WO2010073623A1 - Process for formation of coating film, and coating fluid - Google Patents

Process for formation of coating film, and coating fluid Download PDF

Info

Publication number
WO2010073623A1
WO2010073623A1 PCT/JP2009/007124 JP2009007124W WO2010073623A1 WO 2010073623 A1 WO2010073623 A1 WO 2010073623A1 JP 2009007124 W JP2009007124 W JP 2009007124W WO 2010073623 A1 WO2010073623 A1 WO 2010073623A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophobic
coating
fine particles
organic solvent
coating film
Prior art date
Application number
PCT/JP2009/007124
Other languages
French (fr)
Japanese (ja)
Inventor
真子義邦
長谷川博
Original Assignee
株式会社カーメイト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カーメイト filed Critical 株式会社カーメイト
Publication of WO2010073623A1 publication Critical patent/WO2010073623A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings

Definitions

  • the present invention relates to a coating film forming method and a coating liquid used for forming the coating film, and in particular, exterior walls and roofs of buildings, bodies of aircraft, ships, vehicles, etc., glass, wheels, etc., side mirrors for passenger cars,
  • the present invention relates to a coating film forming method and a coating liquid applied to a heat exchanger, a parabolic antenna, an electric wire, and the like of an air conditioner.
  • JP 2003-206477 A and JP 2003-306670 A disclose a surface of a mirror or the like using a water repellent composition in which inorganic or organic fine particles hydrophobized are contained in an organic solvent. Discloses a method of forming a super water-repellent coating.
  • the presence of moisture on the surface of an object (mirror or the like) on which a film is formed has an adverse effect, and super water repellency cannot be realized in the formed film. Therefore, it is necessary to sufficiently remove moisture from the surface of the object and dry it before the film forming operation, and a complicated operation is required.
  • the film forming operation cannot be performed in an environment such as rain. *
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a film forming method and a coating liquid capable of forming a transparent and super-water-repellent coating film without requiring a complicated operation. Is to provide.
  • the coating film forming method of the present invention comprises a coating liquid in which fine particles having a hydrophobic surface and an average primary particle diameter of 100 nm or less are dispersed in an organic solvent containing a hydrophobic solvent in an amount of 65% by mass or more in the total organic solvent.
  • the coating liquid is applied to an object having a hydrophobic surface to form a film.
  • the object having a hydrophobic surface can be made hydrophobic by subjecting the surface of the hydrophilic object to a hydrophobic treatment.
  • the coating liquid it is preferable to use an aerosol method or a flow coating method, or to coat using a hydrophobic impregnated body.
  • the fine particles having a hydrophobic surface are preferably hydrophobic silica.
  • the coating liquid of the present invention is characterized in that fine particles having a hydrophobic surface and an average primary particle size of 100 nm or less are dispersed in an organic solvent containing a hydrophobic solvent in an amount of 65% by mass or more in the total organic solvent. . *
  • the fine particles having a hydrophobic surface are preferably hydrophobic silica.
  • a superhydrophobic film having transparency can be formed without performing a complicated operation.
  • the coating liquid of the present invention is obtained by dispersing fine particles having a hydrophobic surface and an average primary particle diameter of 100 nm or less in an organic solvent.
  • this organic solvent needs to contain a hydrophobic solvent in an amount of 65% by mass or more in the total organic solvent, and preferably contains 75% by mass or more.
  • the effect of the present application cannot be exerted with an organic solvent having a hydrophobic solvent content of less than 65% by mass in the total organic solvent. Therefore, if water is present on the surface of the coating object, super water repellency is achieved. It cannot be expressed. *
  • the fine particles used in the present invention are required to have a hydrophobic surface and an average primary particle size of 100 nm or less.
  • the average primary particle diameter of the fine particles is preferably in the range of 1 to 100 nm, and more preferably in the range of 5 to 100 nm. This is because if the particle diameter of the fine particles exceeds 100 nm, light scattering occurs on the surface of the coating film, and transparency may not be maintained. That is, the coating film in which the fine particles are attached to the surface of glass or the like has irregularities having the same size and height as the fine particles.
  • the wavelength of visible light Mainly about 400 to 800 nm
  • the surface of the coating film is not scattered and light can be kept transparent. Therefore, when the object to which the coating composition of the present invention is applied is glass, a mirror, etc., the transparency is effectively utilized and it is particularly effective.
  • the shape of the fine particles is not limited to a spherical shape in a strict sense.
  • the crystal form or aggregated form may be substantially spherical, cylindrical, scaly, fibrous, indefinite, polyhedral, or the like.
  • Fine particles whose surface is hydrophobic are mainly composed of oxides such as silicon, titanium, aluminum, zirconium, antimony, tin, tungsten, zinc, iron, cerium, manganese, copper, magnesium, holmium, nickel, or carbon.
  • oxides such as silicon, titanium, aluminum, zirconium, antimony, tin, tungsten, zinc, iron, cerium, manganese, copper, magnesium, holmium, nickel, or carbon.
  • silicon oxide is particularly preferable. In this invention, these can be used individually or in mixture of 2 or more types.
  • the fine particles having a hydrophobic surface are preferably hydrophobic silica.
  • silica means not only those that exist strictly in the state of SiO 2 but also silicon oxide.
  • the fine particles whose surface is hydrophobic means those whose surface is hydrophobized.
  • the hydrophobic silica means one whose surface is hydrophobized.
  • the method for hydrophobizing the surface of the fine particles is not particularly limited as long as it can impart hydrophobicity to the surface of the fine particles, and is appropriately adopted.
  • the surface contains fluorine or an alkyl group.
  • the method for containing fluorine or an alkyl group on the surface of the fine particles include a method using an organometallic compound such as a silylating agent, a silane coupling agent, and alkylaluminum.
  • the silylating agent is a compound in which an alkyl group, an allyl group, a fluoroalkyl group containing fluorine, or the like is bonded to a hydrolyzable silyl group having affinity or reactivity with an inorganic material.
  • Examples of the hydrolyzable group bonded to silicon include an alkoxy group, a halogen, an acetoxy group, and the like. Usually, an alkoxy group such as a methoxy group and an ethoxy group, and chlorine are preferably used.
  • a trimethylsilylating agent, alkylsilanes, arylsilanes, fluoroalkylsilanes and the like can be mentioned.
  • the hydrophilic fine particles may be hydrophobized to make the surface hydrophobic.
  • the hydrophobizing treatment by dry means that the hydrophilic fine particles and the hydrophobizing agent are reacted in the gas phase.
  • the hydrophobizing agent monomethyltrichlorosilane, dimethyldichlorosilane, hexamethyldisilazane, silicone oil, or the like can be used.
  • silicon dioxide synthesized at high heat can be hydrophobized in a fluidized bed using dimethyldichlorosilane.
  • the hydrophobization reaction is preferably performed at a temperature of 400 to 600 ° C.
  • the hydrophobizing treatment by wet means that the hydrophilic fine particles and the hydrophobizing agent are reacted in a solution. It should be noted that the degree of hydrophobicity of the fine particles having a hydrophobic surface is preferably designed as appropriate according to the material of the object to be coated and the type of organic solvent used. *
  • hydrophobic silica containing a methyl group on the silica surface examples include, for example, a trade name “Leolosil HM20S” (manufactured by Tokuyama Corporation, average primary particle size 12 nm), and a trade name “Leolosil HM30S” (produced by Tokuyama Corporation, average Primary particle diameter 7 nm), trade name “Leoroceal HM40S” (manufactured by Tokuyama Corporation, average primary particle diameter 7 nm), trade name “Leoroceal DM30S” (manufactured by Tokuyama Corporation, average primary particle diameter 7 nm), trade name “Leolosil” ZD30S "(manufactured by Tokuyama Co., Ltd., average primary particle diameter 7 nm) and the like can be obtained commercially.
  • a trade name “Leolosil HM20S” manufactured by Tokuyama Corporation, average primary particle size 12 nm
  • Leolosil HM30S produced by Tokuyama Corporation
  • the coating liquid of the present invention can further contain a coupling agent.
  • the coupling agent used in the present invention include silane coupling agents, titanate coupling agents, aluminate coupling agents, zirconia coupling agents and the like. These coupling agents may be used alone or in combination of two or more.
  • silane coupling agents include fluoroalkyl silanes (heptadecafluorodecyltrimethoxysilane, trifluoropropyltrimethoxysilane, etc.), alkyl silanes (decyltrimethoxysilane, etc.), and aluminate coupling agents. Examples thereof include alkyl acetoacetate aluminum diisopropylate. *
  • silane coupling agent trade name “TSL8233” (heptadecafluorodecyltrimethoxysilane, manufactured by Momentive), trade name “KBM-7103” (trifluoropropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) ), Trade name “KBM-3103” (decyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be obtained commercially.
  • TSL8233 heptadecafluorodecyltrimethoxysilane, manufactured by Momentive
  • KBM-7103 trifluoropropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • trade name “KBM-3103” decyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the titanate coupling agent the trade name “Plenact 38S” (manufactured by Ajinomoto Fine Techno Co., Ltd.), and as the aluminate coupling agent, the trade name “Plenact AL-M” (alkyl acetate aluminum diisopropylate).
  • a zirconia-based coupling agent a trade name “KENRIACT NZ01” (manufactured by Kenrich Co., Ltd.) and the like can be obtained commercially.
  • KENRIACT NZ01 a trade name “KENRIACT NZ01” (manufactured by Kenrich Co., Ltd.) and the like can be obtained commercially.
  • the amount of fine particles having hydrophobic surfaces is preferably in the range of 0.1% by mass or more and 15.0% by mass or less in the coating solution, and in the range of 1% by mass or more and 5% by mass or less. More preferably it is. This is because sufficient water repellency may not be obtained if the amount of fine particles added is less than 0.1% by mass, and transparency may be inferior if it exceeds 15.0% by mass. *
  • the coating liquid of the present invention is formed using an organic solvent containing a hydrophobic solvent of 65% by mass or more in the total organic solvent.
  • the organic solvent functions as a solvent for stably dispersing fine particles and the like.
  • organic solvent used in the present invention either a polar organic solvent or a nonpolar organic solvent can be used.
  • organic solvent preferably used in the present invention include methyl alcohol, ethyl alcohol, isopropyl alcohol, allyl alcohol, ethylene glycol, propylene glycol, 3-methoxy-3-methyl-1-butanol, and 1-methoxy-2-.
  • Polar solvents such as alcohols such as propanol, ketones such as acetone and ethyl methyl ketone, ethers such as dimethyl ether, ethyl methyl ether, diethyl ether and dibutyl ether, esters such as ethyl acetate, hexane, n- Nonpolar solvents such as hexane, heptane, isooctane and the like can be mentioned.
  • Alcohols such as propanol
  • ketones such as acetone and ethyl methyl ketone
  • ethers such as dimethyl ether, ethyl methyl ether, diethyl ether and dibutyl ether
  • esters such as ethyl acetate, hexane, n-
  • Nonpolar solvents such as hexane, heptane, isooctane and the like can be mentioned.
  • the “hydrophobic solvent” means an organic solvent that does not substantially dissolve water.
  • the hydrophobic solvent used in the present invention include alkanes having 5 to 16 carbon atoms, alkenes, cycloalkanes, aromatics, and mixtures thereof, fluorine-based solvents, cyclic silicones (decamethylcyclohexane). Pentasiloxane, octamethylcyclotetrasiloxane, etc.), low-viscosity silicone oil (dimethylsilicone oil, etc.), and the like.
  • additives that are usually used in general coating liquids and the like can be added within a range that does not impair the effects of the present invention.
  • ultraviolet absorbers antioxidants, Coloring agents, fragrances, preservatives, acids, alkalis and the like can be added.
  • fine particles having a hydrophobic surface and an average primary particle size of 100 nm or less are dispersed in an organic solvent by a cavitation action.
  • fine particles are put in an organic solvent and dispersed by using an ultrasonic disperser or the like.
  • the fine particles dispersed by the cavitation action exhibit unexpected super water repellency, but this mechanism is not clear.
  • bubbles are instantaneously contracted and broken to disperse the hydrophobic fine particles in a good state or have some action on the fine particles themselves.
  • super-water repellency may be exhibited even when dispersed by a disperser such as a homogenizer, but adjustment is necessary in consideration of the transparency of the coating film to be formed.
  • a fine particle having a hydrophobic surface and, if necessary, a coating liquid in which a binder or a coupling agent is dispersed in a solvent are applied to the surface of an object to be coated such as glass or mirror, and then dried.
  • water repellency can be imparted to the object to be coated (coating object).
  • the fine particles adhere to the surface of the object to be coated and form irregularities.
  • the unevenness serves to reduce the contact point between the glass and the water droplet. Accordingly, it is possible to achieve super water repellency such that the contact angle of water drops is 150 ° to 175 °.
  • a component that forms a transparent body when dissolved in an organic solvent and dried serves as a binder.
  • the components used in the present invention to form a transparent body when dissolved in an organic solvent and dried are dimethyl, methylphenyl, methylhydrogen, amino-modified, epoxy-modified, epoxy polyether-modified, carboxyl-modified, carboxyl polyether Modified, alcohol-modified, alkyl-modified, alkyl-aralkyl-modified, alkyl-aralkyl polyether-modified, polyether-modified, fluorine-modified silicones and other silicones, phenylmethyl-based resins, methyl-based resins, resins such as modified resins, polyolefin-based Resins, vinyl resins, polyester resins, acrylic resins, epoxy resins, urethane resins, etc., anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants Surfactants such as polyvinyl pyrone
  • anionic surfactant examples include alkylbenzene sulfonic acid, ⁇ -olefin sulfonic acid, alkane sulfonic acid, alkyl sulfate, alkyl polyoxyethylene sulfate, alkyl phosphate, long chain fatty acid, ⁇ -sulfo fatty acid ester and salts thereof.
  • examples of the cationic surfactant include alkyl trimethyl ammonium salt, dialkyl dimethyl ammonium salt, and alkyl dimethyl benzyl ammonium salt.
  • Nonionic surfactants include alkyl polyoxyethylene ether, fatty acid diethanol amino acid, and the like.
  • amphoteric surfactants include dimethylalkylamine oxide, N-alkylbetaines, imidazoline derivatives, and the like. *
  • the surface of the object to be coated is hydrophobic, and when the surface is not hydrophobic, it is preferable to make it hydrophobic in advance.
  • a method for making the surface of the coating object hydrophobic in advance it is not particularly limited before coating operation (if it is before coating operation, it may be just before, several hours, several days, or even longer time may elapse).
  • the surface of the object to be coated (coating object) is subjected to a hydrophobic treatment.
  • a hydrophobic treatment can be applied to the surface of the coating object by applying a water repellent or the like.
  • the glass surface is hydrophobized
  • the glass surface is polished with a glass cleaner to make the glass surface hydrophilic, and then sprayed with a glass coat G3 manufactured by Carmate Co., Ltd. Spread out and leave at room temperature for 24 hours. In this way, the glass surface can be made hydrophobic.
  • the above method can be appropriately applied and used.
  • a method for applying the coating liquid of the present invention is not particularly limited, and a general method can be adopted. Examples thereof include a flow coating method, a dip coating method, a spray coating method, a gravure coating method, a roll coating method, a bar coating method, and a screen printing method.
  • the impregnated body may be impregnated with a coating solution and applied.
  • use an impregnated body that is hydrophobic does not absorb water, for example, does not absorb water for 10 seconds when water is dropped onto an impregnated body placed horizontally. is required.
  • the above coating methods may be used in appropriate combination. *
  • the coating liquid of the present invention is applied to the object to be coated (object) by the above method and then dried.
  • the drying temperature is preferably 0 ° C. to 100 ° C.
  • the drying time is preferably 1 minute to 1 hour. . *
  • the coating liquid of the present invention can be applied to various coated objects.
  • coated objects to be coated include glass such as tempered glass, non-alkali glass and quartz glass, metals such as iron, aluminum, stainless steel and copper, plastics such as polyolefin resin, polyester resin, acrylic resin and polycarbonate. , Stones, concrete and the like. *
  • the coating liquid of the present invention can be coated on, for example, building window glass, exterior light glass, vehicle window glass, automobile side mirrors, sunglasses, window glass for various instruments, bathroom mirrors, etc. It can be used for exterior walls and roofs of buildings, fences, bodies, mirrors and wheels of automobiles, aircraft and ships.
  • a super-water-repellent film is formed on the coating surface formed by coating and drying the coating liquid of the present invention, preventing adhesion of water droplets, dust, etc., maintaining aesthetics and ensuring visibility. can do.
  • a super-water-repellent film is formed on the surface of parts that are subject to water droplets unnecessarily, such as heat exchangers in air conditioners, water droplets can be prevented, airflow resistance can be reduced, and A decrease in conductivity can be prevented.
  • a super water-repellent coating is formed on a parabolic antenna or an electric wire, condensation and icing can be prevented.
  • a transparent coating film can be formed, it can be preferably used for window glass, road mirrors, road signs, signboards and the like of high-rise houses.
  • Lerosil HM40S hydrophobic silica, solid content 100%, average primary particle diameter 7 nm, manufactured by Tokuyama Corporation “Leosileal DM30S”: hydrophobic silica, solid content 100%, average primary particle diameter 7 nm, manufactured by Tokuyama Corporation “Lerosil ZD30S”: Hydrophobic silica, solid content 100%, average primary particle size 7 nm, Tokuyama “TSL8233”: fluoroalkylsilane, heptadecafluorodecyltrimethoxysilane, Momentive “KBM-13”: methyl Trimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • BM-22 Dimethyldimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBE-103 Phenyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM-3103 Decyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd.
  • “KBM-7103” trifluoropropyltrimethoxysilane, “SR2405” manufactured by Shin-Etsu Chemical Co., Ltd., silicone resin solution, “Unidyne TG-658” manufactured by Dow Corning Toray, fluorinated water and oil repellent, Daikin Industries “TSF404” manufactured by Co., Ltd .: cyclic silicone (octamethylcyclotetrasiloxane), “TSF405” manufactured by Momentive: cyclic silicone (decamethylcyclopentasiloxane), “KF995” manufactured by Momentive: cyclic silicone (decamethylcyclopentasiloxane) “KF96-1.5cst” manufactured by Shin-Etsu Chemical Co., Ltd .: dimethyl silicone oil, IPA manufactured by Shin-Etsu Chemical Co., Ltd .: alcohol solvent (isopropyl alcohol) ethanol: alcohol solvent (ethyl alcohol) nonane: petroleum solvent (Nonan
  • Example 1 Hydrophobic silica having a hydrophobic surface and a particle diameter of about 7 nm (trade name “Leolosil HM30S”, solid content 100%, manufactured by Tokuyama Corporation) 2.0 mass% is obtained by isooctane 80.0.
  • a hydrophobic silica dispersion is prepared by placing in a solvent comprising 1% by mass and 18.0% by mass of isopropyl alcohol (hereinafter also referred to as “IPA”) and dispersing for 1 hour at a frequency of 44 kHz using an ultrasonic disperser. did.
  • IPA isopropyl alcohol
  • the glass substrate (sample glass) having a water-repellent film was prepared by naturally drying at 25 ° C. for 15 minutes to form a film.
  • the surface of the slide glass plate was previously subjected to the following hydrophobization treatment, and coating was performed under two types of coating conditions (DRY, WET). That is, i) DRY: the glass substrate surface was dried, and ii) WET: the glass substrate surface was coated with water droplets.
  • the glass substrate surface is polished with a professional glass water spot cleaner P1 (manufactured by Carmate Co., Ltd.) to make the glass surface hydrophilic.
  • P1 professional glass water spot cleaner
  • the product was spray-coated and spread evenly, and then allowed to stand at room temperature (25 ° C.) for 24 hours.
  • the temperature of the glass substrate at the time of coating, the temperature of the coating liquid, and the water temperature at the time of WET were all adjusted to 25 ° C.
  • the initial finish was visually evaluated. Moreover, based on the said measuring method etc., the initial water droplet contact angle was measured as super-water-repellent evaluation. The results are shown in Table 1. However, in the evaluation of super water repellency, an evaluation criterion “ ⁇ ” or higher was regarded as an acceptable level, and in the evaluation of finish (transparency), an evaluation criterion “ ⁇ ” or larger was regarded as an acceptable level. *
  • Examples 2 to 30, Comparative Examples 1 to 21 A hydrophobic silica dispersion (coating solution) was prepared in the same manner as in Example 1 except that the composition of the coating solution was changed as shown in Tables 1 to 9.
  • the glass substrate As shown in Tables 1 to 9, the glass surface was hydrophobized (or not hydrophobized), and a coating solution was applied thereto to prepare a sample glass. About the obtained sample glass, the same measurement and evaluation as Example 1 were performed. The results are shown in Tables 1 to 9.
  • the impregnated body for example, non-woven fabric
  • the coating liquid is impregnated with the coating liquid so that the impregnation ratios shown in Tables 1 to 9 are obtained. It apply
  • coating was performed by directly spraying on a glass substrate fixed at an inclination of 30 degrees.
  • coating was performed by allowing the liquid to flow on a glass substrate fixed at an inclination of 30 degrees.
  • the coating composition of the present invention can be effectively used in places where it is necessary to impart super water repellency to buildings, automobiles, aircraft, ships and the like.
  • a film having super water repellency can be formed without complicated steps even in the presence of moisture, it can be used particularly effectively even in a portion that requires application in the rain.

Abstract

Provided is a process for the formation of a coating film, by which a transparent and super water-repellent coating film can be formed without troublesome working.  The process comprises: using a coating fluid prepared by dispersing fine particles, the surfaces of which are hydrophobic and which have a mean primary particle diameter of 100nm or smaller, in an organic solvent which contains a hydrophobic solvent in an amount of 65mass% or larger relative to the organic solvent; applying the coating fluid to a substrate, the surface of which is hydrophobic; and thus forming a coating film.  The application of the coating fluid may be conducted by an aerosol method, a flow coating method, a method using a hydrophobic and fluid-impregnable article, or other methods.

Description

コーティング膜形成方法およびコーティング液Coating film forming method and coating liquid
本発明は、コーティング膜形成方法およびこのコーティング膜の形成に使用されるコーティング液に関し、特に、建築物の外壁や屋根、航空機、船舶、車両等のボディー、ガラス、ホイール等、乗用車のサイドミラー、エアコンの熱交換器、パラボラアンテナ、電線等に適用されるコーティング膜の形成方法およびコーティング液に関する。 The present invention relates to a coating film forming method and a coating liquid used for forming the coating film, and in particular, exterior walls and roofs of buildings, bodies of aircraft, ships, vehicles, etc., glass, wheels, etc., side mirrors for passenger cars, The present invention relates to a coating film forming method and a coating liquid applied to a heat exchanger, a parabolic antenna, an electric wire, and the like of an air conditioner.
乗用車のサイドミラーやガラス、家屋の窓ガラス等のように、屋外に設置されたり、屋外で使用されるガラスやミラーは、雨滴等が付着すると、視覚的に識別しにくくなり、視認性が低下する。また、建築物の外壁、屋根等に雨滴が付着すると美観を損ねる。さらにまた、パラボラアンテナ、電線等に結露や着氷が生じると、あるいは、エアコンの熱交換器に水滴が付着すると種々の問題が発生する。そのため、建築物の外壁等、パラボラアンテナ、電線、ガラスやミラー、熱交換器等の表面に撥水性を付与する技術の開発が行われている。  Glass and mirrors installed outdoors or used outdoors, such as passenger car side mirrors and glass, and window glass of houses, are difficult to visually identify when raindrops adhere to them, reducing visibility. To do. Moreover, if raindrops adhere to the outer wall, roof, etc. of the building, the aesthetics are impaired. Furthermore, various problems occur when dew condensation or icing occurs on parabolic antennas, electric wires, etc., or when water droplets adhere to the heat exchanger of an air conditioner. Therefore, the development of a technique for imparting water repellency to the surface of a building such as an outer wall of a building, a parabolic antenna, an electric wire, glass, a mirror, a heat exchanger or the like has been performed. *
例えば、特開2003-206477号公報および特開2003-306670号公報には、疎水化処理された無機または有機の微粒子を有機溶媒に含有させた撥水剤組成物を用いて、ミラー等の表面に超撥水性の被膜を形成する方法が開示されている。しかしながら、これらの方法では、被膜を形成する対象物(ミラー等)の表面に水分が存在すると悪影響を及ぼし、形成された膜に超撥水性を実現することができなかった。そのため、被膜形成作業前に、対象物の表面から水分を十分に除去して、乾燥させることが必要であり、煩雑な作業が要求された。しかも、雨等の環境下では被膜形成作業を行うことができないという問題もあった。  For example, JP 2003-206477 A and JP 2003-306670 A disclose a surface of a mirror or the like using a water repellent composition in which inorganic or organic fine particles hydrophobized are contained in an organic solvent. Discloses a method of forming a super water-repellent coating. However, in these methods, the presence of moisture on the surface of an object (mirror or the like) on which a film is formed has an adverse effect, and super water repellency cannot be realized in the formed film. Therefore, it is necessary to sufficiently remove moisture from the surface of the object and dry it before the film forming operation, and a complicated operation is required. In addition, there is a problem that the film forming operation cannot be performed in an environment such as rain. *
特開2003-206477号公報JP 2003-206477 A 特開2003-306670号公報JP 2003-306670 A
本発明は上記問題点を解決すべくなされたものであり、本発明の目的は、煩雑な作業を必要とせずに透明で超撥水性のコーティング膜を形成することができる被膜形成方法およびコーティング液を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a film forming method and a coating liquid capable of forming a transparent and super-water-repellent coating film without requiring a complicated operation. Is to provide.
上記問題点に鑑み、本発明者らは鋭意研究を重ねた結果、本発明を完成させるに至った。 すなわち、本発明のコーティング膜形成方法は、表面が疎水性で平均一次粒子径が100nm以下の微粒子を、疎水性溶媒を全有機溶媒中65質量%以上含有する有機溶媒に分散させたコーティング液を用い、このコーティング液を表面が疎水性の対象物へ塗工して被膜を形成することを特徴とする。  In view of the above problems, the present inventors have intensively studied, and as a result, completed the present invention. That is, the coating film forming method of the present invention comprises a coating liquid in which fine particles having a hydrophobic surface and an average primary particle diameter of 100 nm or less are dispersed in an organic solvent containing a hydrophobic solvent in an amount of 65% by mass or more in the total organic solvent. The coating liquid is applied to an object having a hydrophobic surface to form a film. *
本発明において、前記表面が疎水性の対象物は、親水性の対象物の表面に疎水化処理を行って該表面を疎水性にすることができる。  In the present invention, the object having a hydrophobic surface can be made hydrophobic by subjecting the surface of the hydrophilic object to a hydrophobic treatment. *
また、前記コーティング液を前記対象物へ塗工する方法としては、エアゾール法またはフローコート法であるか、あるいは、疎水性の含浸体を使用してコーティングすることが好ましい。  Moreover, as a method of applying the coating liquid to the object, it is preferable to use an aerosol method or a flow coating method, or to coat using a hydrophobic impregnated body. *
本発明において、前記表面が疎水性の微粒子は疎水性シリカであることが好ましい。  In the present invention, the fine particles having a hydrophobic surface are preferably hydrophobic silica. *
本発明のコーティング液は、表面が疎水性で、平均一次粒子径が100nm以下の微粒子を、疎水性溶媒を全有機溶媒中65質量%以上含有する有機溶媒に分散させて成ることを特徴とする。  The coating liquid of the present invention is characterized in that fine particles having a hydrophobic surface and an average primary particle size of 100 nm or less are dispersed in an organic solvent containing a hydrophobic solvent in an amount of 65% by mass or more in the total organic solvent. . *
ここで、前記表面が疎水性の微粒子は疎水性シリカであることが好ましい。 Here, the fine particles having a hydrophobic surface are preferably hydrophobic silica.
本発明によれば、透明性を有する超撥水性膜を煩雑な作業を行うことなく形成することができる。 According to the present invention, a superhydrophobic film having transparency can be formed without performing a complicated operation.
本発明のコーティング液は、表面が疎水性で、平均一次粒子径が100nm以下の微粒子を、有機溶媒に分散させて成るものである。但し、この有機溶媒は、疎水性溶媒を全有機溶媒中65質量%以上含有することが必要であり、75質量%以上含有することが好ましい。疎水性溶媒の含有量が全有機溶媒中65質量%未満の有機溶媒では、本願の効果を発揮させることができないので、コーティング対象物の表面に水分が存在する状態で塗工すると超撥水性を発現することができない。  The coating liquid of the present invention is obtained by dispersing fine particles having a hydrophobic surface and an average primary particle diameter of 100 nm or less in an organic solvent. However, this organic solvent needs to contain a hydrophobic solvent in an amount of 65% by mass or more in the total organic solvent, and preferably contains 75% by mass or more. The effect of the present application cannot be exerted with an organic solvent having a hydrophobic solvent content of less than 65% by mass in the total organic solvent. Therefore, if water is present on the surface of the coating object, super water repellency is achieved. It cannot be expressed. *
本発明に使用される微粒子は、表面が疎水性であり、また、平均一次粒子径が100nm以下であることが必要である。微粒子の平均一次粒子径は、1~100nmの範囲内であることが好ましく、5nm~100nmの範囲内であることが更に好ましい。微粒子の粒子径が100nmを越えると、コーティング膜表面で光の散乱が生じ、透明性を保持することができなくなることがあるからである。すなわち、微粒子をガラス等の表面に付着させたコーティング膜は、この微粒子と同等の大きさや高さの凹凸を有するので、平均粒径が100nm以下の微粒子を付着させれば、可視光線の波長(主に、400~800nm程度)より小さな凹凸となり、コーティング膜表面で光の散乱が生じず、透明性を保持することができる。したがって、本発明のコーティング組成物が適用される対象物がガラス、ミラー等である場合には透明性が有効に生かされ特に効果的である。  The fine particles used in the present invention are required to have a hydrophobic surface and an average primary particle size of 100 nm or less. The average primary particle diameter of the fine particles is preferably in the range of 1 to 100 nm, and more preferably in the range of 5 to 100 nm. This is because if the particle diameter of the fine particles exceeds 100 nm, light scattering occurs on the surface of the coating film, and transparency may not be maintained. That is, the coating film in which the fine particles are attached to the surface of glass or the like has irregularities having the same size and height as the fine particles. Therefore, if fine particles having an average particle size of 100 nm or less are attached, the wavelength of visible light ( Mainly about 400 to 800 nm), the surface of the coating film is not scattered and light can be kept transparent. Therefore, when the object to which the coating composition of the present invention is applied is glass, a mirror, etc., the transparency is effectively utilized and it is particularly effective. *
微粒子の形状は、厳密な意味での球状に限定されることはない。例えば、その結晶形態や凝集状態の形態が、ほぼ球状、円柱状、鱗片状、繊維状、不定形状、多面体形状等であってもよい。  The shape of the fine particles is not limited to a spherical shape in a strict sense. For example, the crystal form or aggregated form may be substantially spherical, cylindrical, scaly, fibrous, indefinite, polyhedral, or the like. *
表面が疎水性である微粒子は、珪素、チタン、アルミニウム、ジルコニウム、アンチモン、スズ、タングステン、亜鉛、鉄、セリウム、マンガン、銅、マグネシウム、ホルミウム、ニッケル等の酸化物、または、炭素を主成分とすることが好ましいが、特に酸化ケイ素であることが好ましい。本発明においては、これらを単独で、あるいは2種類以上を混合して使用することができる。微粒子が酸化亜鉛を用いて形成された場合には、コーティング膜表面に、さらに抗菌、抗カビ作用を付与することができる。  Fine particles whose surface is hydrophobic are mainly composed of oxides such as silicon, titanium, aluminum, zirconium, antimony, tin, tungsten, zinc, iron, cerium, manganese, copper, magnesium, holmium, nickel, or carbon. However, silicon oxide is particularly preferable. In this invention, these can be used individually or in mixture of 2 or more types. When the fine particles are formed using zinc oxide, antibacterial and antifungal effects can be further imparted to the coating film surface. *
本発明においては、表面が疎水性の微粒子が、疎水性シリカであることが好ましい。ここで「シリカ」とは、厳密にSiOの状態で存在するものだけではなく、珪素酸化物も含むことを意味する。表面が疎水性の微粒子とは、微粒子表面が疎水化処理されているものをいい、例えば、疎水性シリカとは、シリカの表面が疎水化処理されているものを意味する。  In the present invention, the fine particles having a hydrophobic surface are preferably hydrophobic silica. Here, the term “silica” means not only those that exist strictly in the state of SiO 2 but also silicon oxide. The fine particles whose surface is hydrophobic means those whose surface is hydrophobized. For example, the hydrophobic silica means one whose surface is hydrophobized.
微粒子表面を疎水化する方法としては、微粒子表面に疎水性を付与することができれば特に限定されることはなく、適宜採用される。例えば、表面にフッ素やアルキル基を含有させることが好ましい。微粒子表面にフッ素やアルキル基を含有させる方法としては、シリル化剤、シランカップリング剤、アルキルアルミニウム等の有機金属化合物を用いる方法等が挙げられる。ここでシリル化剤とは、無機材料に対して親和性あるいは反応性を有する加水分解性シリル基に、アルキル基、アリル基、フッ素を含有したフルオロアルキル基等を結合させた化合物である。珪素に結合した加水分解性基としては、アルコキシ基、ハロゲン、アセトキシ基等が挙げられるが、通常、メトキシ基、エトキシ基等のアルコキシ基、塩素が好ましく使用される。例えば、トリメチルシリル化剤、アルキルシラン類、アリールシラン類、フルオロアルキルシラン類等を挙げることができる。  The method for hydrophobizing the surface of the fine particles is not particularly limited as long as it can impart hydrophobicity to the surface of the fine particles, and is appropriately adopted. For example, it is preferable that the surface contains fluorine or an alkyl group. Examples of the method for containing fluorine or an alkyl group on the surface of the fine particles include a method using an organometallic compound such as a silylating agent, a silane coupling agent, and alkylaluminum. Here, the silylating agent is a compound in which an alkyl group, an allyl group, a fluoroalkyl group containing fluorine, or the like is bonded to a hydrolyzable silyl group having affinity or reactivity with an inorganic material. Examples of the hydrolyzable group bonded to silicon include an alkoxy group, a halogen, an acetoxy group, and the like. Usually, an alkoxy group such as a methoxy group and an ethoxy group, and chlorine are preferably used. For example, a trimethylsilylating agent, alkylsilanes, arylsilanes, fluoroalkylsilanes and the like can be mentioned. *
本発明においては、親水性の微粒子に疎水化処理を行って、表面を疎水性にしてもよい。  In the present invention, the hydrophilic fine particles may be hydrophobized to make the surface hydrophobic. *
本発明においては、乾式による疎水化処理を行うことが好ましい。ここで、乾式による疎水化処理とは、気相中で親水性微粒子と疎水化剤とを反応させることをいう。疎水化剤としては、モノメチルトリクロロシラン、ジメチルジクロロシラン、ヘキサメチルジシラザン、シリコーンオイル等を使用することができる。例えば、高熱合成した二酸化珪素を、ジメチルジクロルシランを用いて流動床中で疎水化することができる。なお、疎水化反応は、400~600℃の温度で実施することが好ましい。また、湿式による疎水化処理とは、溶液中で親水性微粒子と疎水化剤とを反応させることをいう。 なお、表面が疎水性の微粒子の疎水化度については、塗布等する対象である被コーティング物体の材質や、使用される有機溶媒の種類に応じて、適宜、設計されることが好ましい。  In the present invention, it is preferable to perform a hydrophobizing treatment by a dry method. Here, the hydrophobizing treatment by dry means that the hydrophilic fine particles and the hydrophobizing agent are reacted in the gas phase. As the hydrophobizing agent, monomethyltrichlorosilane, dimethyldichlorosilane, hexamethyldisilazane, silicone oil, or the like can be used. For example, silicon dioxide synthesized at high heat can be hydrophobized in a fluidized bed using dimethyldichlorosilane. The hydrophobization reaction is preferably performed at a temperature of 400 to 600 ° C. The hydrophobizing treatment by wet means that the hydrophilic fine particles and the hydrophobizing agent are reacted in a solution. It should be noted that the degree of hydrophobicity of the fine particles having a hydrophobic surface is preferably designed as appropriate according to the material of the object to be coated and the type of organic solvent used. *
シリカ表面にメチル基を含有する疎水性シリカとしては、例えば、商品名「レオロシールHM20S」((株)トクヤマ製、平均一次粒子径12nm)、商品名「レオロシールHM30S」((株)トクヤマ製、平均一次粒子径7nm)、商品名「レオロシールHM40S」((株)トクヤマ製、平均一次粒子径7nm)、商品名「レオロシールDM30S」((株)トクヤマ製、平均一次粒子径7nm)、商品名「レオロシールZD30S」((株)トクヤマ製、平均一次粒子径7nm)等を商業的に入手することができる。  Examples of the hydrophobic silica containing a methyl group on the silica surface include, for example, a trade name “Leolosil HM20S” (manufactured by Tokuyama Corporation, average primary particle size 12 nm), and a trade name “Leolosil HM30S” (produced by Tokuyama Corporation, average Primary particle diameter 7 nm), trade name “Leoroceal HM40S” (manufactured by Tokuyama Corporation, average primary particle diameter 7 nm), trade name “Leoroceal DM30S” (manufactured by Tokuyama Corporation, average primary particle diameter 7 nm), trade name “Leolosil” ZD30S "(manufactured by Tokuyama Co., Ltd., average primary particle diameter 7 nm) and the like can be obtained commercially. *
本発明のコーティング液は、更にカップリング剤を含有することができる。本発明に使用されるカップリング剤としては、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、ジルコニア系カップリング剤等が挙げられる。これらのカップリング剤は、単独で使用してもよいが、2種類以上を併用してもよい。例えば、シランカップリング剤としては、フルオロアルキルシラン(ヘプタデカフルオロデシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン等)、アルキルシラン(デシルトリメトキシシラン等)などが挙げられ、アルミネート系カップリング剤としては、アルキルアセトアセテートアルミニウムジイソプロピレート等が挙げられる。  The coating liquid of the present invention can further contain a coupling agent. Examples of the coupling agent used in the present invention include silane coupling agents, titanate coupling agents, aluminate coupling agents, zirconia coupling agents and the like. These coupling agents may be used alone or in combination of two or more. Examples of silane coupling agents include fluoroalkyl silanes (heptadecafluorodecyltrimethoxysilane, trifluoropropyltrimethoxysilane, etc.), alkyl silanes (decyltrimethoxysilane, etc.), and aluminate coupling agents. Examples thereof include alkyl acetoacetate aluminum diisopropylate. *
例えば、シランカップリング剤としては、商品名「TSL8233」(ヘプタデカフルオロデシルトリメトキシシラン、モメンティブ社製)、商品名「KBM-7103」(トリフルオロプロピルトリメトキシシラン、信越化学工業(株)製)、商品名「KBM-3103」(デシルトリメトキシシラン、信越化学工業(株)製)等を商業的に入手することができる。  For example, as a silane coupling agent, trade name “TSL8233” (heptadecafluorodecyltrimethoxysilane, manufactured by Momentive), trade name “KBM-7103” (trifluoropropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) ), Trade name “KBM-3103” (decyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be obtained commercially. *
例えば、チタネート系カップリング剤としては、商品名「プレンアクト38S」(味の素ファインテクノ(株)製)、アルミネート系カップリング剤としては、商品名「プレンアクトAL-M」(アルキルアセテートアルミニウムジイソプロピレート、味の素ファインテクノ(株)製)、ジルコニア系カップリング剤としては、商品名「ケンリアクトNZ01」(ケンリッチ社製)等を商業的に入手することができる。  For example, as the titanate coupling agent, the trade name “Plenact 38S” (manufactured by Ajinomoto Fine Techno Co., Ltd.), and as the aluminate coupling agent, the trade name “Plenact AL-M” (alkyl acetate aluminum diisopropylate). As a zirconia-based coupling agent, a trade name “KENRIACT NZ01” (manufactured by Kenrich Co., Ltd.) and the like can be obtained commercially. *
表面が疎水性の微粒子の添加量は、コーティング液中、0.1質量%以上、15.0質量%以下の範囲内であることが好ましく、1質量%以上、5質量%以下の範囲内であることが更に好ましい。微粒子の添加量が0.1質量%未満であると十分な撥水性が得られないことがあり、15.0質量%を超えると透明感に劣る場合があるからである。  The amount of fine particles having hydrophobic surfaces is preferably in the range of 0.1% by mass or more and 15.0% by mass or less in the coating solution, and in the range of 1% by mass or more and 5% by mass or less. More preferably it is. This is because sufficient water repellency may not be obtained if the amount of fine particles added is less than 0.1% by mass, and transparency may be inferior if it exceeds 15.0% by mass. *
本発明のコーティング液は、全有機溶媒中65質量%以上の疎水性溶媒を含有する有機溶媒を使用して形成される。有機溶媒は、微粒子等を安定に分散させるための溶媒として機能する。  The coating liquid of the present invention is formed using an organic solvent containing a hydrophobic solvent of 65% by mass or more in the total organic solvent. The organic solvent functions as a solvent for stably dispersing fine particles and the like. *
本発明に使用される有機溶媒としては、極性を有する有機溶媒でも非極性の有機溶媒でも使用することができる。本発明に好ましく使用される有機溶媒としては、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、アリルアルコール、エチレングリコール、プロピレングリコール、3-メトキシ-3-メチル-1-ブタノール、1-メトキシ-2-プロパノール等のアルコール類、アセトン、エチルメチルケトン等のケトン類、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジブチルエーテル等のエーテル類、酢酸エチル等のエステル類等、のような極性溶媒、ヘキサン、n-ヘキサン、ヘプタン、イソオクタン等の非極性溶媒が挙げられる。  As the organic solvent used in the present invention, either a polar organic solvent or a nonpolar organic solvent can be used. Examples of the organic solvent preferably used in the present invention include methyl alcohol, ethyl alcohol, isopropyl alcohol, allyl alcohol, ethylene glycol, propylene glycol, 3-methoxy-3-methyl-1-butanol, and 1-methoxy-2-. Polar solvents such as alcohols such as propanol, ketones such as acetone and ethyl methyl ketone, ethers such as dimethyl ether, ethyl methyl ether, diethyl ether and dibutyl ether, esters such as ethyl acetate, hexane, n- Nonpolar solvents such as hexane, heptane, isooctane and the like can be mentioned. *
本発明において「疎水性溶媒」とは、実質的に水を溶解しない有機溶媒を意味する。本発明に使用される疎水性溶媒としては、例えば、炭素数5~16のアルカン類、アルケン類、シクロアルカン類、芳香族類、および、これらの混合物、フッ素系
溶媒、環状シリコーン(デカメチルシクロペンタシロキサン、オクタメチルシクロテトラシロキサン等)、低粘度シリコーンオイル(ジメチルシリコーンオイル等)、などが挙げられる。 
In the present invention, the “hydrophobic solvent” means an organic solvent that does not substantially dissolve water. Examples of the hydrophobic solvent used in the present invention include alkanes having 5 to 16 carbon atoms, alkenes, cycloalkanes, aromatics, and mixtures thereof, fluorine-based solvents, cyclic silicones (decamethylcyclohexane). Pentasiloxane, octamethylcyclotetrasiloxane, etc.), low-viscosity silicone oil (dimethylsilicone oil, etc.), and the like.
例えば、上記混合物としては、商品名「アイソパーC」(オクタン>95、ヘプタン<5、エクソンモービル社製)、商品名「アイソパーE」(オクタン60~70、ノナン30~40、エクソンモービル社製)、商品名「アイソパーG」(エクソンモービル社製)等が、フッ素系溶媒としては、ハイドロフルオロエーテル(商品名「ノベックHFE7100」、住友スリーエム(株)製)、商品名「バートレル」(三井・デュポン・フロロケミカル(株)製)等が、環状シリコーンとしては、商品名「TSF405」(デカメチルシクロペンタシロキサン、モメンティブ社製)、商品名「TSF404」(オクタメチルシクロテトラシロキサン、モメンティブ社製)、商品名「KF995」(デカメチルシクロペンタシロキサン、信越化学工業(株)製)等が、また、ジメチルシリコーンオイルとしては、商品名「KF96-1.5cst」(信越化学工業(株)製)などを商業的に入手することができる。  For example, as the above mixture, trade name “Isopar C” (octane> 95, heptane <5, manufactured by ExxonMobil), trade name “Isopar E” (octane 60-70, nonane 30-40, manufactured by ExxonMobil) , Trade name “Isopar G” (manufactured by ExxonMobil Co., Ltd.), etc., as fluoro solvents, hydrofluoroether (trade name “Novec HFE7100”, manufactured by Sumitomo 3M Ltd.), trade name “Bertrel” (Mitsui DuPont)・ Fluorochemical Co., Ltd.), etc., as cyclic silicones, trade name “TSF405” (decamethylcyclopentasiloxane, manufactured by Momentive), trade name “TSF404” (octamethylcyclotetrasiloxane, manufactured by Momentive), Product name “KF995” (decamethylcyclopentasiloxane, Shin-Etsu Chemical) Ltd.) and the like, and as the dimethyl silicone oil, or the like are available as trade name "KF96-1.5cst" manufactured (manufactured by Shin-Etsu Chemical Co.,) commercially. *
本発明のコーティング液には、本発明の効果を損なわない範囲内で、一般的なコーティング液等に通常使用される添加剤等を添加することができ、例えば、紫外線吸収剤、酸化防止剤、着色剤、香料、防腐剤、酸、アルカリ類等を添加することができる。  To the coating liquid of the present invention, additives that are usually used in general coating liquids and the like can be added within a range that does not impair the effects of the present invention. For example, ultraviolet absorbers, antioxidants, Coloring agents, fragrances, preservatives, acids, alkalis and the like can be added. *
本発明においては、表面が疎水性で、平均一次粒子径が100nm以下の微粒子を、有機溶媒中で、キャビテーション作用により分散させることが好ましい。ここで、キャビテーション作用を起こさせるためには、例えば、微粒子を有機溶媒に入れて、超音波分散機等を用いて分散させることにより達成される。キャビテーション作用により分散させられた上記微粒子は予想外の超撥水性を発揮するが、このメカニズムは明らかではない。有機溶媒に超音波を照射すると、圧力の高い部分と低い部分が現れ、水に溶けていた気体がキャビティ(気泡)となって発生する。この気泡が瞬間的に収縮破壊して、疎水性の微粒子を良好な状態で分散させたり、あるいは、更に何らかの作用を微粒子自体に及ぼすと考えられる。なお、ホモジナイザー等の分散機によって分散させても超撥水性を発揮することがあるが、形成される被膜の透明性との兼ね合いで調整が必要である。  In the present invention, it is preferable that fine particles having a hydrophobic surface and an average primary particle size of 100 nm or less are dispersed in an organic solvent by a cavitation action. Here, in order to cause the cavitation action, for example, fine particles are put in an organic solvent and dispersed by using an ultrasonic disperser or the like. The fine particles dispersed by the cavitation action exhibit unexpected super water repellency, but this mechanism is not clear. When an organic solvent is irradiated with ultrasonic waves, a high pressure portion and a low pressure portion appear, and a gas dissolved in water is generated as a cavity (bubble). It is considered that the bubbles are instantaneously contracted and broken to disperse the hydrophobic fine particles in a good state or have some action on the fine particles themselves. In addition, super-water repellency may be exhibited even when dispersed by a disperser such as a homogenizer, but adjustment is necessary in consideration of the transparency of the coating film to be formed. *
例えば、表面が疎水性の微粒子、および、必要に応じて、バインダーやカップリング剤等を溶媒に分散させたコーティング液を、ガラス、鏡面等の被コーティング物体の表面に塗布等した後、乾燥させることによって、被コーティング物体(コーティング対象物)に撥水性を付与することができる。ここで、微粒子は、被コーティング物体の表面に付着して凹凸を形成する。この凹凸は、ガラスと水滴との接点を小さくする働きをする。したがって、水滴の接触角度が150゜~175゜であるような超撥水性を実現することができる。  For example, a fine particle having a hydrophobic surface and, if necessary, a coating liquid in which a binder or a coupling agent is dispersed in a solvent are applied to the surface of an object to be coated such as glass or mirror, and then dried. Thus, water repellency can be imparted to the object to be coated (coating object). Here, the fine particles adhere to the surface of the object to be coated and form irregularities. The unevenness serves to reduce the contact point between the glass and the water droplet. Accordingly, it is possible to achieve super water repellency such that the contact angle of water drops is 150 ° to 175 °. *
例えば、有機溶媒に溶解し、乾燥させると透明体を形成する成分はバインダー的な役割を果たす。本発明に用いられる、有機溶媒に溶解し、乾燥させると透明体を形成する成分としては、ジメチル、メチルフェニル、メチルハイドロジェン、アミノ変性、エポキシ変性、エポキシポリエーテル変性、カルボキシル変性、カルボキシルポリエーテル変性、アルコール変性、アルキル変性、アルキルアラルキル変性、アルキルアラルキルポリエーテル変性、ポリエーテル変性、フッ素変性のシリコーン等のシリコーン類、フェニルメチル系レジン、メチル系レジン、変性系レジン等のレジン類、ポリオレフィン系樹脂、ビニル系樹脂、ポリエステル系樹脂、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂等の樹脂類、陰イオン表面活性剤、陽イオン表面活性剤、非イオン系表面活性剤、両性の表面活性剤等の表面活性剤類、ポリビニルピロリドン、ポリビニルアルコール、ポリエーテル共重合体、ポリアクリルアミド、ポリアクリル酸等の合成高分子類、高級アルコール類、高級脂肪酸類、シリカ系無機コーティング剤、シラザン系無機コーティング剤、シリコーンゴム等のゴム類、デンプン、グリコーゲン、セルロース等の多糖類、スメクタイト等の鉱物類等が挙げられる。なお、陰イオン界面活性剤としては、アルキルベンゼンスルホン酸、α-オレフィンスルホン酸、アルカンスルホン酸、硫酸アルキル、硫酸アルキルポリオキシエチレン、リン酸アルキル、長鎖脂肪酸、α-スルホ脂肪酸エステル及びそれらの塩等が挙げられ、陽イオン界面活性剤としては、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩等が挙げられ、非イオン系界面活性剤としては、アルキルポリオキシエチレンエーテル、脂肪酸ジエタノールアミド、アルキルポリグルコシド等が挙げられ、両性界面活性剤としては、ジメチルアルキルアミンオキシド、N-アルキルベタイン、イミダゾリン誘導体等が挙げられる。  For example, a component that forms a transparent body when dissolved in an organic solvent and dried serves as a binder. The components used in the present invention to form a transparent body when dissolved in an organic solvent and dried are dimethyl, methylphenyl, methylhydrogen, amino-modified, epoxy-modified, epoxy polyether-modified, carboxyl-modified, carboxyl polyether Modified, alcohol-modified, alkyl-modified, alkyl-aralkyl-modified, alkyl-aralkyl polyether-modified, polyether-modified, fluorine-modified silicones and other silicones, phenylmethyl-based resins, methyl-based resins, resins such as modified resins, polyolefin-based Resins, vinyl resins, polyester resins, acrylic resins, epoxy resins, urethane resins, etc., anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants Surfactants such as polyvinyl pyrone Synthetic polymers such as don, polyvinyl alcohol, polyether copolymer, polyacrylamide, polyacrylic acid, etc., higher alcohols, higher fatty acids, silica inorganic coating agents, silazane inorganic coating agents, rubbers such as silicone rubber And polysaccharides such as starch, glycogen and cellulose, and minerals such as smectite. Examples of the anionic surfactant include alkylbenzene sulfonic acid, α-olefin sulfonic acid, alkane sulfonic acid, alkyl sulfate, alkyl polyoxyethylene sulfate, alkyl phosphate, long chain fatty acid, α-sulfo fatty acid ester and salts thereof. Examples of the cationic surfactant include alkyl trimethyl ammonium salt, dialkyl dimethyl ammonium salt, and alkyl dimethyl benzyl ammonium salt. Nonionic surfactants include alkyl polyoxyethylene ether, fatty acid diethanol amino acid, and the like. And amphoteric surfactants include dimethylalkylamine oxide, N-alkylbetaines, imidazoline derivatives, and the like. *
但し、本発明においては、コーティング対象物の表面は疎水性であり、該表面が疎水性でない場合には予め疎水性にしておくことが好ましい。コーティング対象物の表面を予め疎水性にする方法としては、コーティング作業前(コーティング作業前であれば良く、直前でも、数時間、数日間、あるいは更に長期間経過していても良く、特に限定されることはない)に、被コーティング物体(コーティング対象物)の表面に疎水化処理を施しておくことが挙げられる。例えば、コーティング対象物の表面を親水状態にした後、撥水剤等を塗布することにより、コーティング対象物の表面に疎水化処理を施すことができる。例えばガラス表面を疎水化処理する場合について具体的に説明すると、ガラス表面をガラスクリーナーで磨いてガラス表面を親水状態にし、次いで、株式会社カーメイト製のガラスコートG3などをスプレー塗布した後、ムラがないように塗り伸ばし、24時間室温で放置する。このようにして、ガラス表面を疎水性にすることができる。なお、コーティング対象物がガラスでない場合にも、上記方法を適宜応用して使用することができる。  However, in the present invention, the surface of the object to be coated is hydrophobic, and when the surface is not hydrophobic, it is preferable to make it hydrophobic in advance. As a method for making the surface of the coating object hydrophobic in advance, it is not particularly limited before coating operation (if it is before coating operation, it may be just before, several hours, several days, or even longer time may elapse). In other words, the surface of the object to be coated (coating object) is subjected to a hydrophobic treatment. For example, after making the surface of the coating object hydrophilic, a hydrophobic treatment can be applied to the surface of the coating object by applying a water repellent or the like. For example, when the glass surface is hydrophobized, the glass surface is polished with a glass cleaner to make the glass surface hydrophilic, and then sprayed with a glass coat G3 manufactured by Carmate Co., Ltd. Spread out and leave at room temperature for 24 hours. In this way, the glass surface can be made hydrophobic. In addition, even when the coating object is not glass, the above method can be appropriately applied and used. *
本発明のコーティング液を塗布する方法は、特に限定されることなく一般的な方法を採用することができる。例えば、フローコート法、ディップコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法、スクリーン印刷法等が挙げられる。あるいは、コーティング液を含浸体に含浸させて塗布しても良い。ただし、含浸体を使用する場合には、疎水性(水を吸収しないこと、例えば、水平に置いた含浸体に上から水を滴下した場合に10秒間吸収しないこと)の含浸体を使用することが必要である。また、本発明においては、上記塗布方法を適宜、組み合わせて使用してもよい。  A method for applying the coating liquid of the present invention is not particularly limited, and a general method can be adopted. Examples thereof include a flow coating method, a dip coating method, a spray coating method, a gravure coating method, a roll coating method, a bar coating method, and a screen printing method. Alternatively, the impregnated body may be impregnated with a coating solution and applied. However, when using an impregnated body, use an impregnated body that is hydrophobic (does not absorb water, for example, does not absorb water for 10 seconds when water is dropped onto an impregnated body placed horizontally). is required. In the present invention, the above coating methods may be used in appropriate combination. *
本発明のコーティング液を上記方法によって被コーティング物体(対象物)に塗工した後、乾燥させるが、乾燥温度は0℃~100℃であり、乾燥時間は1分~1時間であることが好ましい。  The coating liquid of the present invention is applied to the object to be coated (object) by the above method and then dried. The drying temperature is preferably 0 ° C. to 100 ° C., and the drying time is preferably 1 minute to 1 hour. . *
本発明のコーティング液は、種々の被コーティング物体に対して適用することができる。塗工される被コーティング物体としては、例えば、強化ガラス、無アルカリガラス、石英ガラス等のガラス、鉄、アルミニウム、ステンレス鋼、銅等の金属、ポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリカーボネート等のプラスチック、石類、コンクリート等が挙げられる。  The coating liquid of the present invention can be applied to various coated objects. Examples of coated objects to be coated include glass such as tempered glass, non-alkali glass and quartz glass, metals such as iron, aluminum, stainless steel and copper, plastics such as polyolefin resin, polyester resin, acrylic resin and polycarbonate. , Stones, concrete and the like. *
本発明のコーティング液を、例えば、建築物の窓ガラス、外灯のガラス、車両の窓ガラス、自動車のサイドミラー、サングラス、各種計器等の窓ガラス、浴室用鏡等にコーティングすることができ、また、建物の外壁や屋根、塀、自動車・航空機・船舶のボディや鏡、ホイール等に使用することができる。本発明のコーティング液をコーティングし、乾燥させて形成された被膜面には、超撥水性の膜が形成されるので、水滴、ごみ等の付着を防止し、美観の維持や視界の確保を実現することができる。また、エアコンの熱交換器等のように不必要に水滴のつきやすい部品の表面に超撥水性の被膜を形成すれば、水滴の付着を防止し、気流の抵抗を抑え、水の付着による熱伝導率の低下を防ぐことができる。また、パラボラアンテナや電線等に超撥水性被膜を形成すれば、結露や着氷を防止することができる。さらにまた、本発明によれば、透明なコーティング膜を形成することができるので、高層住宅の窓ガラス、道路鏡、道路標識、看板等にも好ましく使用することができる。  The coating liquid of the present invention can be coated on, for example, building window glass, exterior light glass, vehicle window glass, automobile side mirrors, sunglasses, window glass for various instruments, bathroom mirrors, etc. It can be used for exterior walls and roofs of buildings, fences, bodies, mirrors and wheels of automobiles, aircraft and ships. A super-water-repellent film is formed on the coating surface formed by coating and drying the coating liquid of the present invention, preventing adhesion of water droplets, dust, etc., maintaining aesthetics and ensuring visibility. can do. Also, if a super-water-repellent film is formed on the surface of parts that are subject to water droplets unnecessarily, such as heat exchangers in air conditioners, water droplets can be prevented, airflow resistance can be reduced, and A decrease in conductivity can be prevented. In addition, if a super water-repellent coating is formed on a parabolic antenna or an electric wire, condensation and icing can be prevented. Furthermore, according to the present invention, since a transparent coating film can be formed, it can be preferably used for window glass, road mirrors, road signs, signboards and the like of high-rise houses. *
本発明によれば、優れた超撥水性を実現することができる。また、バインダーを配合することにより、耐久性を向上することができる。 According to the present invention, excellent super water repellency can be realized. Moreover, durability can be improved by mix | blending a binder.
以下に実施例を示して本発明を具体的に説明するが、これらにより本発明は何ら制限を受けるものではなく、本発明の技術的範囲を逸脱しない範囲内で種々の応用が可能である。なお、各実施例及び各比較例は以下に示す方法で測定および評価を行った。  The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples, and various applications are possible without departing from the technical scope of the present invention. In addition, each Example and each comparative example measured and evaluated by the method shown below. *
(1)超撥水性の評価 超撥水性の評価のために、以下のようにして初期水滴接触角の測定を行った。 協和界面科学(株)製のCA-DT型接触角計を用い、大気中(約25℃)で2μLの水滴をサンプルガラスの撥水性膜に滴下して、水滴の静的接触角を測定した。超撥水性の評価は、下記評価基準に基づいて評価を行った。(評価基準) ○  140°以上 △  130°以上、140°未満 ×  130°未満   (1) Evaluation of super water repellency For evaluation of super water repellency, the initial water droplet contact angle was measured as follows. Using a CA-DT contact angle meter manufactured by Kyowa Interface Science Co., Ltd., a 2 μL water droplet was dropped on the water-repellent film of the sample glass in the atmosphere (about 25 ° C.), and the static contact angle of the water droplet was measured. . The super water repellency was evaluated based on the following evaluation criteria. (Evaluation criteria) ○ 140 ° or more △ 130 ° or more, less than 140 ° x less than 130 °
(2)仕上り性(透明性)の評価 撥水性膜を目視観察して、透明性の評価を行った。但し、評価基準は下記の3段階評価とした。(評価基準) ○  完全に透明である △  斜めから見るとやや白く見えるが実用上問題はない ×  正面から見ても白く見える  (2) Evaluation of finish (transparency) The water-repellent film was visually observed to evaluate the transparency. However, the evaluation criteria were the following three-level evaluation. (Evaluation criteria) ○ Completely transparent △ Appears slightly white when viewed from an angle, but has no practical problem × Appears white when viewed from the front
なお、下記実施例および比較例では下記材料を使用した。「レオロシールHM20S」: 疎水性シリカ、固形分100%、平均一次粒子径12nm、(株)トクヤマ製「レオロシールHM30S」: 疎水性シリカ、固形分100%、平均一次粒子径7nm、(株)トクヤマ製「レオロシールHM40S」: 疎水性シリカ、固形分100%、平均一次粒子径7nm、(株)トクヤマ製「レオロシールDM30S」: 疎水性シリカ、固形分100%、平均一次粒子径7nm、(株)トクヤマ製「レオロシールZD30S」: 疎水性シリカ、固形分100%、平均一次粒子径7nm、(株)トクヤマ製「TSL8233」: フルオロアルキルシラン ヘプタデカフルオロデシルトリメトキシシラン、モメンティブ社製「KBM-13」: メチルトリメトキシシラン、信越化学工業(株)製「KBM-22」: ジメチルジメトキシシラン、信越化学工業(株)製「KBE-103」: フェニルトリエトキシシラン、信越化学工業(株)製「KBM-3103」: デシルトリメトキシシラン、信越化学工業(株)製「KBM-7103」: トリフルオロプロピルトリメトキシシラン、信越化学工業(株)製「SR2405」 シリコーンレジン溶液、東レ・ダウコーニング社製「ユニダインTG-658」 フッ素系撥水撥油剤、ダイキン工業株式会社製「TSF404」: 環状シリコーン(オクタメチルシクロテトラシロキサン)、モメンティブ社製「TSF405」: 環状シリコーン(デカメチルシクロペンタシロキサン)、モメンティブ社製「KF995」: 環状シリコーン(デカメチルシクロペンタシロキサン)、信越化学工業(株)製「KF96-1.5cst」: ジメチルシリコーンオイル、信越化学工業(株)製IPA: アルコール系溶媒(イソプロピルアルコール)エタノール: アルコール系溶媒(エチルアルコール)ノナン: 石油系溶媒(ノナン)n-デカン: 石油系溶媒(ノルマルデカン)「アイソパーG」: イソパラフィン系炭化水素、エクソンモービル社製  In the following examples and comparative examples, the following materials were used. “Lerosil HM20S”: Hydrophobic silica, solid content 100%, average primary particle size 12 nm, manufactured by Tokuyama Co., Ltd. “Lerosil HM30S”: Hydrophobic silica, solid content 100%, average primary particle size 7 nm, manufactured by Tokuyama Co., Ltd. “Lerosil HM40S”: hydrophobic silica, solid content 100%, average primary particle diameter 7 nm, manufactured by Tokuyama Corporation “Leosileal DM30S”: hydrophobic silica, solid content 100%, average primary particle diameter 7 nm, manufactured by Tokuyama Corporation “Lerosil ZD30S”: Hydrophobic silica, solid content 100%, average primary particle size 7 nm, Tokuyama “TSL8233”: fluoroalkylsilane, heptadecafluorodecyltrimethoxysilane, Momentive “KBM-13”: methyl Trimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd. BM-22 ": Dimethyldimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd." KBE-103 ": Phenyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd." KBM-3103 ": Decyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd. ) “KBM-7103”: trifluoropropyltrimethoxysilane, “SR2405” manufactured by Shin-Etsu Chemical Co., Ltd., silicone resin solution, “Unidyne TG-658” manufactured by Dow Corning Toray, fluorinated water and oil repellent, Daikin Industries “TSF404” manufactured by Co., Ltd .: cyclic silicone (octamethylcyclotetrasiloxane), “TSF405” manufactured by Momentive: cyclic silicone (decamethylcyclopentasiloxane), “KF995” manufactured by Momentive: cyclic silicone (decamethylcyclopentasiloxane) “KF96-1.5cst” manufactured by Shin-Etsu Chemical Co., Ltd .: dimethyl silicone oil, IPA manufactured by Shin-Etsu Chemical Co., Ltd .: alcohol solvent (isopropyl alcohol) ethanol: alcohol solvent (ethyl alcohol) nonane: petroleum solvent (Nonane) n-decane: Petroleum solvent (normal decane) “Isopar G”: Isoparaffin hydrocarbon, manufactured by ExxonMobil
(実施例1) 表面が疎水性で、粒子径が約7nmの疎水性シリカ(商品名「レオロシールHM30S」、固形分100%、(株)トクヤマ製)2.0質量%を、イソオクタン80.0質量%およびイソプロピルアルコール(以下「IPA」と表記することも
ある)18.0質量%からなる溶媒に入れ、超音波分散機を用い、周波数44kHzで1時間分散して疎水性シリカ分散液を作製した。 作製した疎水性シリカ分散液を、厚さ2.0mm×縦75mm×横150mmのガラス板(ソーダライムガラス)上に、含浸体(PP不織布)(含浸倍率=400%)を用いて塗工し、25℃で15分間自然乾燥させて被膜を形成し、撥水性膜を有するガラス基材(サンプルガラス)を作製した。ただし、スライドガラス板の表面には、予め、下記の疎水化処理が施されており、また、2種類の塗工条件(DRY、WET)で塗工を行った。すなわち、i)DRY:ガラス基材表面が乾燥した状態、ii)WET:ガラス基材表面に水滴がある状態で塗工を行った。また、疎水化処理としては、まず、ガラス基材表面をプロ・ガラスウォータースポットクリーナーP1(株式会社カーメイト製)で磨いてガラス表面を親水状態にし、次いで、この面にガラスコートG3(株式会社カーメイト製)をスプレー塗布してムラなく塗り伸ばした後、24時間室温(25℃)で放置した。なお、塗工時のガラス基板の温度、コーティング液の温度、および、WET時の水温は全て25℃に調製した。 
(Example 1) Hydrophobic silica having a hydrophobic surface and a particle diameter of about 7 nm (trade name “Leolosil HM30S”, solid content 100%, manufactured by Tokuyama Corporation) 2.0 mass% is obtained by isooctane 80.0. A hydrophobic silica dispersion is prepared by placing in a solvent comprising 1% by mass and 18.0% by mass of isopropyl alcohol (hereinafter also referred to as “IPA”) and dispersing for 1 hour at a frequency of 44 kHz using an ultrasonic disperser. did. The prepared hydrophobic silica dispersion was applied onto a glass plate (soda lime glass) having a thickness of 2.0 mm × length 75 mm × width 150 mm using an impregnated body (PP nonwoven fabric) (impregnation ratio = 400%). The glass substrate (sample glass) having a water-repellent film was prepared by naturally drying at 25 ° C. for 15 minutes to form a film. However, the surface of the slide glass plate was previously subjected to the following hydrophobization treatment, and coating was performed under two types of coating conditions (DRY, WET). That is, i) DRY: the glass substrate surface was dried, and ii) WET: the glass substrate surface was coated with water droplets. In addition, as the hydrophobizing treatment, first, the glass substrate surface is polished with a professional glass water spot cleaner P1 (manufactured by Carmate Co., Ltd.) to make the glass surface hydrophilic. The product was spray-coated and spread evenly, and then allowed to stand at room temperature (25 ° C.) for 24 hours. In addition, the temperature of the glass substrate at the time of coating, the temperature of the coating liquid, and the water temperature at the time of WET were all adjusted to 25 ° C.
得られたサンプルガラスの撥水性膜について、目視により初期の仕上り性(透明性)の評価を行った。また、上記測定方法等に基づいて、超撥水性の評価として初期水滴接触角の測定を行った。その結果を表1に示す。但し、超撥水性の評価においては、評価基準「○」以上を合格レベルとし、仕上り性(透明性)の評価においては、評価基準「△」以上を合格レベルとした。  About the water-repellent film of the obtained sample glass, the initial finish (transparency) was visually evaluated. Moreover, based on the said measuring method etc., the initial water droplet contact angle was measured as super-water-repellent evaluation. The results are shown in Table 1. However, in the evaluation of super water repellency, an evaluation criterion “◯” or higher was regarded as an acceptable level, and in the evaluation of finish (transparency), an evaluation criterion “Δ” or larger was regarded as an acceptable level. *
(実施例2~30、比較例1~21) コーティング液の組成を表1~表9に示すように変更した以外は実施例1と同様にして疎水性シリカ分散液(コーティング液)を作製し、また、ガラス基板については表1~表9に示すようにガラス表面に疎水化処理を施して(あるいは疎水化処理を施さずに)、これにコーティング液を塗布してサンプルガラスを作製した。得られたサンプルガラスについて、実施例1と同様の測定および評価等を行った。その結果を表1~表9に示す。 ただし、コーティング液の塗工方法として、含浸体を使用して塗工する場合には、含浸体(例えば不織布)に表1~9に示した含浸倍率となるようにコーティング液を染み込ませ、傾斜30度に固定したガラス基板に塗布した。この場合、塗布回数は2回重ね塗りを行った。エアゾール法による場合には、傾斜30度に固定したガラス基板に直接吹きかけて塗工を行った。フローコート法の場合には、傾斜30度に固定したガラス基板に液をフローさせて塗工を行った。  (Examples 2 to 30, Comparative Examples 1 to 21) A hydrophobic silica dispersion (coating solution) was prepared in the same manner as in Example 1 except that the composition of the coating solution was changed as shown in Tables 1 to 9. As for the glass substrate, as shown in Tables 1 to 9, the glass surface was hydrophobized (or not hydrophobized), and a coating solution was applied thereto to prepare a sample glass. About the obtained sample glass, the same measurement and evaluation as Example 1 were performed. The results are shown in Tables 1 to 9. However, as an application method of the coating liquid, when using an impregnated body, the impregnated body (for example, non-woven fabric) is impregnated with the coating liquid so that the impregnation ratios shown in Tables 1 to 9 are obtained. It apply | coated to the glass substrate fixed to 30 degree | times. In this case, the coating was repeated twice. In the case of the aerosol method, coating was performed by directly spraying on a glass substrate fixed at an inclination of 30 degrees. In the case of the flow coating method, coating was performed by allowing the liquid to flow on a glass substrate fixed at an inclination of 30 degrees. *
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
表1~表5から明らかなように、実施例1~30のコーティング液を用いてなる被膜は、透明性に優れており、かつ、超撥水性を有することが分かった。また、実施例1~30のコーティング液を用いてなる被膜は、被コーティング対象物の表面に水滴がある状態で塗工を行っても、優れた透明性と優れた超撥水性を有するものであった。  As is apparent from Tables 1 to 5, it was found that the coating films using the coating solutions of Examples 1 to 30 were excellent in transparency and had super water repellency. In addition, the coatings using the coating liquids of Examples 1 to 30 have excellent transparency and excellent super water repellency even when coating is performed with water droplets on the surface of the object to be coated. there were. *
一方、表6~表9から明らかなように、比較例1~比較例21により形成されたコーティング被膜は、被コーティング対象物の表面に水滴がある状態で塗工を行うと、超撥水性の評価が合格レベルに満たないものとなることが分かった。 On the other hand, as is apparent from Tables 6 to 9, when the coating film formed by Comparative Examples 1 to 21 is coated with water droplets on the surface of the object to be coated, it is super water-repellent. The evaluation was found to be less than the acceptable level.
本発明のコーティング組成物は、建物、自動車、航空機、船舶等に超撥水性を付与する必要がある箇所に有効に使用することができる。特に、水分の存在下でも煩雑な工程なしで超撥水性を有する被膜を形成することができるので、雨の中での塗工が必要な部分にも特に有効に使用することができる。 The coating composition of the present invention can be effectively used in places where it is necessary to impart super water repellency to buildings, automobiles, aircraft, ships and the like. In particular, since a film having super water repellency can be formed without complicated steps even in the presence of moisture, it can be used particularly effectively even in a portion that requires application in the rain.

Claims (7)

  1. 表面が疎水性で、平均一次粒子径が100nm以下の微粒子を、疎水性溶媒を全有機溶媒中65質量%以上含有する有機溶媒に分散させたコーティング液を、表面が疎水性の対象物へ塗工して該対象物の表面に被膜を形成することを特徴とするコーティング膜形成方法。 A coating liquid in which fine particles having a hydrophobic surface and an average primary particle size of 100 nm or less are dispersed in an organic solvent containing a hydrophobic solvent in an amount of 65% by mass or more in all organic solvents is applied to an object having a hydrophobic surface. A coating film forming method, comprising: forming a film on the surface of the object by processing.
  2. 前記表面が疎水性の対象物は、親水性の対象物の表面に疎水化処理を行って該表面を疎水性にすることを特徴とする請求項1に記載のコーティング膜形成方法。 2. The method of forming a coating film according to claim 1, wherein the object having a hydrophobic surface is subjected to a hydrophobic treatment on the surface of the hydrophilic object to make the surface hydrophobic.
  3. 前記コーティング液を前記対象物へ塗工する際に、疎水性の含浸体を用いて塗工することを特徴とする請求項1または2に記載のコーティング膜形成方法。 3. The coating film forming method according to claim 1, wherein the coating liquid is applied to the object using a hydrophobic impregnated body. 4.
  4. 前記塗工がエアゾール法またはフローコート法によって行われることを特徴とする請求項1または2に記載のコーティング膜形成方法。 The coating film forming method according to claim 1, wherein the coating is performed by an aerosol method or a flow coating method.
  5. 前記表面が疎水性の微粒子が疎水性シリカであることを特徴とする請求項1から4のいずれか1項に記載のコーティング膜形成方法。 The coating film forming method according to claim 1, wherein the fine particles having hydrophobic surfaces are hydrophobic silica.
  6. 表面が疎水性で、平均一次粒子径が100nm以下の微粒子を、疎水性溶媒を全有機溶媒中65質量%以上含有する有機溶媒に分散させて成ることを特徴とするコーティング液。 A coating liquid comprising fine particles having a hydrophobic surface and an average primary particle size of 100 nm or less dispersed in an organic solvent containing a hydrophobic solvent in an amount of 65% by mass or more based on the total organic solvent.
  7. 前記表面が疎水性の微粒子が疎水性シリカであることを特徴とする請求項6に記載のコーティング液。 The coating liquid according to claim 6, wherein the fine particles having hydrophobic surfaces are hydrophobic silica.
PCT/JP2009/007124 2008-12-26 2009-12-22 Process for formation of coating film, and coating fluid WO2010073623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008333291A JP4790003B2 (en) 2008-12-26 2008-12-26 Coating film forming method and coating liquid
JP2008-333291 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010073623A1 true WO2010073623A1 (en) 2010-07-01

Family

ID=42287270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007124 WO2010073623A1 (en) 2008-12-26 2009-12-22 Process for formation of coating film, and coating fluid

Country Status (2)

Country Link
JP (1) JP4790003B2 (en)
WO (1) WO2010073623A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217094B2 (en) 2011-07-28 2015-12-22 The Board Of Trustees Of The University Of Illinois Superhydrophobic compositions
US9364859B2 (en) 2011-07-28 2016-06-14 Kimberly-Clark Worldwide, Inc. Superhydrophobic surfaces
US9803100B2 (en) 2013-04-30 2017-10-31 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic surfaces
US10005917B2 (en) 2013-04-30 2018-06-26 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
US10533096B2 (en) 2015-02-27 2020-01-14 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
WO2022009689A1 (en) 2020-07-09 2022-01-13 ダイキン工業株式会社 Organic fine particle
US11596975B2 (en) 2017-02-14 2023-03-07 Mitsubishi Electric Corporation Water repellent coating film and product provided with same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528020B2 (en) 2013-01-07 2016-12-27 Mitsubishi Electric Corporation Coating composition, method for producing same, and coated article
JP5701441B1 (en) * 2014-09-01 2015-04-15 エムケイテック株式会社 Water repellent composition
JP6732540B2 (en) * 2015-05-29 2020-07-29 三洋化成工業株式会社 Method for producing resin particles and resin particle dispersion liquid
JP6498091B2 (en) * 2015-09-25 2019-04-10 Jx金属株式会社 Surface-treated metal foil, laminate, printed wiring board, semiconductor package, electronic equipment
EP3467061B1 (en) 2016-06-02 2021-12-08 M. Technique Co., Ltd. Ultraviolet and/or near-infrared blocking agent composition for transparent material
JP6995477B2 (en) * 2016-12-28 2022-01-14 日華化学株式会社 Method for manufacturing water repellent composition, water repellent fiber product and water repellent fiber product
JP6849475B2 (en) * 2017-02-22 2021-03-24 株式会社ソフト99コーポレーション Water repellent
DE112020006864T5 (en) * 2020-03-11 2022-12-29 Mitsubishi Electric Corporation WATER REPELLENT COATING AND PRODUCT WITH A WATER REPELLENT COATING FORMED THEREON, METHOD OF REPAIRING A WATER REPELLENT COATING AND METHOD OF DETECTING DETERIORATION OF A WATER REPELLENT COATING
TWI805995B (en) * 2021-01-28 2023-06-21 旭諾生物科技股份有限公司 Antibacterial liquid for masks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206477A (en) * 2002-01-10 2003-07-22 Toyo Riken Kk Super water-repellent composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206477A (en) * 2002-01-10 2003-07-22 Toyo Riken Kk Super water-repellent composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217094B2 (en) 2011-07-28 2015-12-22 The Board Of Trustees Of The University Of Illinois Superhydrophobic compositions
US9364859B2 (en) 2011-07-28 2016-06-14 Kimberly-Clark Worldwide, Inc. Superhydrophobic surfaces
US9803100B2 (en) 2013-04-30 2017-10-31 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic surfaces
US10005917B2 (en) 2013-04-30 2018-06-26 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
US10533096B2 (en) 2015-02-27 2020-01-14 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
US11596975B2 (en) 2017-02-14 2023-03-07 Mitsubishi Electric Corporation Water repellent coating film and product provided with same
WO2022009689A1 (en) 2020-07-09 2022-01-13 ダイキン工業株式会社 Organic fine particle
KR20230013069A (en) 2020-07-09 2023-01-26 다이킨 고교 가부시키가이샤 organic particulates

Also Published As

Publication number Publication date
JP2010155727A (en) 2010-07-15
JP4790003B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP4790003B2 (en) Coating film forming method and coating liquid
JP4198598B2 (en) Super water-repellent substrate
RU2519258C2 (en) Silicon dioxide based coating for higher hydrophilicity
JP6112866B2 (en) Sulfonate functional coatings and methods
CN101469250B (en) Removable antifogging coating, product, coating composition and method
US7344783B2 (en) Durable hydrophobic surface coatings using silicone resins
JP3588364B2 (en) Surface treated substrate and surface treatment method for substrate
JP5677144B2 (en) Water repellent member, manufacturing method thereof, and air conditioner outdoor unit
JP2002080830A (en) Hydrophilic member and its production method
JP5553297B2 (en) Coating composition
JP6713319B2 (en) Substrate with water-repellent coating and method for producing the same
JP4060333B2 (en) Water repellent and its use
JP2009161579A (en) Coating composition
JPH09202651A (en) Hydrophilic coating membrane and its formation
JP2009018946A (en) Method for forming transparent super-water-repellent film and glass substrate having transparent super-water-repellent film
JP2004149700A (en) Coating composition, method for producing the same, and coated body coated by the coating composition
EP3394175A1 (en) Composition, method of making composition, and article
JP4963896B2 (en) Water repellent treatment agent and water repellent treatment method
JP2008069365A (en) Water repellent agent and use thereof
JP2000026756A (en) Coating composition, coating of base material surface, base material having coated surface
JP4009758B2 (en) Vehicle coating agent
JP2005218980A (en) Method for applying coating composition, and body with coating composition impregnated thereinto
JPH0724958A (en) Surface treated substrate and manufacture thereof
CN117343806B (en) Car washing liquid and preparation method thereof
JP4020602B2 (en) Antifogging mirror for bathroom and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834431

Country of ref document: EP

Kind code of ref document: A1