る 紫外線を吸収できる効果がある。 At this time, if the fine particles are mixed and the surface of the substrate is roughened, a glass plate having higher performance of water repellency, oil repellency and anti-fog performance can be manufactured. On the other hand, a method of applying and sintering a photocatalytic coating composition containing titanium oxide fine particles can be used to form a hydrophilic photocatalytic layer. Here, if silica is included in the photocatalytic coating composition containing titanium oxide fine particles, a photocatalytic coating having high durability can be formed. In addition, a photocatalytic coating composition containing titanium oxide fine particles was added to a silicic acid and an aluminate of a bivalent metal such as calcium or strontium, and a rare earth metal such as europium, prosodymium, and / or neodymium or dysprosium was added. Mixing the phosphor makes it possible to increase the catalytic activity. In addition, if the step of applying and sintering the photocatalytic coating composition containing the titanium oxide fine particles is performed simultaneously with the step of strengthening the air cooling of the glass substrate, the energy saving effect can be improved. Similarly, if the step of forming the silica underlayer is performed simultaneously with the step of strengthening the air cooling of the glass substrate, the energy saving effect can be improved. In the building of the present invention, particularly high effects can be exerted when the glass of the present invention is used in a bathroom, a washroom, a dining room or a kitchen where the glass windows are easily fogged. At this time, if at least one or both of the surfaces of the film are processed to have an unevenness not more than the wavelength of visible light, a building having more excellent water / oil repellency and Z or antifogging property can be provided. By coating and sintering the photocatalytic coating composition containing titanium oxide fine particles on the inner surface, there is an effect of absorbing ultraviolet light that penetrates the glass into the room. Further, in the vehicle of the present invention, when at least one or both surfaces of the film surface are processed to have an unevenness not more than the wavelength of visible light, water / oil repellency and / or antifogging properties are more excellent. A vehicle with excellent safety can be provided. By applying and sintering a photocatalytic coating composition containing titanium oxide fine particles on the inner surface, there is an effect of absorbing ultraviolet light that penetrates the glass and enters the vehicle.
次に本発明の第 1番目の実施形態は、 ガラス基板の片面をペルフルォ 口アルキル ·アルキル ·シランで処理する工程と、 他面に親水性の光触 媒層を形成する工程とにより、 少なくともガラス基板の表面の一方の面 がペルフルォロアルキル ·アルキル · シランで処理されており、 他の面 が親水性の光触媒層で覆われているガラス板を製造できた。  Next, in a first embodiment of the present invention, at least a glass substrate is formed by a step of treating one surface of a glass substrate with perfluoroalkyl / alkyl / silane and a step of forming a hydrophilic photocatalytic layer on the other surface. A glass plate could be manufactured in which one surface of the substrate surface was treated with perfluoroalkyl / alkyl / silane and the other surface was covered with a hydrophilic photocatalytic layer.
次に本発明の第 2番目の実施形態は、 ガラス基板の片面にシリカ下地 層を形成する工程と、 前記シリカ下地層を介してペルフルォロアルキ ル ·アルキル · シランで処理する工程と、 他面に親水性の光触媒層を形 成する工程とにより、 少なくともガラス基板の表面の一方の面がシリカ 下地層を介してペルフルォロアルキル ·アルキル · シランで処理されて おり、 他の面が親水性の光触媒層で覆われているガラス板を製造できた 次に本発明の第 3番目の実施形態は、 ガラス基板の片面にシリカ下地 層を形成する工程と、 前記シリカ下地層を介して親水性かつ防曇性の光 触媒層を形成する工程と、 他面をペルフルォロアルキル ·アルキル · シ ランで処理する工程とにより、 少なくともガラス基板の表面の一方の面 がペルフルォロアルキル ·アルキル · シランで処理されており、 他の面 がシリカ下地層を介して親水性の光触媒層で覆われているガラス板を製 造できた。 ガラス基板の上に直接親水性かつ防曇性の光触媒層、 例えば 光触媒能の高いアナターゼ型の酸化チタン微粒子層を形成すると、 水分 の介在により、 ガラス内に存在するアルカリ成分により、 酸化チタン微 粒子層は加水分解され、 剥離しやすくなり、 耐久性に問題があった。 し かし、 シリカ下地層により、 ガラス内に存在するアルカリ成分との間を 遮断することができるので、 耐久性は格段に上がる。 例えば従来法では 数ケ月の耐久性のものが、 本発明では数年ないし 1 0年以上の耐久性を 有する。 Next, in a second embodiment of the present invention, a step of forming a silica underlayer on one surface of a glass substrate, a step of treating with a perfluoroalkylalkylsilane through the silica underlayer, Forming a hydrophilic photocatalytic layer on the other surface, at least one surface of the surface of the glass substrate is treated with a perfluoroalkylalkylalkylsilane via a silica underlayer, and the other surface Was able to produce a glass plate covered with a hydrophilic photocatalyst layer.Next, a third embodiment of the present invention includes a step of forming a silica base layer on one side of a glass substrate, Forming a hydrophilic and anti-fog photocatalyst layer, and treating the other surface with perfluoroalkyl, alkyl, and silane, so that at least one of the surfaces of the glass substrate is perfluorinated. Are processed in Le alkyl silane, it could manufacture a glass sheet other surface is covered with a photocatalyst layer hydrophilic through a silica primer layer. When a hydrophilic and anti-fog photocatalytic layer, for example, an anatase-type titanium oxide fine particle layer having high photocatalytic ability, is formed directly on a glass substrate, the titanium oxide fine particles are formed by the presence of alkali components present in the glass due to moisture. The particle layer was hydrolyzed, easily peeled off, and had a problem in durability. However, the silica underlayer can block the alkali components present in the glass, so that the durability is significantly improved. For example, the conventional method has a durability of several months, but the present invention has a durability of several years to 10 years or more.
次に本発明の第 4番目の実施形態は、 ガラス基板の両面にシリカ下地 層を形成する工程と、 前記シリカ下地層を介して片面をペルフルォロア ルキル · アルキル · シランで処理する工程と、 他面に前記シリカ下地層 を介して親水性の光触媒層を形成する工程とにより、 少なくともガラス 基板の表面の一方の面がシリカ下地層を介してペルフルォロアルキル · アルキル · シランで処理されており、 他の面がシリカ下地層を介して親 水性の光触媒層で覆われているガラス板を製造できた。  Next, in a fourth embodiment of the present invention, a step of forming a silica underlayer on both sides of a glass substrate, a step of treating one side with perfluoroalkylalkylsilane through the silica underlayer, Forming a hydrophilic photocatalyst layer via the silica underlayer, whereby at least one surface of the surface of the glass substrate is treated with perfluoroalkylalkylalkylsilane via the silica underlayer. However, a glass plate whose other surface was covered with a hydrophilic photocatalytic layer via a silica base layer could be manufactured.
さらに、 上記工程で製造されガラス板を用いて、 ガラス板の親水性被 膜面を部屋側に、 撥水撥油性被膜面を屋外側に設置した建物を建設し、 窓の視認性を確認すると、 ガラス窓が曇りやすい浴室、 洗面所、 ダイ二 ングまたはキッチンにおいて特に高い効果を発揮できた。 このとき、 少 なくともいずれか一方あるいは両面の膜面の表面を可視光の波長以下の 凸凹に加工しておくと、 撥水撥油性及び Zまたは防曇性のさらに優れた 建物を提供できた。  Furthermore, using the glass plate manufactured in the above process, a building was constructed in which the hydrophilic coating surface of the glass plate was installed on the room side and the water- and oil-repellent coating surface was installed on the outdoor side, and the visibility of the windows was confirmed. It was particularly effective in bathrooms, washrooms, diving or kitchens where the glass windows tend to be cloudy. At this time, if at least one or both of the film surfaces were processed to be uneven at or below the wavelength of visible light, a building with even better water and oil repellency and Z or antifogging properties could be provided. .
—方、 上記工程で製造されガラス板を用いて、 ガラス板の親水性被膜 面を内側に、 撥水撥油性被膜面を外側に設置した窓を備えた自動車を製 造し、 窓の視認性向上効果を確認すると、 雨天での視認性が格段に向上 し、 さらにその結果として安全性に優れた自動車を製造できた。 このと き、 少なくともいずれか一方あるいは両面の膜面の表面を可視光の波長 以下の凸凹に加工しておくと、 撥水撥油性及びノまたは防曇性のさらに 優れた自動車を提供できた。 なお、 本発明が適用できる基材としては、 ガラスやプラスチック等 様々なものがあるが、 ガラス基板への適用が最も容易であった。 On the other hand, using the glass plate manufactured in the above process, an automobile with a window with the hydrophilic coating surface of the glass plate inside and the water- and oil-repellent coating surface outside is manufactured using the glass plate, and the visibility of the window is improved. When the improvement effect was confirmed, visibility in rainy weather was significantly improved, and as a result, a car with excellent safety could be manufactured. At this time, if at least one or both of the film surfaces are processed to have an unevenness not more than the wavelength of visible light, an automobile having more excellent water- and oil-repellency and no-fogging property can be provided. In addition, there are various substrates such as glass and plastic as a substrate to which the present invention can be applied, but application to a glass substrate was the easiest.
以下具体例を挙げて説明する。 なお、 以下の実施例においては、 単 に%としているのは、 重量%を意味する。  Hereinafter, a specific example will be described. In the following examples, “%” means “% by weight”.
(実施例 1 )  (Example 1)
あらかじめォキシ塩化チタンまたはォキシ硫酸チタン水溶液に 3倍モ ル量のアンモニアを添加混合し、 8 0 °Cで 1時間程度加熱してオルソチ タン酸、 チタン (IV) イオン、 ペルォキソチタン酸、 および酸化チタン 微粒子が混合分散された塗料を作成した。 この塗料の乾燥後の固形分は、 総重量で 1 0 %程度となるように調整した。 さらに、 テトラエトキシシ ランなどのアルコキシシランなどを添加しておくと、 成膜後シリカに変 化して被膜の親水効果を持続させる効果がある。  A three-fold molar amount of ammonia is added to an aqueous solution of titanium oxychloride or titanium oxysulfate in advance and mixed, and heated at 80 ° C for about 1 hour, and orthotitanic acid, titanium (IV) ion, peroxotitanic acid, and titanium oxide fine particles Was prepared by mixing and dispersing. The solid content of this paint after drying was adjusted so as to be about 10% in total weight. Furthermore, if an alkoxysilane such as tetraethoxysilane is added, it is converted into silica after film formation, and has an effect of maintaining the hydrophilic effect of the film.
次に、 図 1に示すように、 よく洗浄した風冷強化フロートガラス基板 1の片方の表面 (自動車窓ガラスの場合はスズ面を車内側、 建物の場合 は、 室内側) に、 前記塗料をロールコ一夕一を用いて 2 z m程度の膜厚 で均一に塗布した。  Next, as shown in Fig. 1, the paint was applied to one surface of the well-washed air-cooled tempered float glass substrate 1 (the tin side is the inside of the car for window glass, and the indoor side is the building). The film was uniformly applied to a film thickness of about 2 zm using a roll coater.
次に、 2 0 0 °Cで 3 0分程度加熱して約 0 . l ^ m膜厚の酸化チタン 微粒子を含む被膜 (親水性かつ防曇性膜) 2を作成した。 前記の熱処理 は、 ガラス基材の場合には、 1 0 0〜 6 5 0 °Cで可能であり、 プラスチ ックは一般には基材の軟化点以下で可能であり、 温度が高いほど硬度を 高くできる。 また、 膜厚煮関しては、 4 0 0 n m以下であれば、 基材の 光学特性を殆ど劣化させることがない。  Next, the coating film (hydrophilic and anti-fogging film) 2 containing titanium oxide fine particles having a thickness of about 0.1 m was formed by heating at 200 ° C. for about 30 minutes. In the case of a glass substrate, the heat treatment can be performed at 100 to 65 ° C., and plastic can be generally performed at a temperature equal to or lower than the softening point of the substrate. Can be higher. In addition, when the thickness is not more than 400 nm, the optical characteristics of the substrate are hardly deteriorated.
なお、 酸化チタン微粒子を含む被膜の膜厚は 1 n m〜 3 程度が実 用上最適であった。  The thickness of the film containing the titanium oxide fine particles was practically optimal at about 1 nm to 3 nm.
その後、 前記表面の反対側の表面にフロロ力一ボン基及びクロロシラ ン基を含む物質 (ペルフルォロアルキル ·アルキル ' シラン) を混合し た非水系の溶媒(例えば、 C F 3— ( C F 2) 7— ( C H 2) 2— S i C 1 を 1重量%の濃度でへキサメチルジシロキサンの溶媒に溶解した溶液を塗 布し、 相対湿度 4 0〜 5 0 %程度の雰囲気中で乾燥させると、 ガラスの 表面は一 O H基が露出しているため、 フッ素を含むクロロシラン系界面 活性剤のクロロシリル基と— O H基が脱塩酸反応して表面に、 '" S i ( O—) 。の結合が生成され、 表面に膜厚がナノメートルオーダのフッ 素を含むシロキサンフロロ力一ボン系ポリマ一膜 (撥水性膜) 3が化学 結合した状態で形成された (図 1 ) 。 Then, a substance (perfluoroalkyl-alkyl'silane) containing a fluorocarbon group and a chlorosilane group is mixed on the surface opposite to the surface. A non-aqueous solvent (for example, CF 3 — (CF 2 ) 7 — (CH 2 ) 2 — SiC 1 at a concentration of 1% by weight in a solvent of hexanemethyldisiloxane, When dried in an atmosphere with a relative humidity of about 40% to 50%, the OH group is exposed on the surface of the glass, so the chlorosilyl group of the chlorosilane surfactant containing fluorine and the --OH group are dehydrochlorinated. Then, a bond of “” S i (O—) is formed on the surface, and a siloxane fluorocarbon-based polymer film (water-repellent film) 3 containing fluorine with a thickness of nanometer order is formed on the surface. It was formed in a connected state (Fig. 1).
ここで、 ペルフルォロアルキル ·アルキル · シラン溶液を湿度 3 5 % 以下の雰囲気中で塗布し、 1〜 2時間程度ガラス表面と反応させた後、 ノルマルへキサン等の非水系の有機溶媒で未反応のペルフルォロアルキ ル ·アルキル · シラン溶液を洗浄除去すると、 ガラス基板表面に共有結 合した単分子膜状のフッ素を含むシロキサンフロロ力一ボン系の被膜を 形成できた。 この被膜の撥水性 (接触角で 1 1 8度) はポリマー膜に比 ベてやや高かった。 またここで、 ペルフルォロアルキル ·アルキル · シ ランとして、 アルコキシシランやイソシァネートシランを用いると、 脱 塩化水素反応の代わりに脱アルコール反応または脱 H N C O (水との加 水分解反応が伴う場合には、 脱 N H 2と脱 C〇2 ) 反応でも同様のシロ キサンフロロカーボン系ポリマー膜を作成できた。 Here, a perfluoroalkylalkylalkylsilane solution is applied in an atmosphere with a humidity of 35% or less and allowed to react with the glass surface for about 1 to 2 hours. Then, a nonaqueous organic solvent such as normal hexane is used. By washing and removing the unreacted perfluoroalkyl-alkyl-silane solution, a monomolecular film-like siloxane fluorocarbon film containing fluorine was formed on the surface of the glass substrate. The water repellency (118 degrees in contact angle) of this film was slightly higher than that of the polymer film. Also, when alkoxysilane or isocyanatesilane is used as perfluoroalkylalkylalkylsilane, a dealcoholization reaction or a dehydrogenation reaction with HNCO (water hydrolysis reaction with water occurs instead of a dehydrochlorination reaction) In such a case, a similar siloxane-fluorocarbon-based polymer film could be prepared by the reaction of removing NH 2 and removing C〇 2 ).
このようにして製作された一方の面が撥水性で他面が親水性のガラス 板を自動車のサイドガラスとして装着し、 雨天に車外の視認性を確認す ると、 窓ガラス車外側表面は極めて撥水性が高く (水に対する接触角で 1 1 5度が得られた) 付着する雨滴は順次ながれおち、 また、 窓ガラス 車外側表面は極めて親水性が高く、 エアコンディショナ一を入れなくて, ガラス表面で水分が結露しても曇ることがなかった。 さらに、 内側に酸 化チタン微粒子を含む被膜が形成されていることにより、 ガラスを透過 した紫外線をカツ卜する効果も確認された。 When a glass plate with one surface made water-repellent and the other surface made hydrophilic in this way was attached to the side glass of an automobile, and the visibility outside the vehicle was checked in rainy weather, the exterior surface of the window glass was extremely repellent. Highly water-based (a contact angle to water of 115 degrees was obtained) The attached raindrops gradually flowed down, and the window glass exterior surface was extremely hydrophilic, so there was no need for an air conditioner. Even when moisture condensed on the surface, there was no fogging. In addition, a coating containing titanium oxide fine particles is formed on the inside, allowing the glass to pass through. The effect of cutting the ultraviolet rays was also confirmed.
なお、 通常、 ガラス表面は、 空気中の有機物が付着して時間を経るに 伴って撥水性になっていくが、 本実施例の場合は、 室内側は、 酸化チタ ン微粒子を含む被膜の光触媒効果により、 付着した有機物が酸化分解さ れて常時親水性が保持された。  Normally, the glass surface becomes water-repellent as time elapses due to the adhesion of organic substances in the air. In the case of this embodiment, however, the photocatalyst of the coating containing titanium oxide fine particles is formed on the indoor side. Due to the effect, the attached organic matter was oxidatively decomposed and the hydrophilic property was always maintained.
したがって、 このようなガラス窓を装着した自動車は、 安全運転の上 で極めて効果が高かった。  Therefore, vehicles equipped with such glass windows were extremely effective in driving safely.
さらに、 シリカ下地層により、 基板の表面をサブミクロン乃至ミクロ ンオーダの凸凹に粗面化しておくと撥水性や親水性の効果を向上できた c この様なサブミクロン乃至ミクロンオーダの凸凹を形成する手段として は、 シリ力下地層形成時にシリケ一トグラスに微粒子を混合しておく手 段が実用的に利用できた。 Further, the silica primer layer to form a surface unevenness of submicron to the previously roughened uneven micro N'oda water-repellent or hydrophilic effect was improved in c such submicron to micron order of the substrate As a means, a method of mixing fine particles into silica glass at the time of forming a silicon underlayer was practically available.
また、 シリカ下地層の作成に、 前記シリケ一トガラス形成溶液の変わ りに、 S i C l 4、 S i HC l 3、 S i H2C l 2、 C I — (S i C 1 2 〇) n— S i C 1 3 (nは整数) から選ばれる少なくとも一つの化合物 を用い、 ガラス基板に接触させて脱塩化水素反応を起こさせてシリカ下 地層を形成する方法も使用できた。 特に、 この方法は、 ナノメ一タレべ ルのシリカ被膜の形成に有効であった。 Moreover, the creation of the silica primer layer, changes to Ri of the silicate one sharpened forming solution, S i C l 4, S i HC l 3, S i H 2 C l 2, CI - (S i C 1 2 〇) n - S i C 1 3 ( n is an integer) using at least one compound selected from, could also be used a method of contacting the glass substrate to cause a dehydrochlorination reaction to form silica under formation. In particular, this method was effective for forming a nanometer-level silica coating.
なお、 ここで、 酸化チタン微粒子を含む被膜は、 親水性の光触媒層と して機能し、 紫外線などの光励 に応じて表面に付着した有機物が酸化 分解する作用があり、 有機物の付着による親水性の劣化を防止できる効 果がある。 したがって、 ガラス基板として、 紫外線を透す材質のガラス を用いる方が効果は高くなる。 紫外線を透過しやすいガラスを用いても, この内側の酸化チタン微粒子を含む被膜によりガラスを透過する紫外線 はほぼ完全にカットできるので、 自動車や建物の窓の用いても何ら問題 はない。 実用上は、 青板ガラスより 3 5 0 nm〜400 nmの紫外線を 多く透す白板ガラスの方がよりよい結果が得られた。 また、 酸化チタン 微粒子とともにシリカを含ませておくと親水性の持続期間を延長できる 効果があった。 さらに、 酸化チタン微粒子を含む被膜としてシリカとシ リカ以外の 2価の金属であるカルシウムまたはストロンチウムのアルミ ン酸塩にユーロピウム、 プロセォジゥム、 及び Zまたはネオジゥム、 ジ スプロシゥム等の希土類金属を添加した蛍光体等の無機酸化物を含んだ 被膜を用いると触媒効果の発現できる波長を長波長側にシフトできた。 また、 酸化チタン微粒子を含む光触媒性塗膜組成物を塗布する工程を ガラスの風冷強化工程の前に行い、 ガラス基板の風冷強化工程と同時に 焼結を行うと加熱工程を少なくできコストダウンする上で効果が高かつ た。 Here, the coating containing the titanium oxide fine particles functions as a hydrophilic photocatalytic layer, and has an action of oxidatively decomposing organic substances attached to the surface in response to photoexcitation such as ultraviolet rays. This has the effect of preventing deterioration of the properties. Therefore, it is more effective to use glass made of a material that transmits ultraviolet light as the glass substrate. Even if glass that easily transmits ultraviolet light is used, there is no problem in using windows for automobiles or buildings, because the ultraviolet light that penetrates the glass can be almost completely cut by the coating containing titanium oxide fine particles inside. Practically, ultraviolet light with a wavelength of 350 nm to 400 nm Better results were obtained with more transparent white plate glass. In addition, when silica is included together with the titanium oxide fine particles, there is an effect that the duration of hydrophilicity can be extended. Furthermore, as a coating containing titanium oxide fine particles, a phosphor obtained by adding aluminate of calcium or strontium, which is a divalent metal other than silica and silica, to which europium, prosodymium, and Z or rare earth metals such as neodymium and dysprosium are added. The use of a coating containing an inorganic oxide such as that described above could shift the wavelength at which the catalytic effect can be exhibited to longer wavelengths. In addition, the step of applying the photocatalytic coating composition containing titanium oxide fine particles is performed before the step of strengthening the glass by air cooling. The effect was high.
なお、 ここでプラスチック基板の場合には、 ペルフルォロアルキル · アルキル ·シランで処理する前に、 あらかじめプラスチック基板表面を オゾン酸化法、 コロナ処理法、 酸素プラズマ処理法などを用いて、 表面 に水酸基、 アミノ基、 アミド基などの活性水素基を導入しておけば、 ガ ラス基板と同様の処理を行うことができる。  In the case of a plastic substrate, the surface of the plastic substrate is previously treated with an ozone oxidation method, a corona treatment method, an oxygen plasma treatment method, etc. before being treated with perfluoroalkyl / alkyl / silane. If an active hydrogen group such as a hydroxyl group, an amino group, or an amide group is introduced, the same processing as for a glass substrate can be performed.
(実施例 2 ) .  (Example 2).
図 2に示すように、 フロートガラス基板 1の片面であって、 強化、 非 強化、 スズ面及び非スズ面のそれぞれに、 シリゲートグラス形成用溶液 をスプレー法で 2 zx m程度の膜厚に塗布した。 前記シリケートグラス形 成用溶液は、 例えば、 信越化学工業社製のハードコーティング剤 K P— As shown in FIG. 2, a solution for forming a silicide glass is sprayed on one side of the float glass substrate 1 to a thickness of about 2 zx m on each of the reinforced, non-reinforced, tin side and non-tin side. Applied. The silicate glass forming solution may be, for example, a hard coating agent K P—
1 1 0 0 Aまたは 1 1 0 0 Bや東京応化工業社製の S i— 8 0 0 0 0等 がある。 これらのコーティング剤は、 いわゆるゾルゲル法でコ一ティン グ後加熱処理することによりシリカ被膜になる。 There are 110 A or 110 B and Sio-800 000 manufactured by Tokyo Ohka Kogyo Co., Ltd. These coating agents are coated with a so-called sol-gel method and then heat-treated to form a silica coating.
前記シリケートグラス形成用溶液を塗布した後、 温度: 3 5 0 °C、 3 After applying the silicate glass forming solution, temperature: 350 ° C, 3
0分加熱処理して膜厚が 8 0 0 n mのガラス状のシリカ下地層 (以下シ リカ被膜ともいうが、 チタンを含めて於いても良い) 4を形成した。 なお、 ここで、 加熱処理の代わりにプラズマアツシング ( 3 0 0 W、 2 0分程度) を行うことも可能であった。 この方法なら、 基板を高温度 まで加熱する必要がないので、 プラスチックの場合などに有効である。 次に、 実施例 1と同様の方法を用いて、 前記シリカ被膜の形成された 表面の反対側に酸化チタン被膜 (親水性かつ防曇性膜) 2を形成し、 さ らに前記シリカ被膜の表面に撥水性膜 3を形成したガラスサンプル Bを 作成した (図 2 ) 。 After heating for 0 minutes, a glassy silica underlayer with a thickness of 800 nm (Although it is also referred to as a silica coating, titanium may be included.) 4 was formed. Here, it was also possible to perform plasma assing (about 300 W, about 20 minutes) instead of the heat treatment. This method is effective for plastics because it is not necessary to heat the substrate to a high temperature. Next, using the same method as in Example 1, a titanium oxide film (hydrophilic and anti-fogging film) 2 was formed on the opposite side of the surface on which the silica film was formed. A glass sample B having a water-repellent film 3 formed on the surface was prepared (Fig. 2).
(実施例 3 )  (Example 3)
図 3に示すように、 実施例 2と同様に片面 (強化、 非強化、 スズ面及 び非スズ面のそれぞれを作成した。 ) にシリカ被膜 4を形成した後、 実 施例 1と同様の方法を用いて前記シリカ層の形成された表面に酸化チタ ン被膜 (親水性かつ防曇性膜) 2を形成し、 さらに前記シリカ被膜の形 成されていない表面に撥水性膜 3を形成したガラスサンプル Cを作成し た (図 3 ) 。  As shown in FIG. 3, a silica coating 4 was formed on one side (a reinforced, non-reinforced, tin side and a non-tin side were created) in the same manner as in Example 2, and then the same as in Example 1 was performed. A titanium oxide film (hydrophilic and anti-fog film) 2 was formed on the surface on which the silica layer was formed, and a water-repellent film 3 was formed on the surface on which the silica film was not formed by using the method. Glass sample C was prepared (Fig. 3).
次に、 実施例 1と同様の方法で作成したガラスサンプル Aと、 実施例 2で作成したガラスサンプル Bと実施例 3で作成したガラスサンプル C のそれぞれの両面の撥水性及び親水性の耐久性をサンシャインカーボン 式促進耐候性試験により、 接触角で評価した。 サンシャインカーボン式 促進耐候性試験の条件は下記のとおりであった。  Next, the durability of the water repellency and hydrophilicity of both surfaces of the glass sample A prepared in the same manner as in Example 1, the glass sample B prepared in Example 2, and the glass sample C prepared in Example 3 were measured. Was evaluated by a contact angle in a sunshine carbon accelerated weathering test. The conditions for the sunshine carbon accelerated weathering test were as follows.
(1) サンシャインカーボンアーク灯の数: 1灯 (力一ボンは上下 4対の 構造)  (1) Number of sunshine carbon arc lamps: 1 (4 pairs of upper and lower bonfires)
(2) 電源電圧:単相交流 2 0 0 V  (2) Power supply voltage: Single-phase 200 V
(3) 平均放電電圧電流: 5 0 V, 6 O A  (3) Average discharge voltage / current: 50 V, 6 O A
(4) 照射時間: 1 0 0 0時間 (4) Irradiation time: 100 hours
(5) ブラックパネル温度計の示す温度 6 3 ± 3 °C (6) 水を噴射する時間: 1 2 0分照射中に 1 8分間 (5) Temperature indicated by black panel thermometer 6 3 ± 3 ° C (6) Water injection time: 120 minutes 18 minutes during irradiation
(7) 供給源の水圧: 78〜 1 2 7 k P a  (7) Source water pressure: 78 to 127 kPa
(8) ノズル口径:約 1 mm  (8) Nozzle diameter: about 1 mm
(9) 試験片表面が受ける放射照度: 300〜700nmについて 255±45W/m2 その結果、 Bでは Aに比べ、 初期撥水性 (接触角 1 1 5度程度) は同 様であつたが、 撥水性の耐久性が 5倍程度優れていた。 (9) the surface of the test piece is subjected irradiance: 255 ± 45W / m 2 As a result about 300 to 700 nm, compared to B in A, the initial water repellency (contact angle 1 1 5 degrees) is been filed at the same way, The durability of water repellency was about 5 times better.
一方、 Cでは、 Aに比べ、 初期親水性の効果が高かった。 接触角は測 定不可能だった。 また、 接触角が 2 0度になる時間で評価したところ、 親水性の耐久性も 1 0倍程度優れていた。  On the other hand, C had a higher initial hydrophilicity effect than A. Contact angles could not be measured. In addition, when evaluated at the time when the contact angle becomes 20 degrees, the durability of the hydrophilicity was about 10 times better.
さらに、 C' として、 酸化チタン被膜形成時、 シリカを 30 %程度添 加して形成した酸化チタン被膜では、 光照射後の親水性持続期間を 1 0 倍程度向上できた。  Furthermore, as the C ', the titanium oxide film formed by adding about 30% of silica when forming the titanium oxide film was able to improve the hydrophilicity duration after light irradiation by about 10 times.
なお、 ガラス基材の風冷強化の有無による親水性や撥水性の耐久性の 結果には違いが見られなかったが、 スズ面に撥水膜を形成した場合には, 非スズ面に形成した場合に比べ耐久性は悪かつた。  There was no difference in the results of the durability of hydrophilicity and water repellency depending on the presence or absence of the air cooling of the glass substrate. However, when the water repellent film was formed on the tin surface, it was formed on the non-tin surface. The durability was poor as compared with the case where it was performed.
(実施例 4)  (Example 4)
図 4に示すように、 シリケートグラス形成用溶液 (例えば、 信越化学 工業社製のハードコ一ティング剤 KP— 1 1 0 OAまたは 1 1 0 0 Bや 東京応化工業社製の S i— 8 000 0等がある。 これらのコ一ティング 剤は、 エタノールで薄めることが可能であった。 ) をエタノールで 1Z 5程度に薄めてフロートガラス基板の両面にキャスト法で 0. 5 zxm程 度の膜厚に塗布した後、 温度: 3 5 0 °Cで 30分加熱処理て膜厚が約 5 0 nmのガラス状のシリ力下地層 (酸化チタンを含めて於いても良い) 4を両面に形成した。  As shown in FIG. 4, a silicate glass forming solution (for example, Shin-Etsu Chemical Co., Ltd. hard coating agent KP-110 OA or 110 B) or Tokyo Ohka Kogyo Co., Ltd. These coating agents could be diluted with ethanol.)) And diluted with ethanol to about 1Z5, and cast to a thickness of about 0.5 zxm on both sides of the float glass substrate by casting. After heating, the substrate was heated at a temperature of 350 ° C for 30 minutes to form a glassy silicon-based underlayer (may contain titanium oxide) 4 with a thickness of about 50 nm on both sides. .
次に、 実施例 1と同様の方法を用いて、 前記シリカ被膜の形成された 片一方の表面に酸化チタン被膜 (親水性膜) 2を形成し、 さらに反対側 の前記シリカ被膜の表面に撥水性膜 3を形成したガラス板を製作した (図 4 ) 。 Next, using the same method as in Example 1, a titanium oxide film (hydrophilic film) 2 was formed on one surface of the piece on which the silica film was formed, and further on the opposite side. A glass plate having a water-repellent film 3 formed on the surface of the silica coating was manufactured (FIG. 4).
この様にして製作したガラスを撥水面を屋外に、 親水面を屋内になる ように建物の窓に設置し、 屋外から太陽光が照射される条件で、 かつ室 内で湿度を変化させてガラスの曇り状態を評価した。 その結果、 冬季で も太陽光が一日照射されと 1週間後でも室内側のガラス面が曇ることは なかった。 通常、 ガラス表面は、 空気中の有機物が付着して時間を経る に伴って撥水性になっていくものだが、 この場合は、 車内側は、 ガラス を透過する紫外線と酸化チタン微粒子を含む被膜の光触媒効果により、 付着した有機物が酸化分解されて常時親水性が保持された。  The glass manufactured in this way is installed on the window of a building so that the water-repellent surface is outdoors and the hydrophilic surface is indoors, and the glass is exposed to sunlight from outside and the humidity is changed in the room. Was evaluated for cloudiness. As a result, the glass surface on the indoor side was not fogged even one week after sunlight was irradiated for one day in winter. Normally, the glass surface becomes water-repellent as the organic matter in the air adheres to it over time, but in this case, the inside of the car is covered with a coating containing ultraviolet light and titanium oxide fine particles that pass through the glass. Due to the photocatalytic effect, the attached organic matter was oxidized and decomposed, and the hydrophilicity was always maintained.
また、 屋外での雨滴の付着状態を評価すると直径が 3 mm程度の雨滴 は自然に流れ落ち、 屋外視認性に優れた建物を実現できた。 また、 ゥェ ザ一メーターによる耐久性の試験でも、 親水性及び撥水性とも約 1 0年 の耐久性が保障できた。  In addition, when the state of raindrop adhesion outdoors was evaluated, raindrops with a diameter of about 3 mm flowed down naturally, and a building with excellent outdoor visibility was realized. In addition, a durability test using a laser meter was able to guarantee a durability of about 10 years for both hydrophilicity and water repellency.
一方、 自動車のサイドガラスとして装着し、 雨天に車外の視認性を確 認すると、 窓ガラス車外側表面は極めて撥水性が高く (水に対する接触 角で 1 1 5度が得られた) 付着する雨滴は順次ながれおち、 また、 窓ガ ラス車外側表面は極めて親水性が高く、 エアコンディショナ一を入れな くて、 ガラス表面で水分が結露しても曇ることがなかった。 さらに、 内 側に酸化チタン微粒子を含む被膜が形成されていることにより、 ガラス を透過した紫外線をカットする効果も確認された。 さらに、 サンシャイ ンカーボン式促進耐候性試験による耐久性の試験でも、 実施例 1のもの に比べ、 親水性及び撥水性とも約 5〜 1 0倍の耐久性が保障できた。 ま た、 通常、 ガラス表面は、 空気中の有機物が付着して時間を経るに伴つ て撥水性になっていくものだが、 この場合は、 車内側は、 ガラスを透過 する紫外線と酸化チタン微粒子を含む被膜の光触媒効果により、 付着し た有機物が酸化分解されて常時親水性が保持された。 On the other hand, when installed as a side glass of a car and the visibility outside the car was confirmed in rainy weather, the outside surface of the window glass car was extremely water-repellent (a contact angle to water of 115 degrees was obtained). The exterior surface of the window glass car was extremely hydrophilic, and the air conditioner was not used. No moisture was condensed on the glass surface, and there was no fogging. Furthermore, the effect of cutting ultraviolet light transmitted through the glass was confirmed by forming a coating containing titanium oxide fine particles on the inner side. Further, in the durability test by the sunshine carbon type accelerated weathering test, about 5 to 10 times the durability of both hydrophilicity and water repellency was assured as compared with that of Example 1. Normally, the glass surface becomes water-repellent with the passage of time due to the attachment of organic matter in the air, but in this case, the inside of the car contains ultraviolet light and titanium oxide fine particles that pass through the glass. Due to the photocatalytic effect of the coating containing The organic matter was oxidatively decomposed and kept hydrophilic at all times.
したがって、 このようなガラス窓を装着した自動車は、 安全運転の上 で極めて効果が高かった。  Therefore, vehicles equipped with such glass windows were extremely effective in driving safely.
さらに、 シリカ下地層により、 基板の表面をサブミクロン乃至ミクロ ンオーダの凸凹に粗面化しておくと撥水性や親水性の効果を向上できた c この様なサブミクロン乃至ミクロンオーダの凸凹を形成する手段として は、 シリ力下地層形成時にシリケートグラスに微粒子を混合しておく手 段が実用的に利用できた。 Further, the silica primer layer to form a surface unevenness of submicron to the previously roughened uneven micro N'oda water-repellent or hydrophilic effect was improved in c such submicron to micron order of the substrate As a means, a method of mixing fine particles into silicate glass at the time of forming a silicon underlayer was practically available.
また、 シリカ下地層の作成に、 前記シリゲートガラス形成溶液の変わ りに、 S i C l 4、 S i HC l 3、 S i H2C l 2、 C I 一 (S i C 1 2 O) n- S i C 1 3 (nは整数) から選ばれる少なくとも一つの化合物 を用い、 ガラス基板に接触させて脱塩化水素反応を起こさせてシリカ下 地層を形成する方法も使用できた。 特に、 この方法は、 ナノメ一タレべ ルのシリカ被膜の形成に有効であった。 Moreover, the creation of the silica primer layer, the Ri river of the silicon gate glass forming solution, S i C l 4, S i HC l 3, S i H 2 C l 2, CI one (S i C 1 2 O) A method in which at least one compound selected from n-SiC13 (n is an integer) was brought into contact with a glass substrate to cause a dehydrochlorination reaction to form an underlayer of silica, which could also be used. In particular, this method was effective for forming a nanometer-level silica coating.
産業上の利用可能性 Industrial applicability
以上説明した通り、 本発明の方法を用いて製作したガラス板を用い、 ガラス板の親水性被膜面を内側に、 撥水撥油性被膜面を外側に設置した 窓を備えた自動車や建物を製作すると、 雨天での屋外視認性が格段に向 上し、 耐久性もあり、 その結果として安全性に優れた自動車や快適な建 物を提供できる。  As described above, using a glass plate manufactured using the method of the present invention, an automobile or a building having windows with the hydrophilic coating surface of the glass plate on the inside and the water- and oil-repellent coating surface on the outside is manufactured. This greatly improves outdoor visibility in rainy weather and is durable. As a result, it is possible to provide vehicles and comfortable buildings with excellent safety.

Claims

請求の範囲 The scope of the claims
1. 一方の面が撥水撥油性被膜で覆われ、 他方の面が親水性かつ防曇性 を有する被膜で覆われている透光性基板であって、 前記撥水撥油性被膜 がペルフルォロアルキル ·アルキル · シロキサンであり、 前記親水性か つ防曇性を有する被膜が光触媒層であることを特徴とする透光性基板。 1. A light-transmitting substrate in which one surface is covered with a water-repellent and oil-repellent coating and the other surface is covered with a hydrophilic and anti-fog coating, wherein the water-repellent and oil-repellent coating is Perful. A light-transmitting substrate, which is an o-alkyl-alkyl-siloxane, wherein the hydrophilic and anti-fog coating is a photocatalytic layer.
2. 前記光触媒層の基板側に、 さらにシリカ下地層が形成されている請 求項 1に記載の透光性基板。 2. The translucent substrate according to claim 1, wherein a silica base layer is further formed on the substrate side of the photocatalyst layer.
3. 前記撥水撥油性被膜の基板側に、 さらにシリカ下地層が形成されて いる請求項 1に記載の透光性基板。  3. The translucent substrate according to claim 1, wherein a silica base layer is further formed on the substrate side of the water- and oil-repellent coating.
4. 前記ペルフルォロアルキル ·アルキル ·シロキサンが、 一般式 C F 3- (C F2)n-R-S i Xp (一 O—) 3 - p (nは 0または整数、 Rは アルキレン基、 ビニレン基、 ェチニレン基、 または S i、 酸素原子を含 む置換基、 Xは Hまたはアルキル基、 シクロアルキル基、 ァリル基また はこれらの誘導体から選ばれる置換基、 pは 0, 1または 2) で示され る請求項 1に記載の透光性基板。 4. The above-mentioned perfluoroalkyl-alkyl-siloxane is represented by the general formula: CF 3- (CF 2 ) n -RS i X p (one O—) 3 -p (n is 0 or an integer, R is an alkylene group, vinylene Group, ethynylene group or Si, a substituent containing an oxygen atom, X is H or a substituent selected from an alkyl group, a cycloalkyl group, an aryl group or a derivative thereof, and p is 0, 1 or 2) The translucent substrate according to claim 1, which is shown.
5. 前記撥水撥油性被膜が、 ポリマー状または単分子膜状である請求項 1に記載の透光性基板。  5. The translucent substrate according to claim 1, wherein the water- and oil-repellent coating is a polymer or a monomolecular film.
6. 前記シリカ下地層及び前記光触媒層により、 基板の表面が粗面化さ れている請求項 2に記載の透光性基板。  6. The translucent substrate according to claim 2, wherein the surface of the substrate is roughened by the silica base layer and the photocatalytic layer.
7. 前記シリカ下地層の表面における粗面化の程度が、 サブミクロン乃 至ミクロンオーダの凸凹である請求項 6に記載の透光性基板。 7. The translucent substrate according to claim 6, wherein the degree of surface roughening of the surface of the silica underlayer is unevenness on the order of submicron to micron.
8. 前記シリカ下地層が、 透光性基板表面に S i C 14、 S i HC 1 3 S i H2 C 1 2、 及び C 1 一 (S i C l 20) n_ S i C l 3 (nは整 数) から選ばれる少なくとも一つの化合物を接触させ、 脱塩化水素反応 処理させて形成されている請求項 2に記載の透光性基板。 8. The silica primer layer is, S i C 1 4 on a transparent substrate surface, S i HC 1 3 S i H 2 C 1 2, and C 1 one (S i C l 2 0) n _ S i C 3. The translucent substrate according to claim 2, formed by contacting at least one compound selected from l3 (n is an integer) and subjecting the compound to a dehydrochlorination reaction.
9. 前記光触媒層が、 酸化チタン微粒子を含み、 光励起に応じて表面に 付着した有機物を酸化分解する請求項 1に記載の透光性基板。 9. The photocatalyst layer contains titanium oxide fine particles, 2. The translucent substrate according to claim 1, wherein the attached organic substance is oxidatively decomposed.
1 0. 前記光触媒層が、 酸化チタン微粒子を含み、 さらにシリカを含ん でいる請求項 1に記載の透光性基板。  10. The translucent substrate according to claim 1, wherein the photocatalyst layer contains fine particles of titanium oxide and further contains silica.
1 1. 前記酸化チタン微粒子を含む光触媒層がシリカとシリカ以外の無 機酸化物を含んでいる請求項 1 0に記載の透光性基板。  11. The translucent substrate according to claim 10, wherein the photocatalyst layer containing the titanium oxide fine particles contains silica and an inorganic oxide other than silica.
1 2. シリカ以外の無機酸化物が蛍光体を含んでいる請求項 1 1に記載 の透光性基板。  12. The translucent substrate according to claim 11, wherein the inorganic oxide other than silica contains a phosphor.
1 3. 前記蛍光体が 2価の金属のアルミン酸塩に希土類金属を添加した ものである請求項 1 2に記載の透光性基板。  13. The translucent substrate according to claim 12, wherein the phosphor is obtained by adding a rare earth metal to a divalent metal aluminate.
14. 前記 2価の金属がカルシウムまたはストロンチウムであり、 希土 類金属がユーロピウム、 プロセォジゥム、 ネオジゥム、 ジスプロシウム のいずれかである請求項 1 3に記載の透光性基板。  14. The translucent substrate according to claim 13, wherein the divalent metal is calcium or strontium, and the rare earth metal is any of europium, prosodymium, neodymium, and dysprosium.
1 5. 前記光触媒層の膜厚が 1 nm以上 3 m以下である請求項 1に記 載の透光性基板。  1 5. The translucent substrate according to claim 1, wherein the thickness of the photocatalyst layer is 1 nm or more and 3 m or less.
1 6. 前記透光性基板が、 ガラス板及びプラスチック板から選ばれる少 なくとも一つである請求項 1に記載の透光性基板。  1 6. The translucent substrate according to claim 1, wherein the translucent substrate is at least one selected from a glass plate and a plastic plate.
1 7. 前記ガラス板が、 紫外線を透す材質のガラス板である請求項 1 6 に記載の透光性基板。  17. The translucent substrate according to claim 16, wherein the glass plate is a glass plate made of a material that transmits ultraviolet light.
1 8. 前記紫外線を透す材質のガラス板が、 3 50〜400 nmの波長 の光を透すガラスである請求項 1 7に記載の透光性基板。  18. The translucent substrate according to claim 17, wherein the glass plate made of a material that transmits ultraviolet light is a glass that transmits light having a wavelength of 350 to 400 nm.
1 9. 一方の面が撥水撥油性被膜で覆われ、 他方の面が親水性かつ防曇 性を有する被膜で覆われている透光性基板の製造方法であって、 前記撥水撥油性被膜は、 ペルフルォロアルキル ·アルキル ' シランを 透光性基板の表面に処理して低分子脱離反応により化学結合させ、 前記親水性かつ防曇性を有する被膜は、 光触媒能を有する酸化チタン を含む層で形成することを特徴とする透光性基板の製造方法。 ' 1 9. A method for producing a light-transmitting substrate, wherein one surface is covered with a water- and oil-repellent coating, and the other surface is covered with a hydrophilic and anti-fog coating. The film is prepared by treating perfluoroalkylalkyl silane on the surface of a light-transmitting substrate and chemically bonding it by a low-molecular elimination reaction. A method for manufacturing a light-transmitting substrate, comprising forming a layer containing titanium. '
20. 前記光触媒層の基板側に、 さらにシリカ下地層を形成する請求項 1 9記載の透光性基板の製造方法。 20. The method for manufacturing a translucent substrate according to claim 19, further comprising forming a silica base layer on the substrate side of the photocatalyst layer.
2 1. 前記撥水撥油性被膜の基板側に、 さらにシリカ下地層を形成する 請求項 1 9記載の透光性基板の製造方法。  21. The method according to claim 19, further comprising forming a silica base layer on the substrate side of the water- and oil-repellent coating.
22. 片面をペルフルォロアルキル ·アルキル · シランで処理する工程 において、 脱塩化水素反応、 脱アルコ一ル反応及び脱 HNCO反応から 選ばれる少なくとも一つの低分子脱離反応により撥水撥油性の膜を形成 する請求項 1 9に記載の透光性基板の製造方法。 22. In the step of treating one surface with perfluoroalkyl-alkyl-silane, water- and oil-repellency is achieved by at least one low-molecular desorption reaction selected from a dehydrochlorination reaction, a de-alcohol reaction and a de-HNCO reaction. The method for producing a light-transmitting substrate according to claim 19, wherein the film is formed.
2 3. 前記ペルフルォロアルキル ·アルキル · シランが、 一般式 CF 3 - (C F 2)n-R- S i XPC 13 _ p (nは 0または整数、 Rはアルキレ ン基、 ビニレン基、 ェチニレン基、 または S i、 酸素原子を含む置換基, Xは Hまたはアルキル基、 シクロアルキル基、 ァリル基またはこれらの 誘導体から選ばれる置換基、 Pは 0, 1または 2) 、 C F 3— (C F 2) n-R- S i Xq (OA) 3-g (nは 0または整数、 Rはアルキレン 基、 ビエレン基、 ェチニレン基、 または S i、 酸素原子を含む置換基、 Xは Hまたはアルキル基、 シクロアルキル基、 ァリル基またはこれらの 誘導体から選ばれる置換基、 OAはアルコキシ基 (ただし、 Aは Hまた はアルキル基) 、 qは 0, 1または 2) 、 及びまたは C F3— (C F 2) n- R - S i X r Z 3 _ r (nは 0または整数、 Rはアルキレン基、 ビ 二レン基、 ェチニレン基、 または S i、 酸素原子を含む置換基、 Xは H またはアルキル基、 シクロアルキル基、 ァリル基またはこれらの誘導体 から選ばれる置換基、 Zはイソシァネート (-NCO) 基、 rは 0, 1 または 2) から選ばれる少なくとも一つの化合物である請求項 1 9に記 載の透光性基板の製造方法。 . 2 3. The above perfluoroalkylalkyl silane is represented by the general formula CF 3- (CF 2 ) n -R-S i X P C 13 _ p (n is 0 or an integer, R is an alkylene group, vinylene Group, ethynylene group or Si, a substituent containing an oxygen atom, X is H or a substituent selected from an alkyl group, a cycloalkyl group, an aryl group or a derivative thereof, P is 0, 1 or 2), CF 3 — (CF 2 ) n -R-S i X q (OA) 3 - g (n is 0 or an integer, R is an alkylene group, a biylene group, an ethynylene group, or Si, a substituent containing an oxygen atom, and X is H or a substituent selected from an alkyl group, a cycloalkyl group, an aryl group or a derivative thereof, OA is an alkoxy group (where A is H or an alkyl group), q is 0, 1 or 2), and / or CF 3 — (CF 2 ) n -R-S i X r Z 3 _ r (n is 0 or an integer, R is an alkylene group, a vinylene group, X is a substituent selected from H or an alkyl group, a cycloalkyl group, an aryl group or a derivative thereof, Z is an isocyanate (-NCO) group, r is 0, The method for producing a translucent substrate according to claim 19, wherein the method is at least one compound selected from 1 or 2). .
24. 前記透光性基板が、 ガラス板及びプラスチック板から選ばれる少 なくとも一つである請求項 1 9に記載の透光性基板の製造方法。 24. The method for manufacturing a light-transmitting substrate according to claim 19, wherein the light-transmitting substrate is at least one selected from a glass plate and a plastic plate.
2 5. 前記ガラス基材表面にシリゲートグラスを塗布し、 さらに加熱処 理またはプラズマアツシング処理することによりシリカ下地層を形成す る請求項 24に記載の透光性基板の製造方法。 25. The method for manufacturing a light-transmitting substrate according to claim 24, wherein a silica base layer is formed by applying a silicate glass to the surface of the glass base material and further performing a heat treatment or a plasma asking treatment.
2 6. 前記シリカ下地層形成時にシリケ一トグラスに微粒子を混合して おき、 基板の表面を粗面化する請求項 1 9に記載の透光性基板の製造方 法。  26. The method for producing a translucent substrate according to claim 19, wherein fine particles are mixed into silica glass at the time of forming the silica base layer, and the surface of the substrate is roughened.
2 7. 前記シリカ下地層として、 透光性基板表面に S i C 14、 S i H C l 3、 S i H2C l 2、 及び C I— (S i C 1 20) n- S i C 13 (n は整数) から選ばれる少なくとも一つのクロロシラン化合物を接触させ, 脱塩化水素反応処理させて形成する請求項 1 9に記載の透光性基板の製 造方法。 As 2 7. The silica primer layer, S i C 1 4 on a transparent substrate surface, S i HC l 3, S i H 2 C l 2, and CI- (S i C 1 2 0 ) n - S i C 1 3 (n is an integer) at least one contacting the chlorosilane compound, manufacturing method of the light transmissive substrate according to claim 1 9, formed by the process dehydrochlorination selected from.
28. 前記クロロシラン化合物に、 さらに微粒子を混合しておき、 基板 の表面を粗面化する請求項 27に記載の透光性基板の製造方法。  28. The method according to claim 27, wherein fine particles are further mixed with the chlorosilane compound to roughen the surface of the substrate.
2 9. 前記光触媒層を、 酸化チタン微粒子を含む光触媒性塗膜組成物を 塗布焼結して形成する請求項 1 9に記載の透光性基板の製造方法。  29. The method according to claim 19, wherein the photocatalyst layer is formed by applying and sintering a photocatalytic coating composition containing titanium oxide fine particles.
30. 前記酸化チタン微粒子を含む光触媒性塗膜組成物に、 さらにシリ 力を含む請求項 2 9に記載の透光性基板の製造方法。  30. The method for producing a light-transmitting substrate according to claim 29, wherein the photocatalytic coating composition containing the titanium oxide fine particles further contains a silicic acid.
3 1. 前記酸化チタン微粒子を含む光触媒性塗膜組成物に、 さらにシリ 力とシリカ以外の無機酸化物を含める請求項 2 9に記載の透光性基板の 製造方法。  31. The method for producing a light-transmitting substrate according to claim 29, wherein the photocatalytic coating composition containing the titanium oxide fine particles further contains an inorganic oxide other than silica and silica.
32. シリカ以外の無機酸化物が、 蛍光体を含む請求項 3 1に記載の透 光性基板の製造方法。  32. The method for producing a transparent substrate according to claim 31, wherein the inorganic oxide other than silica contains a phosphor.
33. 前記蛍光体が、 2価の金属のアルミン酸塩に希土類金属を添加し た組成である請求項 3 1に記載の透光性基板の製造方法。  33. The method according to claim 31, wherein the phosphor has a composition obtained by adding a rare earth metal to a divalent metal aluminate.
34. 前記 2価の金属がカルシウム及びストロンチウムから選ばれる少 なくとも一つであり、 希土類金属がユーロピウム、 プロセォジゥム、 ネ ォジゥム、 及びジスプロシウムから選ばれる少なくとも一つである請求 項 3 3に記載の透光性基板の製造方法。 34. The divalent metal is at least one selected from calcium and strontium, and the rare earth metal is europium, prosodymium, 34. The method for producing a translucent substrate according to claim 33, wherein the method is at least one selected from the group consisting of dysprosium and dysprosium.
3 5 . 前記酸化チタン微粒子を含む光触媒性塗膜組成物を塗布焼結する 工程を、 ガラス基板の風冷強化工程と同時に行う請求項 2 4に記載の透 光性基板の製造方法。  35. The method according to claim 24, wherein the step of applying and sintering the photocatalytic coating composition containing the titanium oxide fine particles is performed simultaneously with the step of strengthening the air cooling of the glass substrate.
3 6 . 前記シリカ下地層の形成工程を、 ガラス基板の風冷強化工程と同 時に行う請求項 2 4に記載の透光性基板の製造方法。  36. The method for manufacturing a light-transmitting substrate according to claim 24, wherein the step of forming the silica underlayer is performed simultaneously with the step of strengthening the air-cooling of the glass substrate.
3 7 . —方の面が撥水撥油性被膜で覆われ、 他方の面が親水性かつ防曇 性を有する被膜で覆われている透光性基板からなる窓を備えた建物であ つて、 前記撥水撥油性被膜がペルフルォロアルキル ·アルキル · シロキ サンであり、 前記親水性かつ防曇性を有する被膜が光触媒層であり、 前記撥水撥油性被膜面を屋外側に設置し、 前記光触媒層を室内側に設 置したことを特徴とする建物。 37.A building with windows made of a light-transmitting substrate, one side of which is covered with a water-repellent and oil-repellent coating, and the other side of which is covered with a hydrophilic and anti-fog coating. The water- and oil-repellent coating is a perfluoroalkylalkylsiloxane, the hydrophilic and anti-fog coating is a photocatalyst layer, and the water- and oil-repellent coating is installed on the outdoor side, A building, wherein the photocatalyst layer is provided on the indoor side.
3 8 . 室内が浴室、 洗面所、 ダイニング及びキッチンから選ばれる少な くとも一つの部屋である請求項 3 7に記載の建物。  38. The building according to claim 37, wherein the room is at least one room selected from a bathroom, a washroom, a dining room, and a kitchen.
3 9 . 透光性基板の少なくともいずれか一方の膜面の表面が凸凹である 請求項 3 7に記載の建物。  39. The building according to claim 37, wherein the surface of at least one of the film surfaces of the translucent substrate is uneven.
4 0 . 表面の凸凹が可視光の波長以下の凸凹である請求項 3 9に記載の 建物。  40. The building according to claim 39, wherein the irregularities on the surface are irregularities of a wavelength of visible light or less.
4 1 . 一方の面が撥水撥油性被膜で覆われ、 他方の面が親水性かつ防曇 性を有する被膜で覆われている透光性基板からなる窓を備えた乗り物で あって、 前記撥水撥油性被膜がペルフルォロアルキル · アルキル · シロ キサンであり、 前記親水性かつ防曇性を有する被膜が光触媒層であり、 前記撥水撥油性被膜面を屋外側に設置し、 前記光触媒層を室内側に設 置したことを特徴とする乗り物。 41. A vehicle having a window made of a light-transmitting substrate, one surface of which is covered with a water- and oil-repellent film and the other surface of which is covered with a film having hydrophilicity and anti-fog properties, The water- and oil-repellent coating is a perfluoroalkyl-alkyl-siloxane, the hydrophilic and anti-fog coating is a photocatalyst layer, and the water- and oil-repellent coating is installed on the outdoor side, A vehicle having a photocatalyst layer installed indoors.
4 2 . 透光性基板の少なくともいずれか一方の膜面の表面が凸凹である 請求項 4 1に記載の乗り物。 4 2. The surface of at least one of the film surfaces of the translucent substrate is uneven The vehicle according to claim 41.
4 3 . 表面の凸凹が可視光の波長以下の凸凹である請求項 4 2に記載の 乗り物。  43. The vehicle according to claim 42, wherein the irregularities on the surface are irregularities equal to or less than the wavelength of visible light.
PCT/JP2001/009193 2000-10-23 2001-10-19 Light-transmitting substrate, process for producing the same, and building and vehicle WO2002034687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001295975A AU2001295975A1 (en) 2000-10-23 2001-10-19 Light-transmitting substrate, process for producing the same, and building and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-322319 2000-10-23
JP2000322319 2000-10-23

Publications (1)

Publication Number Publication Date
WO2002034687A1 true WO2002034687A1 (en) 2002-05-02

Family

ID=18800222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009193 WO2002034687A1 (en) 2000-10-23 2001-10-19 Light-transmitting substrate, process for producing the same, and building and vehicle

Country Status (3)

Country Link
AU (1) AU2001295975A1 (en)
TW (1) TW508259B (en)
WO (1) WO2002034687A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107082A2 (en) * 2005-04-01 2006-10-12 Daikin Industries, Ltd. Surface modifier and its use
CN107083184A (en) * 2016-02-12 2017-08-22 通用汽车环球科技运作有限责任公司 The method for forming automatically cleaning membranous system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492545A2 (en) * 1990-12-25 1992-07-01 Matsushita Electric Industrial Co., Ltd. Transparent substrate with monomolecular film thereon and method of manufacturing the same
EP0497189A2 (en) * 1991-01-23 1992-08-05 Matsushita Electric Industrial Co., Ltd. Water- and oil-repelling absorbed film and method of manufacturing the same
EP0842908A1 (en) * 1996-11-18 1998-05-20 Nippon Sheet Glass Co., Ltd. Water repellant glass plate and method for manufacturing the same
JP2000086933A (en) * 1998-09-16 2000-03-28 Toto Ltd Photocatalytic hydrophilic material and photocatalytic hydrophilic coating composition
JP2000103007A (en) * 1991-01-23 2000-04-11 Matsushita Electric Ind Co Ltd Article having water-repellent oil-repellent surface and hydrophilic surface and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492545A2 (en) * 1990-12-25 1992-07-01 Matsushita Electric Industrial Co., Ltd. Transparent substrate with monomolecular film thereon and method of manufacturing the same
EP0497189A2 (en) * 1991-01-23 1992-08-05 Matsushita Electric Industrial Co., Ltd. Water- and oil-repelling absorbed film and method of manufacturing the same
JP2000103007A (en) * 1991-01-23 2000-04-11 Matsushita Electric Ind Co Ltd Article having water-repellent oil-repellent surface and hydrophilic surface and manufacture thereof
EP0842908A1 (en) * 1996-11-18 1998-05-20 Nippon Sheet Glass Co., Ltd. Water repellant glass plate and method for manufacturing the same
JP2000086933A (en) * 1998-09-16 2000-03-28 Toto Ltd Photocatalytic hydrophilic material and photocatalytic hydrophilic coating composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107082A2 (en) * 2005-04-01 2006-10-12 Daikin Industries, Ltd. Surface modifier and its use
WO2006107082A3 (en) * 2005-04-01 2007-01-25 Daikin Ind Ltd Surface modifier and its use
US8664421B2 (en) 2005-04-01 2014-03-04 Daikin Industries, Ltd. Surface modifier and its use
CN107083184A (en) * 2016-02-12 2017-08-22 通用汽车环球科技运作有限责任公司 The method for forming automatically cleaning membranous system
US10829665B2 (en) 2016-02-12 2020-11-10 GM Global Technology Operations LLC Method of forming a self-cleaning film system

Also Published As

Publication number Publication date
AU2001295975A1 (en) 2002-05-06
TW508259B (en) 2002-11-01

Similar Documents

Publication Publication Date Title
JP3303696B2 (en) Photocatalytic hydrophilic coating composition
US6337129B1 (en) Antifouling member and antifouling coating composition
EP2128214B1 (en) Antifouling member and antifouling coating composition
JP3797037B2 (en) Photocatalytic hydrophilic coating composition
MXPA06013794A (en) Hydrophilic compositions, methods for their production, and substrates coated with such compositions.
JPH10231146A (en) Antifogging and antifouling glass article
WO2000018504A1 (en) Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
JP2008500169A (en) Multilayer coating comprising inorganic oxide network containing layer and application method thereof
JPH1150006A (en) Pretreatment of surface forming photocalytic hydrophilic coating film and cleaning agent and unedrcoating composition used therefor
JP2006131917A (en) Photocatalytic hydrophilic coating composition
JP2002211956A (en) Translucent substrate, method of manufacturing for the same, building and vehicle
JP2008284715A (en) Hydrophilic member
JPH10212809A (en) Building material for external wall
WO2002034687A1 (en) Light-transmitting substrate, process for producing the same, and building and vehicle
KR101760060B1 (en) Titanium dioxide photocatalyst composition for glass coating and preparation method thereof
JP2002127310A (en) Glass plate having water drop adhesion preventive property and heat ray blocking property
JP4363820B2 (en) Method for promoting conversion of polysilazane coating to siliceous
JPH09188850A (en) Photocatalytic hydrophilic coating composition
JPH10182189A (en) Window glass for building
KR19990080360A (en) Multifunctional car glass
JP3109457B2 (en) Photocatalytic hydrophilic member and photocatalytic hydrophilic coating composition
JPH11320750A (en) Photocatalytic hydrophilic composite material
JP2001079979A (en) Photocatalytic hydrophilic member
JPH10237380A (en) Member having water-repelling surface and water-repelling coating composition
JPH1176834A (en) Photocatalytic hydrophilic component and photocatalytic hydrophilic coated composition

Legal Events

Date Code Title Description
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase