WO2008046165A2 - Anti-adhesive and antistatic composition - Google Patents

Anti-adhesive and antistatic composition Download PDF

Info

Publication number
WO2008046165A2
WO2008046165A2 PCT/BE2007/000113 BE2007000113W WO2008046165A2 WO 2008046165 A2 WO2008046165 A2 WO 2008046165A2 BE 2007000113 W BE2007000113 W BE 2007000113W WO 2008046165 A2 WO2008046165 A2 WO 2008046165A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition
carbon nanotubes
pdms
weight
coating
Prior art date
Application number
PCT/BE2007/000113
Other languages
French (fr)
Other versions
WO2008046165A3 (en
Inventor
Alexandre Beigbeder
Daniel Bonduel
Michäel CLAES
Myriam Devalckenaere
Philippe Dubois
Original Assignee
Nanocyl S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP07447027A external-priority patent/EP1914277A1/en
Application filed by Nanocyl S.A. filed Critical Nanocyl S.A.
Publication of WO2008046165A2 publication Critical patent/WO2008046165A2/en
Publication of WO2008046165A3 publication Critical patent/WO2008046165A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic

Definitions

  • the present invention relates to a nonstick and antistatic composition which gives the surfaces or supports, on which it is applied, a resistance to soiling.
  • coatings or antifouling varnishes is well known, especially coatings or varnishes based on halogenated polymers or silicone polymers which may or may not include , mineral charges.
  • fluoropolymers are the most commonly used, in particular polytetrafluoroethylene, or PTFE, which has excellent chemical resistance, low coefficient of friction and excellent abrasion resistance.
  • Silicone polymers have, for their part, mechanical and chemical strengths equivalent to those of fluoro-polymers, but are much cheaper to produce.
  • Polydimethylsiloxane, or PDMS is the most commonly used silicone polymer.
  • the antifouling nature of a coating or varnish is closely related to the non-stick or hydrophobic nature of the substance or substances that compose it. In a very conventional way, the non-stick nature of a coating is judged by measurements of the contact angle with a drop of a liquid and by surface energy calculations.
  • the contact angle accounts for the ability of a liquid to spread over a surface by wettability and its determination is made by measuring the angle ⁇ between the tangent to the liquid drop at the point of contact and the flat solid surface on which the drop is deposited (diagram 1).
  • the liquid used is ultra-pure water, which makes it possible to determine the hydrophilic or hydrophobic nature of a surface, but by using different liquids, this measurement also makes it possible to determine the free surface energy. of a surface according to different models described in the literature.
  • the PDMS is intrinsically hydrophobic, however, applied in film form, it has a contact angle of the order of 100 ° to 110 °. However, during prolonged contact with water, it appears that the PDMS undergoes a modification of its surface, which makes it more hydrophilic, less hydrophobic, and therefore less anti-adhesive.
  • the present invention aims to provide a nonstick composition which does not have the disadvantages of the state of the art. It aims in particular to provide a non-stick composition facilitated implementation. It also aims to provide a nonstick composition that retains its non-stick properties even when subjected to prolonged contact with water.
  • the present invention relates to the use of a composition comprising a crosslinked polysiloxane-based polymer and at least one nanocylindrical filler as a release coating.
  • the latter comprises one or some combination of several of the following features:
  • the nanocylindrical filler represents between 0.01 and 5% by weight of the total weight of said composition and, preferably, it represents between 0.01 and 1% by weight of the total weight of said composition;
  • the nanocylindrical charge comprises sepiolite
  • the sepiolite represents between 0.01 and 3.5% by weight of the total weight of said composition
  • the nanocylindrical feedstock comprises carbon nanotubes, preferably carbon nanotubes chosen from the group of single-walled carbon nanotubes
  • SWNTs double wall
  • DWNTs double wall
  • MWNTs multiple wall
  • the composition comprises both sepiolite and carbon nanotubes.
  • the present invention also relates to a nonstick and antistatic composition
  • a nonstick and antistatic composition comprising a crosslinked polysiloxane polymer and a concentration of carbon nanotubes of between 0.1% and 1% by weight, said composition having an electrical resistivity of less than 100,000,000 Ohm. cm.
  • the nonstick and antistatic composition comprises a polysiloxane-based crosslinked polymer and a multiwall wall nanotube concentration of between 0.5% and 1% by weight, said composition having an electrical resistivity of less than 250,000 Ohm. cm.
  • the invention also discloses the use as antistatic coating of a composition comprising a polysiloxane-based crosslinked polymer, said composition comprising a concentration of multi-wall carbon nanotubes of between 0.01 and 5% by weight, and preferably between 1.1 and 1% by weight.
  • FIGS. 2a to 2c show atomic force microscopy images of a PDMS coating comprising no filler before immersion in water (FIG. 2a), after immersion (FIG. 2b) and after immersion. and drying (Fig.2c).
  • FIG. 3 schematically shows the structural modification that can undergo a polysiloxane chain in a very polar environment.
  • FIG. 4 represents the values of the surface contact angle of a PDMS coating comprising 3.5% and 10% by weight, of sepiolite and of a PDMS coating comprising 1 to 10% of partition 30, before and after immersion in water.
  • FIGS. 5a to 5c show atomic force microscopy images, before immersion in water, of a PDMS coating comprising no charge (FIG. 5a), a PDMS coating comprising 3.5% by weight of sepiolite (Fig.5b) and a PDMS coating 10% by weight of sepiolite (Fig.5c).
  • FIGS. 6a to 6c show atomic force microscopy images after immersing in water a PDMS coating comprising no filler (FIG. 6a), a PDMS coating comprising 3.5% by weight. sepiolite weight (Fig.6b) and a PDMS coating 10% by weight of sepiolite (Fig.6c).
  • FIG. 7 represents the values of the surface contact angle of a PDMS coating comprising 0.01% to 5% of multi-walled carbon nanotubes and a coating.
  • PDMS comprising 1 to 5% of partition 30B, before and after immersion in water.
  • FIG. 8 represents the surface energy of a PDMS coating comprising no charge and a PDMS comprising from 0.01% to 5% of carbon nanotubes.
  • FIG. 9 represents the variation of the electrical resistivity, as a function of the percentage of multi-walled carbon nanotubes of a PDMS coating comprising 0.01 to 5% of carbon nanotubes. It is remarkable to note that the surface resistivity is already less than 100,000 Ohm. cm for a concentration of carbon nanotubes of less than 1% by weight in the PDMS. In addition, a surface resistivity of less than 1,000,000 Ohm is already achieved. cm with a concentration of carbon nanotubes of less than 0.3% by weight in the PDMS. Resistivity is already below 100.000.000 Ohm. cm for a concentration of carbon nanotubes of 0.1% by weight in the PDMS.
  • FIG. 10 represents the peel strength of PDMS coatings comprising 0.01 to 5% of carbon nanotubes.
  • FIGS. 11a and 11b show the electron microscopy images of the adhesive tapes of the peel test of a composition comprising a) 1% of carbon nanotubes, b) 5% of carbon nanotubes.
  • FIG. 12 represents the viscosity variation of the polymer precursor as a function of the amount of filler for composites comprising carbon nanotubes, sepiolite or partitioning.
  • FIG. 13 represents the variation in viscosity of the precursor of the polymer as a function of the amount of filler for compositions comprising carbon nanotubes of different types.
  • support means any material that can be covered with a polymer and "surface" any surface, whether internal or external, vertical or horizontal of any body or object.
  • the supports concerned may be flexible supports, especially fibrous, woven or not, which may be covered with at least one reinforcing layer, for example textile fabrics, or non-flexible supports, for example metal, plastic or ceramic parts, or else polymeric or elastomeric supports, in particular plastic films, such as for example packaging films. protection. It can also be the surface of any object, for example the internal or external surfaces of a building, a dwelling or a vehicle.
  • nonanocylindrical charge means a charge having the shape of a cylinder, a needle or fiber, and two of the three dimensions of the charge are less than 100nn, or even of the order of one a few tens of nanometers.
  • the polysiloxane-based polymer used is Sylgard 184 from Dow Corning, a resin that crosslinks by hydrosilylation.
  • resin by cross-linking by hydrosilylation, a resin obtained from two polysiloxane precursors, one comprising the vinyl groups and the other hydrosilane groups.
  • the crosslinking consists of an addition reaction of the hydrosilane groups on the vinyl groups
  • VQM matrix comprising a polydimethyl siloxane microarray.
  • the nanocylindrical charge is any suitable charge in the form of a cylinder, a needle or a fiber, and two of the three dimensions of the charge is less than 100 nm, or even of the order of one a few tens of nanometers.
  • it is sepiolite or carbon nanotubes, or a combination of sepiolite and carbon nanotubes.
  • Sepiolite is a clay with a fibrous structure of formula Mg 4 Si 6 O 5 (OH) 2 * 6H 2 O. It generally consists of fibers of the order of 0.1 to 5 ⁇ m in length and 5 at 30 nm in diameter.
  • Carbon nanotubes are a particular crystalline structure of carbon atoms, tubular, hollow and closed, of the order of 0.1 to 10 microns long and 2 to 30nm in diameter. It may be single-walled carbon nanotubes (SWNTs), double-walled
  • DWNTs multi-walled carbon nanotubes
  • MWNTs multi-walled carbon nanotubes
  • the nanocylindrical filler represents by weight between 0.01% and 5% of the total weight of said composition.
  • Different compositions were prepared and their release properties were studied by contact angle measurements with water. Among these compositions, some include no charge, others include nanocylindrical charges, sepiolite between 3.5 and 10% or carbon nanotubes between 0.01 and 5%, others finally include platelet charges, montmorillonite between 1 and 10%
  • composition 30B (partition 30B). Unlike carbon nanotubes and sepiolite, montmorillonite is a charge in which only one of the three dimensions is less than 100 nm. Montmorillonite is a mineral composed of hydrated aluminum silicate and magnesium, belonging to the family of phyllosilicates.
  • the compositions based on polysiloxane are obtained from precursors A and B which are mixed with stirring, for 30 minutes for example, in a solvent with a ratio of 10 to 1 (10 parts of precursor A for a part of the precursor B). Charges, for compositions that include, are added to precursor A with stirring, for example at 500 rptn for 30 minutes, before the addition of precursor B.
  • the mixture thus obtained is deposited on microscope slides which are heated at 70 ° C. for 1 hour and then at 105 ° C. for 8 hours and finally at 70 0 C for 8h under vacuum.
  • the coating thicknesses thus obtained are of the order of 150 ⁇ m.
  • the lamellae are then cut to obtain lcm 2 samples. Some are immersed in demineralized water for 48 hours or a week, others are not and serve as a control.
  • the compositions based on polysiloxane can also be obtained from precursors A and B which are mixed beforehand with stirring, for example for three minutes, in a proportion of 10 parts of precursor A for a part of the precursor B.
  • the charges, for the compositions which comprise it, are added to the precursor A with stirring, for example at 500 rpm for 30 minutes, before the addition of the precursor B.
  • the mixture thus obtained is deposited on strips for microscope which are brought to 105 0 C for 20 hours.
  • the coating thicknesses thus obtained are of the order of 0.2 to 4 mm.
  • the lamellae are then cut to obtain lcm 2 samples. Some are immersed in demineralized water for 48 hours or a week, others are not and serve as a control.
  • the wettability of the samples is determined using a Kruss DSA 10 device using the "sessile drop” technique.
  • the hydrophobic character of the polymeric coating is evaluated by angle measurements between the surface of the coating and drops of ultrapure water. The results obtained are expressed as an average of at least five measurements.
  • a PDMS coating which includes no charges, has a contact angle of about 101 °. After prolonged contact for one week with distilled water, the angle changes from 101 ° to 89 °, indicating that the surface of the coating is more hydrophilic. Nevertheless, after drying at room temperature for 24 hours, the coating regains its hydrophobic character.
  • Figures 2a to 2c show interestingly that the surface of the coating is smooth, homogeneous and without particular structural features, while after prolonged contact with water, the surface of the coating has a significant change; Microporous structures or cavities of about 200 ⁇ 50 nm in diameter and about 3 to 4 nm in depth appear. Nevertheless, after drying coating, its surface returns to its original appearance (Fig.2c). It thus appears that the presence of these cavities causes the hydrophobicity of the surface of the coating to decrease.
  • the modification of the surface of an unloaded PDMS coating is a well-known phenomenon. Generally, such a result is achieved by employing additives or oxidizing the PDMS. Nevertheless, in the present case, neither additives nor oxidation have been used.
  • the contact angle and therefore the wettability of an uncharged PDMS or a PDMS comprising sepiolite or partition 30B are substantially identical, namely, an angle of about 100 °. Nevertheless, after being immersed in water, all PDMS do not have the same behavior. It is remarkable to note that a PDMS comprising 3.5% sepiolite has a contact angle substantially identical to that of an uncharged PDMS which would not have been in prolonged contact with water, whereas a PDMS comprising 1% or 3.5% of partition 30B shows a significant decrease in the contact angle, a more pronounced decrease for a PDMS comprising 10% of partition 30B. So, the presence of 3.5% sepiolite in the PDMS matrix makes it possible to prevent the decrease in hydrophobicity of the surface after prolonged contact with water, which does not allow the partition 30B.
  • coatings comprising no charge or comprising sepiolite have microporous cavities. Nevertheless, the cavities observed for the coating comprising 3.5% of sepiolite are smaller than those observed for the coating comprising no filler or comprising 10% of sepiolite.
  • the polysiloxane chains are less mobile and their ability to reorganize in a polar environment is decreased because of sepiolite.
  • the size of the cavities is smaller and the coating thus appears more hydrophobic.
  • the size of the cavities is larger and the coating appears more hydrophilic because at this loading rate the poor dispersion of the sepiolite in the polymer matrix and the presence of aggregates decreases the number favorable interactions between sepiolite and polymer.
  • the polysiloxane chains are then freer and reorganize more easily than in a coating comprising 3.5% sepiolite.
  • the contact angle, and therefore the wettability, of a PDMS comprising 0.01% to 5% by weight of multiwall carbon nanotubes, with or without has been placed in prolonged contact with water is substantially identical to that of an unloaded PDMS coating that has not been immersed, contrary to what can be observed for the bulkhead 30B.
  • the surface energy of coatings PDMS comprising 0.01 to 5% of carbon nanotubes is substantially identical to that of a PDMS coating comprising no charge, ie around 5.10 "3 N / m, and remains constant when the carbon nanotube loading rate increases. (Fig.8).
  • FIG. 9 represents the variation of the electrical resistivity as a function of the percentage of multi-walled carbon nanotubes of a PDMS coating comprising 0.01% to 5% of carbon nanotubes.
  • the value of the electrical resistivity drops already considerably for a concentration of carbon nanotubes as low as 0.1% (82,000,000 Ohm / cm) and the electrical resistivity is already 36,000 Ohm / cm for a concentration of nanotubes of carbon of 1% by weight in PDMS. Moreover, an electrical resistivity of 560,000 Ohm / cm is already achieved with a concentration of carbon nanotubes of 0.3% by weight in the PDMS.
  • the type of charge of the composition is an important element because a composition based on PDMS which comprises a platelet clay load, in this case montmorillonite (30B partition), does not provide the results. obtained with compositions comprising a nanocylindrical filler. It appears that only a nanocylindrical filler makes it possible to maintain the hydrophobic character of the coating in which it is incorporated.
  • discrimination can be performed on the basis of an adhesion test, or peel test or "peeling test”. In this test, the adhesion of the PDMS coatings is evaluated by applying an adhesive tape (Tesa 07476) on the different coatings and measuring the force required to detach it. It seems
  • the percentage of carbon nanotubes is advantageously less than 1% and is preferably between 0.01 and 0.5%.
  • the nanocylindrical filler of the composition comprises at least carbon nanotubes, that is to say in a composition in which the nanocylindrical filler comprises carbon nanotubes and one or more other nanocylindrical fillers which are not not carbon nanotubes, or a composition in which the nanocylindrical filler is made of carbon nanotubes.
  • the effect of the carbon nanotubes on the viscosity of the constituents of the polymer in which they are incorporated, in particular of the precursor A, is illustrated in FIG. 12.
  • the viscosity of the precursor A containing multi-walled carbon nanotubes is significantly increased by compared to more conventional compositions containing clay fillers.
  • the viscosity of precursor A varies according to various parameters such as the size, the diameter and the purity of the carbon nanotubes.
  • the dry residue is weighed to determine the amount of PDMS polymer bound to the carbon nanotubes.
  • Table 3 shows that the crude nanotubes have a much greater affinity with the precursor A than sepiolite and much greater than platelet loading.
  • the viscometric properties of the precursor A loaded weakly carbon nanotubes allow its application by brush to coat the surface of a material.
  • the application of the composition according to the invention on a support or a surface can be done by any suitable means.
  • the application can be by injection, or by casting.

Abstract

The present invention relates to the use of composition as an anti-adhesive coating that comprises a polysiloxane-based cross-linked copolymer and at least one nanocylindrical charge.

Description

COMPOSITION ANTI-ADHESIVE ET ANTISTATIQUE ANTI-ADHESIVE AND ANTISTATIC COMPOSITION
Objet de l'inventionObject of the invention
[0001] La présente invention se rapporte à une composition antiadhésive et antistatique qui confère aux surfaces ou supports, sur lesquels elle est appliquée, une résistance aux salissures.The present invention relates to a nonstick and antistatic composition which gives the surfaces or supports, on which it is applied, a resistance to soiling.
Etat de la technique [0002] Toute surface, quelle qu'elle soit, est potentiellement exposées à des salissures de tout genre, a fortiori s'il s'agit d'une surface extérieure exposée aux intempéries. C'est en particulier le cas des surfaces intérieures ou extérieures d'ouvrages en briques, en pierre, en bois ou en métal, exposés par exemple, à la pluie, la boue, la poussière, la graisse, la pollution atmosphérique, ou encore des surfaces qui peuvent également être recouvertes de graffiti ou d'affiches non voulus ou non autorisés.State of the art [0002] Any surface, whatever it is, is potentially exposed to fouling of any kind, a fortiori if it is an outside surface exposed to the bad weather. This is particularly the case for interior or exterior surfaces of structures made of brick, stone, wood or metal, exposed for example to rain, mud, dust, grease, air pollution, or even surfaces that may also be covered with unwanted or unauthorized graffiti or posters.
[0003] Habituellement, les surfaces sont débarrassées de leurs salissures par un nettoyage plus ou moins fréquent, qui nécessite bien souvent l'utilisation d'abrasifs, de détergents puissants et/ou de solvants.[0003] Surfaces are usually freed from their soiling by more or less frequent cleaning, which often requires the use of abrasives, strong detergents and / or solvents.
[0004] Pour faciliter le nettoyage et/ou diminuer leur fréquence, l'emploi de revêtements ou vernis anti- salissures est bien connu, en particulier des revêtements ou vernis élaborés à base de polymères halogènes ou de polymères silicones qui peuvent comprendre, ou non, des charges minérales .To facilitate cleaning and / or reduce their frequency, the use of coatings or antifouling varnishes is well known, especially coatings or varnishes based on halogenated polymers or silicone polymers which may or may not include , mineral charges.
[0005] Parmi les polymères halogènes, les fluoro- polymères sont les plus couramment utilisés, en particulier le polytetrafluoroethylène, ou PTFE, qui présente une excellente résistance chimique, un faible coefficient de frottement et une excellente résistance à l'abrasion. [0006] Les polymères silicones présentent, quant à eux, des résistances mécaniques et chimiques équivalentes à celles des fluoro-polymères, mais sont bien moins coûteux à produire. Le polydimethylsiloxane, ou PDMS, est le polymère silicone le plus couramment utilisé. [0007] Le caractère anti-salissure d'un revêtement ou d'un vernis est étroitement lié au caractère antiadhésif ou hydrophobe de la substance ou des substances qui le composent. De façon tout à fait classique, l'on juge du caractère antiadhésif d'un revêtement grâce des mesures de l'angle de contact avec une goutte d'un liquide et par des calculs d'énergie de surface.[0005] Of the halogenated polymers, fluoropolymers are the most commonly used, in particular polytetrafluoroethylene, or PTFE, which has excellent chemical resistance, low coefficient of friction and excellent abrasion resistance. Silicone polymers have, for their part, mechanical and chemical strengths equivalent to those of fluoro-polymers, but are much cheaper to produce. Polydimethylsiloxane, or PDMS, is the most commonly used silicone polymer. The antifouling nature of a coating or varnish is closely related to the non-stick or hydrophobic nature of the substance or substances that compose it. In a very conventional way, the non-stick nature of a coating is judged by measurements of the contact angle with a drop of a liquid and by surface energy calculations.
[0008] L'angle de contact rend compte de l'aptitude d'un liquide à s'étaler sur une surface par mouillabilité et sa détermination se fait par la mesure de l'angle θ entre la tangente à la goutte de liquide au point de contact et la surface solide plane sur laquelle est déposée la goutte (schéma 1) .The contact angle accounts for the ability of a liquid to spread over a surface by wettability and its determination is made by measuring the angle θ between the tangent to the liquid drop at the point of contact and the flat solid surface on which the drop is deposited (diagram 1).
Figure imgf000003_0001
Figure imgf000003_0001
Schéma 1Diagram 1
[0009] Généralement, le liquide utilisé est de l'eau ultra-pure, ce qui permet de déterminer le caractère hydrophile ou hydrophobe d'une surface, mais en utilisant différents liquides, cette mesure permet également de déterminer l'énergie libre de surface d'une surface suivant différents modèles décrits dans la littérature. [0010] Le PDMS est intrinsèquement hydrophobe, cependant, appliqué sous forme de film, il possède un angle de contact de l'ordre de 100° à 110°. Néanmoins, lors d'un contact prolongé avec de l'eau, il apparait que le PDMS subit une modification de sa surface, ce qui le rend plus hydrophile, moins hydrophobe, et donc moins antiadhésif. [00113 Pour améliorer les caractéristiques anti- adhésives du PDMS, Meihua Jin, dans un article intitulé « Super-hydrophobic PDMS surface with Ultra-low adhesive force » publié dans Macromolecular Rapid Communication, 2005, 26, pages 1805 à 1809, propose d'utiliser une propriété de surface communément appelée "l'effet lotus" et de reproduire sur le film de PDMS les microsphères présentent sur la surface des feuilles de lotus et qui permettent à ces feuilles de faire glisser les éléments étrangers sur leur surface sans pouvoir y adhérer. Ainsi, une gravure laser de la surface du PDMS permet d'obtenir un revêtement présentant un angle de contact avec l'eau de plus de 160° et ayant un angle de glissement inférieur à 5°. Néanmoins, cette technique est inadaptée à la majeure partie des applications potentielles d'un tel PDMS modifié. De plus, il s'agit d'une technique difficile à mettre en œuvre et qui reste très onéreuse du fait de l'emploi d'un laser.[0009] Generally, the liquid used is ultra-pure water, which makes it possible to determine the hydrophilic or hydrophobic nature of a surface, but by using different liquids, this measurement also makes it possible to determine the free surface energy. of a surface according to different models described in the literature. The PDMS is intrinsically hydrophobic, however, applied in film form, it has a contact angle of the order of 100 ° to 110 °. However, during prolonged contact with water, it appears that the PDMS undergoes a modification of its surface, which makes it more hydrophilic, less hydrophobic, and therefore less anti-adhesive. [00113] To improve the anti-adhesive properties of PDMS, Meihua Jin, in an article entitled "Super-hydrophobic PDMS Surface with Ultra-low adhesive force" published in Macromolecular Rapid Communication, 2005, 26, pages 1805-1809, proposes to use a surface property commonly called the "lotus effect" and reproduce on the PDMS film microspheres have on the surface of the lotus leaves and allow these leaves to slide the foreign elements on their surface without being able to adhere . Thus, a laser etching of the surface of the PDMS makes it possible to obtain a coating having a contact angle with the water of more than 160 ° and having a sliding angle of less than 5 °. Nevertheless, this technique is unsuitable for most of the potential applications of such a modified PDMS. In addition, it is a difficult technique to implement and remains very expensive because of the use of a laser.
Buts de 1 ' inventionAims of the invention
[0012] La présente invention vise à fournir une composition antiadhésive qui ne présente pas les inconvénients de l'état de la technique. [0013] Elle vise en particulier à fournir une composition antiadhésive de mise en œuvre facilitée. [0014] Elle vise en outre à fournir une composition antiadhésive qui conserve ses propriétés antiadhésives même lorsqu'elle est soumise à un contact prolongé avec de l ' eau .The present invention aims to provide a nonstick composition which does not have the disadvantages of the state of the art. It aims in particular to provide a non-stick composition facilitated implementation. It also aims to provide a nonstick composition that retains its non-stick properties even when subjected to prolonged contact with water.
[0015] Elle vise également à fournir une composition antiadhésive qui confère aux supports, sur lesquels elle est appliquée, une résistance aux salissures.It also aims to provide a nonstick composition which gives the supports, on which it is applied, a resistance to soiling.
[0016] Elle vise de plus à fournir une composition antiadhésive qui permet de diminuer la fréquence des nettoyages des supports sur lesquels elle est appliquée, et de diminuer le temps d'intervention.It also aims to provide a nonstick composition that reduces the frequency of cleaning of the media on which it is applied, and to reduce the intervention time.
Résumé de l ' inventionSummary of the invention
[0017] La présente invention se rapporte à l'utilisation d'une composition comprenant un polymère réticulé à base de polysiloxane et au moins une charge nanocylindrique comme revêtement antiadhésif.The present invention relates to the use of a composition comprising a crosslinked polysiloxane-based polymer and at least one nanocylindrical filler as a release coating.
[0018] Selon des formes particulières de réalisation, celle-ci comporte l'une ou une combinaison quelconque de plusieurs des caractéristiques suivantes :According to particular embodiments, the latter comprises one or some combination of several of the following features:
- la charge nanocylindrique représente entre 0,01 et 5% en poids du poids total de ladite composition et, de préférence, elle représente entre 0,01 et 1% en poids du poids total de ladite composition ;the nanocylindrical filler represents between 0.01 and 5% by weight of the total weight of said composition and, preferably, it represents between 0.01 and 1% by weight of the total weight of said composition;
- la charge nanocylindrique comprend de la sépiolite ;the nanocylindrical charge comprises sepiolite;
- la sépiolite représente entre 0,01 et 3,5% en poids du poids total de ladite composition ;the sepiolite represents between 0.01 and 3.5% by weight of the total weight of said composition;
- la charge nanocylindrique comprend des nanotubes de carbone, de préférence des nanotubes de carbone choisis parmi le groupe des nanotubes de carbone à simple paroithe nanocylindrical feedstock comprises carbon nanotubes, preferably carbon nanotubes chosen from the group of single-walled carbon nanotubes
(SWNTs) , à double paroi (DWNTs) ou à multiple paroi (MWNTs) ;(SWNTs), double wall (DWNTs) or multiple wall (MWNTs);
- la composition comprend à la fois de la sépiolite et des nanotubes de carbone .the composition comprises both sepiolite and carbon nanotubes.
[0019] La présente invention se rapporte également à une composition antiadhésive et antistatique comprenant un polymère réticulé à base de polysiloxane et une concentration de nanotubes de carbone comprise entre 0,1% et 1% en poids, ladite composition ayant une résistivité électrique inférieure à 100.000.000 Ohm. cm. [0020] De préférence, la composition antiadhésive et antistatique comporte un polymère réticulé à base de polysiloxane et une concentration de nanotubes de carbone multiparoi comprise entre 0,5% et 1% en poids, ladite composition ayant une résistivité électrique inférieure à 250.000 Ohm. cm.The present invention also relates to a nonstick and antistatic composition comprising a crosslinked polysiloxane polymer and a concentration of carbon nanotubes of between 0.1% and 1% by weight, said composition having an electrical resistivity of less than 100,000,000 Ohm. cm. Preferably, the nonstick and antistatic composition comprises a polysiloxane-based crosslinked polymer and a multiwall wall nanotube concentration of between 0.5% and 1% by weight, said composition having an electrical resistivity of less than 250,000 Ohm. cm.
[0021] L'invention divulgue également l'utilisation en tant que revêtement antistatique d'une composition comprenant un polymère réticulé à base de polysiloxane, ladite composition comportant une concentration de nanotubes de carbone multiparoi comprise entre 0.01 et 5% en poids, et de préférence entre 1.1 et 1% en poids.The invention also discloses the use as antistatic coating of a composition comprising a polysiloxane-based crosslinked polymer, said composition comprising a concentration of multi-wall carbon nanotubes of between 0.01 and 5% by weight, and preferably between 1.1 and 1% by weight.
Brève description des figuresBrief description of the figures
[0022] La figure 1 représente les différences de valeurs de l'angle de contact d'un revêtement PDMS sans charge avant et après son immersion dans de l'eau. [0023] Les figures 2a à 2c représentent des images de microscopie à force atomique d'un revêtement PDMS ne comprenant pas de charge avant une immersion dans de l'eau (Fig.2a), après immersion (Fig.2b) et après immersion et séchage (Fig.2c).Figure 1 shows the differences in contact angle values of a PDMS coating without load before and after immersion in water. FIGS. 2a to 2c show atomic force microscopy images of a PDMS coating comprising no filler before immersion in water (FIG. 2a), after immersion (FIG. 2b) and after immersion. and drying (Fig.2c).
[0024] La figure 3 représente schématiquement la modification de structure que peut subir une chaîne polysiloxane dans un environnement très polaire. [0025] La figure 4 représente les valeurs de l'angle de contact de surface d'un revêtement PDMS comprenant 3,5% et 10% en poids, de sépiolite et d'un revêtement PDMS comprenant 1 à 10% de cloisite 30, avant et après une immersion dans de l'eau. [0026] Les figures 5a à 5c représentent des images de microscopie à force atomique, avant une immersion dans de l'eau, d'un revêtement PDMS ne comprenant pas de charge (Fig.5a), un revêtement PDMS comprenant 3,5% en poids de sépiolite (Fig.5b) et un revêtement PDMS 10% en poids de sépiolite (Fig.5c).Figure 3 schematically shows the structural modification that can undergo a polysiloxane chain in a very polar environment. FIG. 4 represents the values of the surface contact angle of a PDMS coating comprising 3.5% and 10% by weight, of sepiolite and of a PDMS coating comprising 1 to 10% of partition 30, before and after immersion in water. FIGS. 5a to 5c show atomic force microscopy images, before immersion in water, of a PDMS coating comprising no charge (FIG. 5a), a PDMS coating comprising 3.5% by weight of sepiolite (Fig.5b) and a PDMS coating 10% by weight of sepiolite (Fig.5c).
[0027] Les figures 6a à 6c représentent des images de microscopie à force atomique, après une immersion dans de l'eau d'un revêtement PDMS ne comprenant pas de charge (Fig.6a), un revêtement PDMS comprenant 3,5% en poids de sépiolite (Fig.6b) et un revêtement PDMS 10% en poids de sépiolite (Fig.6c).FIGS. 6a to 6c show atomic force microscopy images after immersing in water a PDMS coating comprising no filler (FIG. 6a), a PDMS coating comprising 3.5% by weight. sepiolite weight (Fig.6b) and a PDMS coating 10% by weight of sepiolite (Fig.6c).
[0028] La figure 7 représente les valeurs de l'angle de contact de surface d'un revêtement PDMS comprenant 0,01% à 5% de nanotubes de carbone multiparoi et d'un revêtementFIG. 7 represents the values of the surface contact angle of a PDMS coating comprising 0.01% to 5% of multi-walled carbon nanotubes and a coating.
PDMS comprenant 1 à 5% de cloisite 3OB, avant et après immersion dans de l'eau.PDMS comprising 1 to 5% of partition 30B, before and after immersion in water.
[0029] La figure 8 représente l'énergie de surface d'un revêtement PDMS ne comprenant aucune charge et un PDMS comprenant de 0.01% à 5% de nanotubes de carbone.FIG. 8 represents the surface energy of a PDMS coating comprising no charge and a PDMS comprising from 0.01% to 5% of carbon nanotubes.
[0030] La figure 9 représente la variation de la résistivité électrique, en fonction du pourcentage de nanotubes de carbone multiparoi d'un revêtement PDMS comprenant 0,01 à 5% de nanotubes de carbone. Il est remarquable de constater que la résistivité de surface est déjà inférieure à 100.000 Ohm. cm pour une concentration en nanotubes de carbone inférieure à 1% en poids dans le PDMS. Par ailleurs, on atteint déjà une résistivité de surface inférieure à 1.000.000 Ohm. cm avec une concentration en nanotubes de carbone inférieure à 0.3% en poids dans le PDMS. On atteint déjà une résistivité inférieure à 100.000.000 Ohm. cm pour une concentration en nanotubes de carbone de 0,1% en poids dans le PDMS. [0031] La figure 10 représente la résistance au pelage de revêtements PDMS comprenant 0,01 à 5% de nanotubes de carbone .FIG. 9 represents the variation of the electrical resistivity, as a function of the percentage of multi-walled carbon nanotubes of a PDMS coating comprising 0.01 to 5% of carbon nanotubes. It is remarkable to note that the surface resistivity is already less than 100,000 Ohm. cm for a concentration of carbon nanotubes of less than 1% by weight in the PDMS. In addition, a surface resistivity of less than 1,000,000 Ohm is already achieved. cm with a concentration of carbon nanotubes of less than 0.3% by weight in the PDMS. Resistivity is already below 100.000.000 Ohm. cm for a concentration of carbon nanotubes of 0.1% by weight in the PDMS. FIG. 10 represents the peel strength of PDMS coatings comprising 0.01 to 5% of carbon nanotubes.
[0032] Les figures lia et 11b représentent les images de microscopie électronique des bandes adhésives du test de pelage d'une composition comprenant a) 1% de nanotubes de carbone, b) 5% de nanotubes de carbone.FIGS. 11a and 11b show the electron microscopy images of the adhesive tapes of the peel test of a composition comprising a) 1% of carbon nanotubes, b) 5% of carbon nanotubes.
[0033] La figure 12 représente la variation de viscosité du précurseur du polymère en fonction de la quantité de charge pour des composites comprenant des nanotubes de carbone, de la sépiolite ou de la cloisiteFIG. 12 represents the viscosity variation of the polymer precursor as a function of the amount of filler for composites comprising carbon nanotubes, sepiolite or partitioning.
3OB.3OB.
[0034] La figure 13 représente la variation de viscosité du précurseur du polymère en fonction de la quantité de charge pour des compositions comprenant des nanotubes de carbone de différente nature.FIG. 13 represents the variation in viscosity of the precursor of the polymer as a function of the amount of filler for compositions comprising carbon nanotubes of different types.
Description détaillée de l'invention [0035] Afin de répondre à la problématique de l'obtention d'une composition antiadhésive de mise en œuvre facilitée qui confère aux supports et aux surfaces sur lesquels elle est appliquée une résistance aux salissures, et qui conserve ses propriétés antiadhésives, même lorsqu'elle est soumise à un contact prolongé avec de l'eau, l'invention propose de façon originale l'emploi d'une charge nanocylindrique dans un polymère réticulé à base de polysiloxane.DETAILED DESCRIPTION OF THE INVENTION In order to meet the problem of obtaining an easy-to-use release composition which gives the supports and surfaces on which it is applied a resistance to soiling, and which retains its properties. Even when it is subjected to prolonged contact with water, the invention proposes in an original manner the use of a nanocylindrical filler in a polysiloxane-based crosslinked polymer.
[0036] On entend par « support » tout matériel pouvant être recouvert d'un polymère et par « surface » toute surface, quelle soit intérieure ou extérieure, verticale ou horizontale de n'importe quel corps ou objet. Sans être limitatif, les supports concernés peuvent être des supports souples notamment fibreux, tissés ou non, qui peuvent être recouvert d'au moins une couche de renfort, par exemple des toiles textiles, ou bien des supports non- souples, par exemples des pièces en métal, en plastique ou en céramique, ou bien encore des supports polymères ou élastomères, en particulier des films plastiques, comme par exemple des films d'emballage de protection. Il peut également s'agir de la surface de tout objet, par exemple les surfaces internes ou externes d'un bâtiment, d'une habitation ou d'un véhicule.The term "support" means any material that can be covered with a polymer and "surface" any surface, whether internal or external, vertical or horizontal of any body or object. Without being limiting, the supports concerned may be flexible supports, especially fibrous, woven or not, which may be covered with at least one reinforcing layer, for example textile fabrics, or non-flexible supports, for example metal, plastic or ceramic parts, or else polymeric or elastomeric supports, in particular plastic films, such as for example packaging films. protection. It can also be the surface of any object, for example the internal or external surfaces of a building, a dwelling or a vehicle.
[0037] On entend par « charge nanocylindrique » une charge ayant la forme d'un cylindre, d'une aiguille ou de fibre, et dont deux des trois dimensions de la charge sont inférieures à lOOntn, voire même de l'ordre de un à quelques dizaines de nanomètres.The term "nanocylindrical charge" means a charge having the shape of a cylinder, a needle or fiber, and two of the three dimensions of the charge are less than 100nn, or even of the order of one a few tens of nanometers.
[0038] Selon une forme de réalisation préférée de l'invention, le polymère à base de polysiloxane utilisé est le Sylgard 184 de Dow Corning, une résine qui réticule par hydrosilylation.According to a preferred embodiment of the invention, the polysiloxane-based polymer used is Sylgard 184 from Dow Corning, a resin that crosslinks by hydrosilylation.
[0039] On entend par résine qui réticule par hydrosilylation, une résine obtenue à partir de deux précurseurs de type polysiloxane, l'un comportant les groupes vinyles et l'autre des groupes hydrosilanes .By resin is meant by cross-linking by hydrosilylation, a resin obtained from two polysiloxane precursors, one comprising the vinyl groups and the other hydrosilane groups.
[0040] La réticulation consiste en une réaction d'addition des groupes hydrosilanes sur les groupes vinylesThe crosslinking consists of an addition reaction of the hydrosilane groups on the vinyl groups
(schéma 2) .(diagram 2).
Figure imgf000009_0001
Figure imgf000009_0001
Schéma 2 [0041] La composition de la résine Sylgard 184 de Dow Corning est donnée dans le tableau 1 et la structure chimique des composants est donnée dans les schémas 3 à 6.Figure 2 The composition of the Dow Corning Sylgard 184 resin is given in Table 1 and the chemical structure of the components is given in Schemes 3 to 6.
Figure imgf000010_0001
Figure imgf000010_0001
Tableau 1 : Composition de la résineTable 1: Composition of the resin
CH2 = CH- (CH2)n -(Si O)- Si — ( CH2)2n CH = CHCH 2 = CH- (CH 2 ) n - (SiO) - Si - (CH 2 ) 2n CH = CH
434434
Schéma 3 : SFD 117, polysiloxane porteurs de groupes vinylesScheme 3: SFD 117, polysiloxane carrying vinyl groups
Me MeEven
—(-Si O -)—(- Si O -)"- (- If O -) - (- If O -) "
Me HMe H
Schéma 4 : Polymère de type polysiloxane porteurs de groupes hydrosilanes Scheme 4: Polysiloxane Polymer Carrying Hydrosilane Groups
Figure imgf000011_0001
Figure imgf000011_0001
Schéma 5 : Inhibiteur de réticulationScheme 5: Crosslinking inhibitor
Figure imgf000011_0002
Figure imgf000011_0002
Schéma 6 : Matrice VQM comprenant un microréseau polydiméthyle siloxane.Scheme 6: VQM matrix comprising a polydimethyl siloxane microarray.
[0042] La charge nanocylindrique est toute charge adéquate ayant la forme d'un cylindre, d'une aiguille ou d'une fibre, et dont deux des trois dimensions de la charge est inférieure à lOOnm, voire même de l'ordre de un à quelques dizaines de nanomètres. De préférence, il s'agit de sépiolite ou de nanotubes de carbone, ou une combinaison de sépiolite et de nanotubes de carbone. [0043] La sépiolite est une argile à structure fibreuse de formule Mg4Si6Oi5 (OH) 2*6H2O. Elle est généralement constituée de fibres de l'ordre de 0,1 à 5 μm de long et de 5 à 30 nm de diamètre. [0044] Les nanotubes de carbone sont une structure cristalline particulière d'atomes de carbone, de forme tubulaire, creuse et close, de l'ordre de 0,1 à 10 μm de long et de 2 à 30nm de diamètre. Il peut s'agir de nanotubes de carbone à simple paroi (SWNTs) , à double paroiThe nanocylindrical charge is any suitable charge in the form of a cylinder, a needle or a fiber, and two of the three dimensions of the charge is less than 100 nm, or even of the order of one a few tens of nanometers. Preferably, it is sepiolite or carbon nanotubes, or a combination of sepiolite and carbon nanotubes. Sepiolite is a clay with a fibrous structure of formula Mg 4 Si 6 O 5 (OH) 2 * 6H 2 O. It generally consists of fibers of the order of 0.1 to 5 μm in length and 5 at 30 nm in diameter. Carbon nanotubes are a particular crystalline structure of carbon atoms, tubular, hollow and closed, of the order of 0.1 to 10 microns long and 2 to 30nm in diameter. It may be single-walled carbon nanotubes (SWNTs), double-walled
(DWNTs) ou à multiple paroi (MWNTs) . De préférence, il s'agit de nanotubes de carbone à multiple paroi (MWNTs) . De préférence, il s'agit de nanotubes de carbone multiparoi de(DWNTs) or multiple wall (MWNTs). Preferably, it is multi-walled carbon nanotubes (MWNTs). Preferably, it is multi-walled carbon nanotubes of
1,5 à l,7μm de longueur et 7 à 12nm de diamètre, n'ayant subi aucun traitement post-synthétique, en particulier pas de purification.1.5 to 1.7 μm in length and 7 to 12 nm in diameter, having undergone no post-synthetic treatment, in particular no purification.
[0045] De préférence, la charge nanocylindrique représente en poids entre 0,01% et 5% du poids total de ladite composition. [0046] Différentes compositions ont été préparées et leurs propriétés anti-adhésives ont été étudiées par des mesures d'angle de contact avec l'eau. Parmi ces compositions, certaines ne comprennent aucune charge, d'autres comprennent des charges nanocylindriques, de la sépiolite entre 3.5 et 10% ou des nanotubes de carbone entre 0.01 et 5%, d'autres enfin comprennent des charges plaquettaires, de la montmorillonite entre 1 et 10%Preferably, the nanocylindrical filler represents by weight between 0.01% and 5% of the total weight of said composition. Different compositions were prepared and their release properties were studied by contact angle measurements with water. Among these compositions, some include no charge, others include nanocylindrical charges, sepiolite between 3.5 and 10% or carbon nanotubes between 0.01 and 5%, others finally include platelet charges, montmorillonite between 1 and 10%
(cloisite 30B) . Contrairement aux nanotubes de carbone et à la sépiolite, la montmorillonite est une charge dont seulement une des trois dimensions est inférieure à 100 nm. La montmorillonite est un minéral composé de silicate d'aluminium et de magnésium hydraté, appartenant à la famille des phyllosilicates . [0047] Classiquement, les compositions à base de polysiloxane sont obtenues à partir des précurseurs A et B qui sont mélangés sous agitation, pendant 30 minutes par exemple, dans un solvant avec un ratio de 10 pour 1 (10 parts de précurseur A pour une part du précurseur B) . Les charges, pour les compositions qui en comprennent, sont additionnées au précurseur A sous agitation, par exemple à 500 rptn pendant 30 minutes, avant l'addition du précurseur B. Le mélange ainsi obtenu est déposé sur des lamelles pour microscope qui sont portées à 700C pendant lh30, puis à 1050C pendant 8 heures et enfin à 700C pendant 8h sous vide. Les épaisseurs de revêtement ainsi obtenu sont de l'ordre de 150 μm. Les lamelles sont ensuite découpées afin d'obtenir des échantillons de lcm2. Certaines sont immergées dans de l'eau déminéralisée pendant 48h ou une semaine, d'autre ne le sont pas et servent de témoin.(partition 30B). Unlike carbon nanotubes and sepiolite, montmorillonite is a charge in which only one of the three dimensions is less than 100 nm. Montmorillonite is a mineral composed of hydrated aluminum silicate and magnesium, belonging to the family of phyllosilicates. Conventionally, the compositions based on polysiloxane are obtained from precursors A and B which are mixed with stirring, for 30 minutes for example, in a solvent with a ratio of 10 to 1 (10 parts of precursor A for a part of the precursor B). Charges, for compositions that include, are added to precursor A with stirring, for example at 500 rptn for 30 minutes, before the addition of precursor B. The mixture thus obtained is deposited on microscope slides which are heated at 70 ° C. for 1 hour and then at 105 ° C. for 8 hours and finally at 70 0 C for 8h under vacuum. The coating thicknesses thus obtained are of the order of 150 μm. The lamellae are then cut to obtain lcm 2 samples. Some are immersed in demineralized water for 48 hours or a week, others are not and serve as a control.
[0048] Dans une autre forme de réalisation, les compositions à base de polysiloxane peuvent également être obtenues à partir des précurseurs A et B qui sont mélangés préalablement sous agitation, par exemple pendant trois minutes, dans une proportion de 10 parts de précurseur A pour une part du précurseur B. Les charges, pour les compositions qui en comprennent, sont additionnées au précurseur A sous agitation, par exemple à 500 rpm pendant 30 minutes, avant l'addition du précurseur B. Le mélange ainsi obtenu est déposé sur des lamelles pour microscope qui sont portées à 1050C pendant 20 heures. Les épaisseurs de revêtement ainsi obtenu sont de l'ordre de 0.2 à 4 mm. Les lamelles sont ensuite découpées afin d'obtenir des échantillons de lcm2. Certaines sont immergées dans de l'eau déminéralisée pendant 48h ou une semaine, d'autre ne le sont pas et servent de témoin.In another embodiment, the compositions based on polysiloxane can also be obtained from precursors A and B which are mixed beforehand with stirring, for example for three minutes, in a proportion of 10 parts of precursor A for a part of the precursor B. The charges, for the compositions which comprise it, are added to the precursor A with stirring, for example at 500 rpm for 30 minutes, before the addition of the precursor B. The mixture thus obtained is deposited on strips for microscope which are brought to 105 0 C for 20 hours. The coating thicknesses thus obtained are of the order of 0.2 to 4 mm. The lamellae are then cut to obtain lcm 2 samples. Some are immersed in demineralized water for 48 hours or a week, others are not and serve as a control.
[0049] L'aspect de surface de ces échantillons est étudié au microscope à force atomique et leur mouillabilité est déterminée par des mesures d'angle de contact avec l'eau, avant et après un contact prolongé avec de l'eau qui peut être de 48 heures ou une semaine par exemple. Le calcul de l'énergie de surface se fait en utilisant le modèle de Owens, Wendt et Rabel. [0050] Les images de microscopie à force atomique ont été réalisées par un microscope Nanoscope IHa (Veeco, Inc) fonctionnant à température ambiante dans l'air en utilisant des cantilevers ayant une constante de ressort de 30 Nm-I et une fréquence de résonance d'environ 300 kHz et fonctionnant en mode« tapping » (TMAFM), c'est-à-dire dans un mode où la fréquence de travail est plus petite que la fréquence de résonance. Les images obtenues sont ensuite digitalisées avec une résolution maximale de 512x512 pixels, puis sont analysées grâce au logiciel du microscope à force atomique .The surface appearance of these samples is studied under an atomic force microscope and their wettability is determined by contact angle measurements with water, before and after prolonged contact with water which can be 48 hours or a week for example. The calculation of surface energy is done using the model of Owens, Wendt and Rabel. Atomic force microscopy images were made by a Nanoscope IHa microscope (Veeco, Inc.) operating at room temperature in air using cantilevers having a spring constant of 30 Nm-I and a resonant frequency about 300 kHz and operating in "tapping" mode (TMAFM), that is to say in a mode where the working frequency is smaller than the resonance frequency. The images obtained are then digitized with a maximum resolution of 512x512 pixels, then analyzed using the atomic force microscope software.
[0051] La mouillabilité des échantillons est déterminée à l'aide d'un appareil Kruss DSA 10 en utilisant la technique « sessile drop ». Le caractère hydrophobe du revêtement polymérique est évalué par des mesures d'angle entre la surface du revêtement et des gouttes d'eau ultrapure. Les résultats obtenus sont exprimés sous la forme d'une moyenne d'au moins cinq mesures. [0052] Comme le montre la figure 1, avant un contact prolongé avec de l'eau, un revêtement PDMS, qui ne comprend aucunes charges, présente un angle de contact d'environ 101°. Après un contact prolongé d'une semaine avec de l'eau distillée, l'angle passe de 101°à 89°, ce qui indique que la surface du revêtement est plus hydrophile. Néanmoins, après un séchage à température ambiante pendant 24 h, le revêtement retrouve son caractère hydrophobe.The wettability of the samples is determined using a Kruss DSA 10 device using the "sessile drop" technique. The hydrophobic character of the polymeric coating is evaluated by angle measurements between the surface of the coating and drops of ultrapure water. The results obtained are expressed as an average of at least five measurements. As shown in Figure 1, before prolonged contact with water, a PDMS coating, which includes no charges, has a contact angle of about 101 °. After prolonged contact for one week with distilled water, the angle changes from 101 ° to 89 °, indicating that the surface of the coating is more hydrophilic. Nevertheless, after drying at room temperature for 24 hours, the coating regains its hydrophobic character.
[0053] Les figures 2a à 2c montrent de façon intéressante que la surface du revêtement est lisse, homogène et sans caractéristiques structurelles particulières, alors qu'après un contact prolongé avec de l'eau, la surface du revêtement présente une importante modification ; il apparaît des structures, ou cavités, microporeuses d'environ 200±50 nm de diamètre et d'environ 3 à 4 nm de profondeur. Néanmoins, après séchage du revêtement, sa surface retrouve son aspect originel (Fig.2c) . Il apparaît ainsi que la présence de ces cavités entraîne la diminution du caractère hydrophobe de la surface du revêtement . [0054] La modification de la surface d'un revêtement PDMS non chargé est un phénomène bien connu. Généralement, un tel résultat est obtenu en employant des additifs ou en oxydant le PDMS. Néanmoins, dans le cas présent, ni additifs, ni oxydation, n'ont été employés. Cette modification de structure, qui se traduit également par l'apparition de cavités microporeuses (Fig.2b), peut s'expliquer par le fait qu'une chaîne de polymère PDMS possède une structure en forme d'hélice dans laquelle les groupements méthyle des unités siloxane sont libres de rotation. Or ces groupements méthyles, qui sont responsables de la faible tension de surface du PDMS, peuvent, dans un environnement très polaire, être repoussés à l'intérieur de l'hélice, exposant ainsi le squelette de la chaîne polysiloxane (Fig.5), ce qui peut se traduire par une modification de la mouillabilité du revêtement PDMS.Figures 2a to 2c show interestingly that the surface of the coating is smooth, homogeneous and without particular structural features, while after prolonged contact with water, the surface of the coating has a significant change; Microporous structures or cavities of about 200 ± 50 nm in diameter and about 3 to 4 nm in depth appear. Nevertheless, after drying coating, its surface returns to its original appearance (Fig.2c). It thus appears that the presence of these cavities causes the hydrophobicity of the surface of the coating to decrease. The modification of the surface of an unloaded PDMS coating is a well-known phenomenon. Generally, such a result is achieved by employing additives or oxidizing the PDMS. Nevertheless, in the present case, neither additives nor oxidation have been used. This structure modification, which also results in the appearance of microporous cavities (FIG. 2b), can be explained by the fact that a PDMS polymer chain has a helical structure in which the methyl groups of the Siloxane units are free from rotation. However, these methyl groups, which are responsible for the low surface tension of the PDMS, can, in a very polar environment, be pushed back inside the helix, thus exposing the skeleton of the polysiloxane chain (FIG. this may result in a change in the wettability of the PDMS coating.
[0055] Comme le montre la figure 4, l'angle de contact et donc la mouillabilité d'un PDMS non chargé ou d'un PDMS comprenant de la sépiolite ou de la cloisite 3OB sont sensiblement identiques, à savoir, un angle d'environ 100°. Néanmoins, après avoir été immergé dans de l'eau, tous les PDMS n'ont pas le même comportement. Il est remarquable de noter qu'un PDMS comprenant 3,5% de sépiolite présente un angle de contact sensiblement identique à celui d'un PDMS non chargé qui n'aurait pas été mis en contact prolongé avec de l'eau, alors qu'un PDMS comprenant 1% ou 3,5% de cloisite 3OB présente une diminution significative de l'angle de contact, une diminution plus marquée pour un PDMS comprenant 10% de cloisite 3OB. Ainsi donc, la présence de 3,5% de sépiolite dans la matrice PDMS permet d'empêcher la diminution de l'hydrophobicité de la surface après un contact prolongé avec de l'eau, ce que ne permet pas la cloisite 3OB.As shown in FIG. 4, the contact angle and therefore the wettability of an uncharged PDMS or a PDMS comprising sepiolite or partition 30B are substantially identical, namely, an angle of about 100 °. Nevertheless, after being immersed in water, all PDMS do not have the same behavior. It is remarkable to note that a PDMS comprising 3.5% sepiolite has a contact angle substantially identical to that of an uncharged PDMS which would not have been in prolonged contact with water, whereas a PDMS comprising 1% or 3.5% of partition 30B shows a significant decrease in the contact angle, a more pronounced decrease for a PDMS comprising 10% of partition 30B. So, the presence of 3.5% sepiolite in the PDMS matrix makes it possible to prevent the decrease in hydrophobicity of the surface after prolonged contact with water, which does not allow the partition 30B.
[0056] Comme le montre la figure 5 (avant immersion) et la figure 6 (après immersion) , les revêtements ne comprenant aucune charge ou comprenant de la sépiolite présentent des cavités microporeuses. Néanmoins, les cavités observées pour le revêtement comprenant 3,5% de sépiolite sont plus petites que celles observées pour le revêtement ne comprenant pas de charge ou comprenant 10% de sépiolite .As shown in Figure 5 (before immersion) and Figure 6 (after immersion), coatings comprising no charge or comprising sepiolite have microporous cavities. Nevertheless, the cavities observed for the coating comprising 3.5% of sepiolite are smaller than those observed for the coating comprising no filler or comprising 10% of sepiolite.
[0057] Dans le revêtement comprenant 3,5% de sépiolite, il semblerait que les chaînes de polysiloxane soient moins mobiles et que leur faculté à se réorganiser dans un environnement polaire soit diminuée du fait de la sépiolite. Ainsi, la taille des cavités est moins importante et le revêtement apparaît ainsi plus hydrophobe. [0058] Dans un revêtement comprenant 10% de sépiolite, la taille des cavités est plus importante et le revêtement apparaît plus hydrophile car à ce taux de charge la mauvaise dispersion de la sépiolite dans la matrice polymérique et la présence d'agrégats diminue le nombre d'interactions favorables entre sépiolite et polymère. Les chaînes polysiloxanes sont alors plus libres et se réorganisent plus facilement que dans un revêtement comprenant 3,5% de sépiolite.In the coating comprising 3.5% sepiolite, it seems that the polysiloxane chains are less mobile and their ability to reorganize in a polar environment is decreased because of sepiolite. Thus, the size of the cavities is smaller and the coating thus appears more hydrophobic. In a coating comprising 10% of sepiolite, the size of the cavities is larger and the coating appears more hydrophilic because at this loading rate the poor dispersion of the sepiolite in the polymer matrix and the presence of aggregates decreases the number favorable interactions between sepiolite and polymer. The polysiloxane chains are then freer and reorganize more easily than in a coating comprising 3.5% sepiolite.
[0059] Comme le montre la figure 7, il est remarquable de noter que l'angle de contact, et donc la mouillabilité, d'un PDMS comprenant 0,01% à 5% en poids de nanotubes de carbone multiparoi, ayant ou non été mis en contact prolongé avec de l'eau, est sensiblement identique à celui d'un revêtement PDMS non chargé n'ayant pas été immergé, contrairement à ce qui peut être observé pour la cloisite 3OB. De même, l'énergie de surface des revêtements PDMS comprenant 0,01 à 5% de nanotubes de carbone est sensiblement identique à celle d'un revêtement PDMS ne comprenant aucune charge, soit aux environs 5.10"3 N/m, et reste constante lorsque le taux de charge en nanotubes de carbone augmente (Fig.8) .As shown in Figure 7, it is remarkable to note that the contact angle, and therefore the wettability, of a PDMS comprising 0.01% to 5% by weight of multiwall carbon nanotubes, with or without has been placed in prolonged contact with water, is substantially identical to that of an unloaded PDMS coating that has not been immersed, contrary to what can be observed for the bulkhead 30B. Similarly, the surface energy of coatings PDMS comprising 0.01 to 5% of carbon nanotubes is substantially identical to that of a PDMS coating comprising no charge, ie around 5.10 "3 N / m, and remains constant when the carbon nanotube loading rate increases. (Fig.8).
[0060] De plus, il est également intéressant de noter que la surface des revêtements à base de PDMS comprenant au moins 0,1% de nanotubes de carbone multiparoi montre déjà un comportement antistatique qui se confirme à partir de 0,3 % (Fig.9). Ceci s'explique par la bonne qualité de la dispersion des nanotubes de carbone au sein de la matrice PDMS. La figure 9 représente la variation de la résistivité électrique en fonction du pourcentage de nanotubes de carbone multiparoi d'un revêtement PDMS comprenant 0,01% à 5% de nanotubes de carbone.In addition, it is also interesting to note that the surface of the PDMS-based coatings comprising at least 0.1% multi-walled carbon nanotubes already shows an antistatic behavior which is confirmed from 0.3% (FIG. .9). This is explained by the good quality of the dispersion of carbon nanotubes within the PDMS matrix. FIG. 9 represents the variation of the electrical resistivity as a function of the percentage of multi-walled carbon nanotubes of a PDMS coating comprising 0.01% to 5% of carbon nanotubes.
[0061] La valeur de la résistivité électrique chute déjà considérablement pour une concentration en nanotubes de carbone aussi basse que 0,1% (82.000.000 Ohm/cm) et la résistivité électrique est déjà de 36.000 Ohm/cm pour une concentration en nanotubes de carbone de 1% en poids dans le PDMS. Par ailleurs, on atteint déjà une résistivité électrique de 560.000 Ohm/cm avec une concentration en nanotubes de carbone de 0.3% en poids dans le PDMS.The value of the electrical resistivity drops already considerably for a concentration of carbon nanotubes as low as 0.1% (82,000,000 Ohm / cm) and the electrical resistivity is already 36,000 Ohm / cm for a concentration of nanotubes of carbon of 1% by weight in PDMS. Moreover, an electrical resistivity of 560,000 Ohm / cm is already achieved with a concentration of carbon nanotubes of 0.3% by weight in the PDMS.
Figure imgf000017_0001
Figure imgf000017_0001
Tableau 2 : Valeurs de la figure 9 [0062] Ainsi, le type de charge de la composition est un élément important car une composition à base de PDMS qui comprend une charge argileuse plaquettaire, en l'occurrence de la montmorillonite (cloisite 30B), ne permet pas d'obtenir les résultats obtenus avec des compositions comprenant une charge nanocylindrique . Il apparaît que seule une charge nanocylindrique permette de maintenir le caractère hydrophobe du revêtement dans lequel elle est incorporée. [0063] Parmi les compositions comprenant 0,01 et 5% de nanotubes de carbone, une discrimination peut être effectuée sur la base d'un test d'adhérence, ou test de pelage ou « peeling test ». Dans ce test, l'adhérence des revêtements PDMS est évaluée en appliquant une bande adhésive (Tesa 07476) sur les différents revêtements et en mesurant la force nécessaire pour la décoller. Il apparaîtTable 2: Values in Figure 9 Thus, the type of charge of the composition is an important element because a composition based on PDMS which comprises a platelet clay load, in this case montmorillonite (30B partition), does not provide the results. obtained with compositions comprising a nanocylindrical filler. It appears that only a nanocylindrical filler makes it possible to maintain the hydrophobic character of the coating in which it is incorporated. Among the compositions comprising 0.01 and 5% of carbon nanotubes, discrimination can be performed on the basis of an adhesion test, or peel test or "peeling test". In this test, the adhesion of the PDMS coatings is evaluated by applying an adhesive tape (Tesa 07476) on the different coatings and measuring the force required to detach it. It seems
(Fig.10) que la résistance au pelage reste constante pour des taux de charge de nanotubes de carbone inférieurs à 1%, ou tout du moins les résistances au pelage pour ces taux de charges est non significativement différentes les unes des autres, alors qu'au-delà de 1% la différence est nettement marquée. Ceci s'explique par le fait que plus le taux de charge en nanotubes de carbone est élevé, plus la viscosité augmente, ce qui entraîne une mauvaise dispersion des différentes parts constituant la matrice PDMS soumises à la réticulation. Ceci explique qu'à des taux de charge élevés en nanotubes de carbone la réticulation sera incomplète. Des chaînes de polymère laissées libres, dû à la réticulation incomplète, peuvent adhérer à la bande adhésive posée à la surface de la matrice PDMS lors du « peeling test ». Ces chaînes libres de polymère peuvent être arrachées de la surface de la matrice PDMS lorsque la bande adhésive est enlevée, entraînant une plus grande résistance de pelage de cette surface (Fig.ll) . Ainsi, le pourcentage de nanotubes de carbone est avantageusement inférieur à 1% et se situe de préférence entre 0,01 et 0,5%.(FIG. 10) that the peel strength remains constant for carbon nanotube loading rates of less than 1%, or at least the peel strengths for these charge levels are not significantly different from one another, whereas above 1% the difference is clearly marked. This is explained by the fact that the higher the content of carbon nanotubes, the higher the viscosity increases, resulting in poor dispersion of different parts constituting the PDMS matrix subjected to crosslinking. This explains why at high loading rates in carbon nanotubes the crosslinking will be incomplete. Polymer chains left free, due to incomplete crosslinking, can adhere to the adhesive tape placed on the surface of the PDMS matrix during the "peeling test". These polymer free chains can be torn off the surface of the PDMS matrix as the adhesive strip is removed, resulting in greater peel strength of that surface (Fig.ll). So, the The percentage of carbon nanotubes is advantageously less than 1% and is preferably between 0.01 and 0.5%.
[0064] L'effet des nanotubes de carbone sur la viscosité d'une composition à base de PDMS, en particulier sur les propriétés viscosimétriques du précurseur A7 permet d'envisager l'application au pinceau de ce précurseur pour des formes de réalisation particulière de l'invention dans laquelle la charge nanocylindrique de la composition comprend au moins des nanotubes de carbone, c'est-à-dire dans une composition dans laquelle la charge nanocylindrique comprend des nanotubes de carbone et une ou plusieurs autres charges nanocylindriques qui ne sont pas des nanotubes de carbone, ou une composition dans laquelle la charge nanocylindrique est constituée de nanotubes de carbone .The effect of carbon nanotubes on the viscosity of a composition based on PDMS, in particular on the viscometric properties of the precursor A 7 makes it possible to envisage the application by brush of this precursor for particular embodiments. of the invention in which the nanocylindrical filler of the composition comprises at least carbon nanotubes, that is to say in a composition in which the nanocylindrical filler comprises carbon nanotubes and one or more other nanocylindrical fillers which are not not carbon nanotubes, or a composition in which the nanocylindrical filler is made of carbon nanotubes.
[0065] L'effet des nanotubes de carbone sur la viscosité des constituants du polymère dans lequel ils sont incorporés, notamment du précurseur A, est illustré à la figure 12. La viscosité du précurseur A contenant des nanotubes de carbones multiparoi est nettement augmentée par rapport à des compositions plus classiques contenant des charges argileuses. [0066] Comme le montrent la figure 13, la viscosité du précurseur A varie en fonction de différents paramètres tels que la taille, le diamètre et la pureté des nanotubes de carbones.The effect of the carbon nanotubes on the viscosity of the constituents of the polymer in which they are incorporated, in particular of the precursor A, is illustrated in FIG. 12. The viscosity of the precursor A containing multi-walled carbon nanotubes is significantly increased by compared to more conventional compositions containing clay fillers. As shown in FIG. 13, the viscosity of precursor A varies according to various parameters such as the size, the diameter and the purity of the carbon nanotubes.
[0067] II apparaît qu'un taux de charge de moins de 1% en poids de nanotubes de carbone permet une augmentation significative de la viscosité et plus particulièrement avec les nanotubes de carbone n'ayant subi aucun traitement post-synthétique. Ces derniers entraînent une augmentation significative de la viscosité du polymère avec de très faibles taux de charge compris entre 0,2% et 0,3% en poids. Cette augmentation surprenante de la viscosité s'explique par la très grande affinité des nanotubes de carbone bruts pour le polymère de polysiloxane, comme le montrent les mesures effectuées grâce à un test dit du "bound rubber" (tableau 3) . La procédure expérimentale de ce test consiste à extraire 3,5g du mélange précurseur A / nanotubes de carbone avec 30 mL de solvant (heptane) pendant 4h, à 25°C. Après centrifugation et évaporation du solvant, le résidu sec est pesé afin de déterminer la quantité de polymère PDMS lié aux nanotubes de carbone. Le tableau 3 montre que les nanotubes bruts ont une affinité largement supérieure avec le précurseur A par rapport à la sépiolite et bien supérieure à une charge plaquettaire .It appears that a feed rate of less than 1% by weight of carbon nanotubes allows a significant increase in viscosity and more particularly with carbon nanotubes having undergone no post-synthetic treatment. These result in a significant increase in the viscosity of the polymer with very low levels of filler between 0.2% and 0.3% by weight. This surprising increase in viscosity is explained by the very high affinity of the crude carbon nanotubes for the polysiloxane polymer, as shown by the measurements made by means of a so-called "bound rubber" test (Table 3). The experimental procedure of this test consists of extracting 3.5 g of precursor A / carbon nanotubes mixture with 30 ml of solvent (heptane) for 4 hours at 25 ° C. After centrifugation and evaporation of the solvent, the dry residue is weighed to determine the amount of PDMS polymer bound to the carbon nanotubes. Table 3 shows that the crude nanotubes have a much greater affinity with the precursor A than sepiolite and much greater than platelet loading.
Figure imgf000020_0001
Tableau 3 : Affinité des nanotubes de carbone pour la matrice polymérique de la composition
Figure imgf000020_0001
Table 3: Affinity of carbon nanotubes for the polymeric matrix of the composition
[0068] Ainsi, les propriétés viscosimétriques du précurseur A chargé faiblement en nanotubes de carbone permettent son application au pinceau en vue d'enduire la surface d'un matériau. Néanmoins, l'application de la composition selon l'invention sur un support ou une surface, peut se faire par tout moyen adéquat. Par exemple, l'application peut se faire par injection, ou par coulage. Thus, the viscometric properties of the precursor A loaded weakly carbon nanotubes allow its application by brush to coat the surface of a material. Nevertheless, the application of the composition according to the invention on a support or a surface can be done by any suitable means. For example, the application can be by injection, or by casting.

Claims

REVENDICATIONS
1. Utilisation en tant que revêtement antiadhésif d'une composition comprenant un polymère réticulé à base de polysiloxane et au moins une charge nanocylindrique .Use as a non-stick coating of a composition comprising a polysiloxane crosslinked polymer and at least one nanocylindrical filler.
2. Utilisation d'une composition selon la revendication 1, dans laquelle ladite charge nanocylindrique représente entre 0,01% et 5% en poids du poids total de ladite composition. 2. Use of a composition according to claim 1, wherein said nanocylindrical filler is between 0.01% and 5% by weight of the total weight of said composition.
3. Utilisation d'une composition selon la revendication 2, dans laquelle ladite charge nanocylindrique représente entre 0,01% et 1% en poids du poids total de ladite composition.3. Use of a composition according to claim 2, wherein said nanocylindrical filler is between 0.01% and 1% by weight of the total weight of said composition.
4. Utilisation d'une composition selon l'une quelconque des revendications 1 à 2, dans laquelle la charge nanocylindrique comprend de la sépiolite.4. Use of a composition according to any one of claims 1 to 2, wherein the nanocylindrical filler comprises sepiolite.
5. Utilisation d'une composition selon la revendication 4, dans laquelle la sépiolite représente entre 0,01% et 3,5% en poids du poids total de ladite composition.5. Use of a composition according to claim 4, wherein the sepiolite is between 0.01% and 3.5% by weight of the total weight of said composition.
6. Utilisation d'une composition selon l'une quelconque des revendications 1 à 3, dans laquelle la charge nanocylindrique comprend des nanotubes de carbone.6. Use of a composition according to any one of claims 1 to 3, wherein the nanocylindrical filler comprises carbon nanotubes.
7. Utilisation d'une composition selon l'une quelconque des revendications précédentes, dans laquelle ladite composition comprend de la sépiolite et des nanotubes de carbone .7. Use of a composition according to any one of the preceding claims, wherein said composition comprises sepiolite and carbon nanotubes.
8. Utilisation d'une composition selon l'une quelconque des revendications 6 ou 7 , dans laquelle les nanotubes de carbone sont choisis parmi le groupe des nanotubes de carbone à simple paroi (SWNTs) , à double paroi (DWNTs) ou à multiple paroi (MWNTs) .8. Use of a composition according to any one of claims 6 or 7, wherein the carbon nanotubes are selected from the group of single wall carbon nanotubes (SWNTs), double wall (DWNTs) or multiple wall (MWNTs).
9. Composition antiadhésive et antistatique comprenant un polymère réticulé à base de polysiloxane et une concentration de nanotubes de carbone multiparoi comprise entre 0,1% et 1% en poids, ladite composition ayant une résistivité électrique inférieure à 100.000.000 Ohm. cm. 9. Anti-adhesive and antistatic composition comprising a crosslinked polysiloxane polymer and a concentration of multiwall nanotubes of between 0.1% and 1% by weight, said composition having an electrical resistivity of less than 100,000,000 Ohm. cm.
10. Composition antiadhésive et antistatique selon la revendication 9, caractérisée en ce que la concentration de nanotubes de carbone multiparoi est comprise entre 0,3% et 1% en poids, ladite composition ayant une résistivité électrique inférieure à 1.000.000 Ohm. cm.10. Anti-adhesive and antistatic composition according to claim 9, characterized in that the concentration of multiwall carbon nanotubes is between 0.3% and 1% by weight, said composition having an electrical resistivity of less than 1,000,000 Ohm. cm.
11. Composition antiadhésive et antistatique selon la revendication 10, caractérisée en ce que la concentration de nanotubes de carbone multiparoi est comprise entre 0,5% et 1% en poids, ladite composition ayant une résistivité électrique inférieure à 250.000 Ohm . cm.11. Anti-adhesive and antistatic composition according to claim 10, characterized in that the concentration of multi-wall carbon nanotubes is between 0.5% and 1% by weight, said composition having an electrical resistivity of less than 250,000 Ohm. cm.
12. Utilisation en tant que revêtement antistatique d'une composition antiadhésive comprenant un polymère réticulé à base de polysiloxane, ladite composition comportant une concentration de nanotubes de carbone multiparoi comprise entre 0.01 et 5% en poids.12. Use as antistatic coating of a release composition comprising a polysiloxane crosslinked polymer, said composition comprising a concentration of multiwall carbon nanotubes of between 0.01 and 5% by weight.
13. Utilisation en tant que revêtement antistatique d'une composition antiadhésive selon la revendication 12, caractérisée en ce que ladite composition comporte une concentration de nanotubes de carbone multiparoi comprise entre 0.1 et 1% en poids. 13. Use as antistatic coating of a non-stick composition according to claim 12, characterized in that said composition comprises a concentration of multiwall nanotubes of between 0.1 and 1% by weight.
PCT/BE2007/000113 2006-10-18 2007-10-18 Anti-adhesive and antistatic composition WO2008046165A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US85277106P 2006-10-18 2006-10-18
US60/852,771 2006-10-18
EP07447027.9 2007-04-19
EP07447027A EP1914277A1 (en) 2006-10-18 2007-04-19 Anti-adhesive and anti-static composition

Publications (2)

Publication Number Publication Date
WO2008046165A2 true WO2008046165A2 (en) 2008-04-24
WO2008046165A3 WO2008046165A3 (en) 2008-06-19

Family

ID=38846831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE2007/000113 WO2008046165A2 (en) 2006-10-18 2007-10-18 Anti-adhesive and antistatic composition

Country Status (1)

Country Link
WO (1) WO2008046165A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007163A1 (en) * 2008-07-17 2010-01-21 Nanocyl S.A. Method for the preparation of a reinforced thermoset polymer composite
WO2010106152A2 (en) 2009-03-19 2010-09-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Antimicrobially treated and/or stain-resistant planar substrates and method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026760A (en) * 1998-07-14 2000-01-25 Suzuki Sogyo Co Ltd Functional coating composition
JP2000302970A (en) * 1999-04-19 2000-10-31 Suzuki Sogyo Co Ltd Thermally conductive silicone rubber composition, its molding product and it applied product
US20030080458A1 (en) * 2001-10-29 2003-05-01 Gerhard Heilig Non-stick coated molds
DE10163646A1 (en) * 2001-12-21 2003-07-03 Hermsdorfer Inst Tech Keramik A surface modified hard and wear resistant compound inorganic material containing a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material useful for external coating of buildings
WO2005114324A2 (en) * 2004-03-23 2005-12-01 University Of Dayton Coatings containing nanotubes, methods of applying the same and substrates incorporating the same
US20060110537A1 (en) * 2004-11-23 2006-05-25 Hon Hai Precision Industry Co., Ltd. Anti-fingerprint coating construction
FR2880353A1 (en) * 2005-01-05 2006-07-07 Arkema Sa USE OF CARBON NANOTUBES FOR THE MANUFACTURE OF A CONDUCTIVE ORGANIC COMPOSITION AND APPLICATIONS THEREOF

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026760A (en) * 1998-07-14 2000-01-25 Suzuki Sogyo Co Ltd Functional coating composition
JP2000302970A (en) * 1999-04-19 2000-10-31 Suzuki Sogyo Co Ltd Thermally conductive silicone rubber composition, its molding product and it applied product
US20030080458A1 (en) * 2001-10-29 2003-05-01 Gerhard Heilig Non-stick coated molds
DE10163646A1 (en) * 2001-12-21 2003-07-03 Hermsdorfer Inst Tech Keramik A surface modified hard and wear resistant compound inorganic material containing a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material useful for external coating of buildings
WO2005114324A2 (en) * 2004-03-23 2005-12-01 University Of Dayton Coatings containing nanotubes, methods of applying the same and substrates incorporating the same
US20060110537A1 (en) * 2004-11-23 2006-05-25 Hon Hai Precision Industry Co., Ltd. Anti-fingerprint coating construction
FR2880353A1 (en) * 2005-01-05 2006-07-07 Arkema Sa USE OF CARBON NANOTUBES FOR THE MANUFACTURE OF A CONDUCTIVE ORGANIC COMPOSITION AND APPLICATIONS THEREOF

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDDEN C ET AL: "Development of cnt-polysiloiane composites for spacecraft applications", SOLID DIELECTRICS, 2004. ICSD 2004. PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL CONFERENCE ON TOULOUSE, FRANCE 5-9 JULY 2004, PISCATAWAY, NJ, USA,IEEE, US, 5 juillet 2004 (2004-07-05), pages 955-958, XP010735721, ISBN: 0-7803-8348-6 *
VAST ET AL: "Preparation and electrical characterization of a silicone elastomer composite charged with multi-wall carbon nanotubes functionalized with 7-octenyltrichlorosilane", COMPOSITES SCIENCE AND TECHNOLOGY, ELSEVIER, vol. 67, no. 5, 18 janvier 2007 (2007-01-18), pages 880-889, XP005835499, ISSN: 0266-3538 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007163A1 (en) * 2008-07-17 2010-01-21 Nanocyl S.A. Method for the preparation of a reinforced thermoset polymer composite
US8613980B2 (en) 2008-07-17 2013-12-24 Nanocyl S.A. Method for the preparation of a reinforced thermoset polymer composite
WO2010106152A2 (en) 2009-03-19 2010-09-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Antimicrobially treated and/or stain-resistant planar substrates and method for producing the same
DE102009013884A1 (en) 2009-03-19 2010-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Antimicrobially treated and / or stain-resistant textile materials and processes for their preparation

Also Published As

Publication number Publication date
WO2008046165A3 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
Teisala et al. Grafting silicone at room temperature—a transparent, scratch-resistant nonstick molecular coating
Meng et al. Effect of fluorination of carbon nanotubes on superhydrophobic properties of fluoro-based films
EP2231516B1 (en) Aerogels of carbon nanotubes
Xie et al. Facile creation of a super‐amphiphobic coating surface with bionic microstructure
CN101379153B (en) Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
Xiu et al. UV and thermally stable superhydrophobic coatings from sol–gel processing
EP1885790B1 (en) Method for dispersing carbon nanotubes in a polymer matrix
EP1914277A1 (en) Anti-adhesive and anti-static composition
EP3145642A2 (en) Novel process for obtaining superhydrophobic or superhydrophilic surfaces
WO2007052260A2 (en) Use of poss nanostructured molecules for hydrophobic and self cleaning coatings
JP2019014793A (en) Water- and oil-repellent base material
US11498842B2 (en) Method of forming nanoparticles having superhydrophobicity
WO2011086248A1 (en) Multifunctional coating for aircraft
US20190168258A1 (en) Compositions and methods for creating functionalized, roughened surfaces and methods of creating repellant surfaces
Prieto‐López et al. When Ultimate Adhesive Mechanism Meets Ultimate Anti‐Fouling Surfaces—Polydopamine Versus SLIPS: Which One Prevails?
JP6125226B2 (en) Conductive carbon dispersion, conductive coating composition, and conductive member
Eduok et al. Effect of silylating agents on the superhydrophobic and self-cleaning properties of siloxane/polydimethylsiloxane nanocomposite coatings on cellulosic fabric filters for oil–water separation
WO2008046165A2 (en) Anti-adhesive and antistatic composition
JP5396063B2 (en) Functional metal composite substrate and manufacturing method thereof
FR2849446A1 (en) Cationically crosslinkable silylated lacquer with antisoiling properties, useful e.g. for coating architectural textiles, contains polyfunctional base compound and onium borate initiator
US7179506B2 (en) Surface modification of solid phase objects by poly(vinyl alcohol)
Xu et al. Extended hydrophobicity and self-cleaning performance of waterborne PDMS/TiO 2 nanocomposite coatings under accelerated laboratory and outdoor exposure testing
Chen et al. Chlorotrimethylsilane treatment affords long-lasting contaminant-proof and transparent slippery covalently attached liquids surfaces
Guo et al. Fabrication of self-assembled hydrophobic fluorinated silica particulate film
JP2022550001A (en) Composites made from Pickering emulsions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07815692

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07815692

Country of ref document: EP

Kind code of ref document: A2