WO2010140863A2 - Anti-dirt and anti-dust layer production method for solar cells - Google Patents

Anti-dirt and anti-dust layer production method for solar cells Download PDF

Info

Publication number
WO2010140863A2
WO2010140863A2 PCT/KR2010/003601 KR2010003601W WO2010140863A2 WO 2010140863 A2 WO2010140863 A2 WO 2010140863A2 KR 2010003601 W KR2010003601 W KR 2010003601W WO 2010140863 A2 WO2010140863 A2 WO 2010140863A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
pattern
mold
forming
micron
Prior art date
Application number
PCT/KR2010/003601
Other languages
French (fr)
Korean (ko)
Other versions
WO2010140863A3 (en
Inventor
강성수
권용범
Original Assignee
Kang Sung-Soo
Kwon Yong-Bum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kang Sung-Soo, Kwon Yong-Bum filed Critical Kang Sung-Soo
Publication of WO2010140863A2 publication Critical patent/WO2010140863A2/en
Publication of WO2010140863A3 publication Critical patent/WO2010140863A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a dustproof antifouling layer of a solar cell, and more particularly, to form a superhydrophobic surface on a solar cell surface so that contaminants such as dust are not attached to the source, and some contaminants attached to the solar cell are naturally washed.
  • the present invention relates to a method for forming a dustproof antifouling layer on a solar cell surface.
  • Solar cells are used for photovoltaic power generation using solar light, but there is a problem in that power generation efficiency of solar cells is low. This is a problem of low power generation efficiency of the solar cell itself, the biggest problem is the efficiency reduction due to light blocking by dust or foreign matter on the surface of the solar cell generated during the use of the solar cell.
  • the efficiency of the solar cell is reduced due to the blocking of sunlight due to dust or foreign matter on the surface of the solar cell due to the long-term use of the solar cell. Regular cleaning of the surface is required.
  • ethylene vinyl acetate (EVA), fluorine resin film, etc. on the surface of the solar cell as a protective film of the solar cell, or silicon oxide (SiO 2 ) on the surface of the solar cell
  • EVA ethylene vinyl acetate
  • SiO 2 silicon oxide
  • the technical problem to be solved by the present invention is to form a super hydrophobic surface on the surface of the solar cell to prevent contaminants, such as dust, to adhere to the source, and the dust-resistant antifouling layer to partially clean the contaminants attached to the solar cell surface It is to provide a method of forming.
  • Solar cell dustproof anti-fouling layer manufacturing method for solving the above problems, 1) applying a UV curable resin containing nanoparticles on the surface of the solar cell; 2) preparing a ridgeflex mold in which a reversed pattern of a micron pattern is formed; 3) aligning and contacting the Rigid-Flex mold with the solar cell, and then irradiating ultraviolet rays to form a micron pattern; 4) exposing ultraviolet rays on the micron pattern to form nanoprotrusions.
  • the nanoparticles are preferably aluminum oxide nanoparticles.
  • step 4 it is preferable that the step of further coating the hydrophobic material on the surface of the solar cell on which the nano-projections are formed.
  • step 4 it is preferable to coat carbon fluoride.
  • 1) forming a UV curable polymer thin film on the surface of the solar cell; 2) preparing a PDMS mold with a micro pattern; 3) contacting the PDMS mold on the ultraviolet curable polymer thin film and irradiating ultraviolet rays to form a micro pattern on the surface of the solar cell; 4) preparing a PUA mold having a nano pattern; 5) contacting the surface of the PUA mold with the micro-pattern formed solar cell, and irradiating ultraviolet rays to form a nano-pattern; provides a method for manufacturing a dust-proof anti-fouling layer comprising a.
  • Step 2) comprises the steps of: a) applying a negative photoresist film on the substrate, and then forming a micro pattern by a photographic process; b) depositing TMCS (TriMethyl Chloro Silane) on the micro-pattern.
  • TMCS TriMethyl Chloro Silane
  • step 3 it is preferable to partially cure the ultraviolet curable polymer thin film by irradiating the solar cell substrate with ultraviolet light for 15 to 25 seconds.
  • the PUA mold is characterized in that the thickness of 45 ⁇ 55 ⁇ m.
  • the present invention since a superhydrophobic surface is formed on the surface of the solar cell, contaminants such as dust are not attached to the surface of the solar cell, and some of the contaminants attached to the solar cell are easily washed naturally by rain or the like. Therefore, maintenance work such as cleaning the surface of the solar cell module is unnecessary, and the power generation efficiency of the solar cell is improved.
  • 1 to 5 are process charts showing the process of the solar cell dustproof antifouling method according to an embodiment of the present invention.
  • 6 to 10 are process charts showing the process of the solar cell dustproof layer manufacturing method according to another embodiment of the present invention.
  • the step of applying the ultraviolet curable resin 20 including the nanoparticles 22 to the surface of the solar cell substrate 10 is performed.
  • the nanoparticles 22 are preferably aluminum oxide nanoparticles.
  • the ultraviolet curable resin 20 is a resin having a property of curing in a liquid or sol state when ultraviolet light is irradiated, and a general ultraviolet curable resin may be used. Therefore, in the present embodiment, the ultraviolet curable resin 20 in which the aluminum oxide nanoparticles 22 are evenly dispersed is coated on the solar cell substrate 10 with a predetermined thickness.
  • the step of preparing the rigid flex mold 30 is also performed.
  • the step of preparing the Rigidplex mold 30 and the step of applying the ultraviolet curable resin 20 may be reversed or may be performed at the same time.
  • the ridgeplex mold 30 has a reverse pattern 32 having a micron pattern.
  • the "micron pattern” refers to a pattern in which a shape having a micron unit size is formed constantly.
  • the step of contacting the Rigid-Flex mold 30 prepared as described above with the solar cell substrate 10 to which the UV-curable resin 20 is applied the ridgeplex mold 30 is first aligned to exactly overlap with the solar cell substrate 10, and then the ridgeplex mold 30 is lowered to form the micron pattern 24 on the ultraviolet curable resin 20. It is to be formed.
  • the pattern 32 formed on the ridgeplex mold 30 by irradiating ultraviolet rays and The step of curing the micron pattern 24 formed on the solar cell substrate 10 in reverse phase is performed.
  • a step of forming the nano protrusions 26 by exposing ultraviolet rays to the surface of the solar cell substrate 10 having the micron pattern 24 thus formed is performed.
  • ultraviolet rays are irradiated to the micron pattern 24 formed in the previous step to form nano-protrusions 26 having a smaller size on the surface of the micron pattern 24.
  • the term “nano projection” refers to a projection having a size in nanometers.
  • a large number of nano projections 26 are formed on one micron pattern 24. do.
  • the step of coating a hydrophobic material on the surface of the solar cell substrate 10 on which the nano-projections 26 are formed may be further performed.
  • the hydrophobic material various hydrophobic materials may be used, for example, fluorocarbons may be used.
  • the hydrophobic material CF 3 may be distributed on the surface of the nanostructure to express more certain hydrophobicity.
  • the step of forming the ultraviolet curable polymer thin film 120 on the surface of the solar cell substrate 110 is performed.
  • the manufacturing of the PDMS mold 130 having the reversed phase 132 of the micro pattern is performed.
  • the step of forming the UV-curable polymer thin film 120, the manufacturing step of the PDMS mold 130 may be reversed or may be performed at the same time.
  • the manufacturing of the PDMS mold 130 may be divided into a) forming a micron pattern 132 and b) coating a release agent 134.
  • the forming of the micron pattern 132 may be performed in the order of forming a micro pattern by applying a negative photoresist film on the substrate 130 and then photographing process.
  • the coating of the releasing agent 134 may be performed by depositing a release component such as TMCS (TriMethyl Chloro Silane) on the micro pattern 132 by vapor deposition.
  • TMCS TriMethyl Chloro Silane
  • the PDMS mold 130 prepared as shown in FIGS. 6 and 7 is aligned on the solar cell substrate 110 on which the ultraviolet curable polymer thin film 120 is formed, and then contacted with each other to form the ultraviolet curable polymer thin film.
  • the micron pattern 122 is formed at 120.
  • the micron pattern 122 formed on the solar cell substrate 110 is irradiated with ultraviolet rays in a state in which the PDMS mold 130 is in contact with the solar cell substrate 110 to deform the ultraviolet curable polymer thin film 120. Harden.
  • the ultraviolet curable material is partially cured, not completely cured. That is, the micron pattern 122 is not completely cured but is cured constantly, but has a flexibility or viscosity enough to be deformed.
  • the PUA mold 140 preferably has a thickness of 45 to 55 ⁇ m, and preferably has a mechanical strength of approximately 40 MPa.
  • the 'nano pattern' refers to nanostructures having various sizes of about 100 nm.
  • the PUA mold 140 thus manufactured is contacted on the partially cured micron pattern 122 to form the nanopattern 144, and then irradiated with ultraviolet light to form the nanopattern 144. Curing is carried out. In this case, a plurality of nano-patterns 144 are formed on the micron pattern 122 to express the superhydrophobicity.

Abstract

The present invention relates to a method for forming, on the surface of a solar cell, an anti-dirt and anti-dust layer in which a super-hydrophobic surface is formed on the solar cell surface such that contaminants such as dust do not in principle attach thereto and any partially attached contaminants are naturally cleaned, and the solar cell anti-dirt and anti-dust layer production method of the present invention comprises the steps of: 1) coating an ultraviolet-curing resin comprising nanoparticles onto the surface of a solar cell; 2) preparing a rigiflex mould formed with the reverse pattern of a micron-level pattern; 3) bringing the rigiflex mould into alignment and contact with the solar cell and then forming a micron-level pattern by irradiating ultraviolet light; and 4) forming nanoprojections by exposing far ultraviolet over the top of the micron-level pattern.

Description

태양전지의 방진방오층 제조방법Method for manufacturing dustproof antifouling layer of solar cell
본 발명은 태양전지 방진 방오층 제조방법에 관한 것으로서, 보다 상세하게는 태양전지 표면에 초소수성 표면을 형성하여 원천적으로 먼지 등의 오염물질이 부착되지 않도록 하며, 일부 부착되는 오염물질은 자연 세정되는 방진방오층을 태양전지 표면에 형성하는 방법에 관한 것이다. The present invention relates to a method for manufacturing a dustproof antifouling layer of a solar cell, and more particularly, to form a superhydrophobic surface on a solar cell surface so that contaminants such as dust are not attached to the source, and some contaminants attached to the solar cell are naturally washed. The present invention relates to a method for forming a dustproof antifouling layer on a solar cell surface.
최근 화석 연료의 고갈 위험이 현실화되고, 환경 오염이 날로 심해지면서 친환경적인 신재생 에너지에 대한 개발 경쟁이 전세계적으로 치열하게 전개되고 있다. 이러한 신재생 에너지 중에서 가장 각광받고 있고 실용화된 것은 태양광 발전이다.  Recently, as the risk of depletion of fossil fuels is realized and environmental pollution becomes more severe, competition for development of eco-friendly renewable energy is intensifying worldwide. Among the new renewable energy, the most popular and practical use is solar power generation.
태양광을 이용하여 발전하는 태양광 발전에는 태양전지가 사용되는데, 아직까지는 태양전지의 발전 효율이 낮은 문제점이 있다. 이는 태양전지 자체의 발전 효율이 낮은 문제점도 있으나, 태양전지의 사용과정에서 발생하는 태양전지 표면에 먼지나 이물질에 의한 광차단에 의한 효율 저하가 가장 큰 문제이다.  Solar cells are used for photovoltaic power generation using solar light, but there is a problem in that power generation efficiency of solar cells is low. This is a problem of low power generation efficiency of the solar cell itself, the biggest problem is the efficiency reduction due to light blocking by dust or foreign matter on the surface of the solar cell generated during the use of the solar cell.
일반적으로 태양전지의 수명은 20년 이상을 보장하고 있으므로 태양전지의 장기적인 사용에 따른 태양전지 표면의 먼지나 이물질 등에 의한 태양광 차단으로 인한 태양전지의 효율 저하가 문제되기 때문에 이를 해결하기 위하여 태양전지 표면의 정기적인 세척 작업이 요구된다.  In general, since the lifespan of the solar cell is guaranteed for more than 20 years, the efficiency of the solar cell is reduced due to the blocking of sunlight due to dust or foreign matter on the surface of the solar cell due to the long-term use of the solar cell. Regular cleaning of the surface is required.
한편 이러한 문제점을 해결하기 위하여 현재는 일반적으로 태양전지의 표면에 에틸렌비닐아세테이트(EVA), 불소수지필름 등을 활용하여 태양전지의 보호막으로 사용하거나, 태양전지의 표면에 산화 규소(SiO2)를 코팅하여 태양전지의 표면 보호용으로만 사용하고 있는 실정이나, 한시적이거나 근본적인 해결책이 되지 못한다. On the other hand, in order to solve these problems, currently, using ethylene vinyl acetate (EVA), fluorine resin film, etc. on the surface of the solar cell as a protective film of the solar cell, or silicon oxide (SiO 2 ) on the surface of the solar cell The coating is used only to protect the surface of the solar cell, but it is not a temporary or fundamental solution.
본 발명이 해결하고자 하는 기술적 과제는 태양전지 표면에 초소수성 표면을 형성하여 원천적으로 먼지 등의 오염물질이 부착되지 않도록 하며, 일부 부착되는 오염물질은 자연 세정되도록 하는 방진방오층을 태양전지 표면에 형성하는 방법을 제공하는 것이다. The technical problem to be solved by the present invention is to form a super hydrophobic surface on the surface of the solar cell to prevent contaminants, such as dust, to adhere to the source, and the dust-resistant antifouling layer to partially clean the contaminants attached to the solar cell surface It is to provide a method of forming.
전술한 과제를 해결하기 위한 본 발명에 따른 태양전지 방진방오층 제조방법은, 1) 태양전지 표면에 나노입자를 포함하는 자외선 경화형 수지를 도포하는 단계; 2) 마이크론 패턴의 역상의 패턴이 형성된 리지플렉스 몰드를 준비하는 단계; 3) 상기 리지플렉스 몰드를 상기 태양전지와 정렬 및 접촉시킨 후, 자외선을 조사하여 마이크론 패턴을 형성하는 단계; 4) 상기 마이크론 패턴 상에 원자외선을 노출시켜 나노 돌기를 형성하는 단계;를 포함한다.  Solar cell dustproof anti-fouling layer manufacturing method according to the present invention for solving the above problems, 1) applying a UV curable resin containing nanoparticles on the surface of the solar cell; 2) preparing a ridgeflex mold in which a reversed pattern of a micron pattern is formed; 3) aligning and contacting the Rigid-Flex mold with the solar cell, and then irradiating ultraviolet rays to form a micron pattern; 4) exposing ultraviolet rays on the micron pattern to form nanoprotrusions.
본 발명에서 상기 나노입자는 산화알루미늄 나노입자인 것이 바람직하다. In the present invention, the nanoparticles are preferably aluminum oxide nanoparticles.
그리고 상기 4) 단계 진행 후에, 상기 나노 돌기가 형성된 태양전지 표면에 소수성 물질을 코팅하는 단계가 더 진행되는 것이 바람직하다.  And after the step 4), it is preferable that the step of further coating the hydrophobic material on the surface of the solar cell on which the nano-projections are formed.
또한 상기 4) 단계에서는 불화 탄소를 코팅하는 것이 바람직하다.  In addition, in step 4), it is preferable to coat carbon fluoride.
한편 본 발명에서는, 1) 태양전지 표면에 자외선 경화성 고분자 박막을 형성하는 단계; 2) 마이크로 패턴을 가진 PDMS 몰드를 제조하는 단계; 3) 상기 PDMS 몰드를 상기 자외선 경화성 고분자 박막 상에 접촉시키고, 자외선을 조사하여 상기 태양전지 표면에 마이크로 패턴을 형성하는 단계; 4) 나노 패턴을 가진 PUA 몰드를 제조하는 단계; 5) 상기 마이크로 패턴이 형성된 태양전지 표면에 상기 PUA 몰드를 접촉시키고, 자외선을 조사하여 나노 패턴을 형성하는 단계;를 포함하는 태양전지 방진방오층 제조방법도 제공한다. Meanwhile, in the present invention, 1) forming a UV curable polymer thin film on the surface of the solar cell; 2) preparing a PDMS mold with a micro pattern; 3) contacting the PDMS mold on the ultraviolet curable polymer thin film and irradiating ultraviolet rays to form a micro pattern on the surface of the solar cell; 4) preparing a PUA mold having a nano pattern; 5) contacting the surface of the PUA mold with the micro-pattern formed solar cell, and irradiating ultraviolet rays to form a nano-pattern; provides a method for manufacturing a dust-proof anti-fouling layer comprising a.
상기 2) 단계는, a) 기판 상에 음성 감광막을 도포한 후, 사진 공정에 의하여 마이크로 패턴을 형성하는 단계; b) 상기 마이크로 패턴 상에 TMCS(TriMethyl Chloro Silane)을 증착하는 단계;를 포함하는 것이 바람직하다.  Step 2) comprises the steps of: a) applying a negative photoresist film on the substrate, and then forming a micro pattern by a photographic process; b) depositing TMCS (TriMethyl Chloro Silane) on the micro-pattern.
그리고 상기 3) 단계에서는, 상기 태양전지 기판에 자외선을 15 ~ 25 초간 조사하여 상기 자외선 경화성 고분자 박막을 부분적으로 경화하는 것이 바람직하다.  In the step 3), it is preferable to partially cure the ultraviolet curable polymer thin film by irradiating the solar cell substrate with ultraviolet light for 15 to 25 seconds.
또한 상기 PUA 몰드는 두께가 45 ~ 55 ㎛인 것을 특징으로 한다.  In addition, the PUA mold is characterized in that the thickness of 45 ~ 55 ㎛.
본 발명에 따르면 태양전지 표면에 초소수성 표면이 형성되므로, 원천적으로 먼지 등의 오염물질이 태양전지 표면에 부착되지 않으며, 일부 부착되는 오염물질도 빗물 등에 의하여 용이하게 자연 세정되는 효과가 있다. 따라서 태양전지 모듈의 사용과정에서 그 표면을 세정하는 등의 유지 보수 작업이 불필요하며, 태양전지의 발전 효율이 향상되는 장점이 있다.  According to the present invention, since a superhydrophobic surface is formed on the surface of the solar cell, contaminants such as dust are not attached to the surface of the solar cell, and some of the contaminants attached to the solar cell are easily washed naturally by rain or the like. Therefore, maintenance work such as cleaning the surface of the solar cell module is unnecessary, and the power generation efficiency of the solar cell is improved.
도 1 내지 5는 본 발명의 일 실시예에 따른 태양전지 방진방오층 제조방법의 공정을 도시하는 공정도들이다.  1 to 5 are process charts showing the process of the solar cell dustproof antifouling method according to an embodiment of the present invention.
도 6 내지 10은 본 발명의 다른 실시예에 따른 태양전지 방진방오층 제조방법의 공정을 도시하는 공정도들이다.  6 to 10 are process charts showing the process of the solar cell dustproof layer manufacturing method according to another embodiment of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다.  Hereinafter, with reference to the accompanying drawings will be described in detail a specific embodiment of the present invention.
먼저 본 발명의 일 실시예에 따른 태양전지 방진방오층 제조방법을 설명한다.  First, a method for manufacturing a dustproof antifouling layer according to an embodiment of the present invention will be described.
우선 도 1에 도시된 바와 같이, 태양전지 기판(10) 표면에 나노입자(22)를 포함하는 자외선 경화형 수지(20)를 도포하는 단계가 진행된다. 여기에서 나노 입자(22)는 산화 알루미늄 나노입자인 것이 바람직하다. 그리고 상기 자외선 경화형 수지(20)는 액상 또는 졸 상태인 수지가 자외선이 조사되면 경화되는 특성을 가지는 수지로서, 일반적인 자외선 경화형 수지를 사용할 수 있다. 따라서 본 실시예에서는 상기 산화 알루미늄 나노입자(22)가 고르게 분산되어 있는 자외선 경화형 수지(20)를 상기 태양전지 기판(10) 상에 일정한 두께로 도포하는 것이다.  First, as shown in FIG. 1, the step of applying the ultraviolet curable resin 20 including the nanoparticles 22 to the surface of the solar cell substrate 10 is performed. Herein, the nanoparticles 22 are preferably aluminum oxide nanoparticles. In addition, the ultraviolet curable resin 20 is a resin having a property of curing in a liquid or sol state when ultraviolet light is irradiated, and a general ultraviolet curable resin may be used. Therefore, in the present embodiment, the ultraviolet curable resin 20 in which the aluminum oxide nanoparticles 22 are evenly dispersed is coated on the solar cell substrate 10 with a predetermined thickness.
한편 도 1에 도시된 바와 같이 리지플렉스 몰드(30)를 준비하는 단계도 진행된다. 리지플렉스 몰드(30)를 준비하는 단계와 상기 자외선 경화형 수지(20)를 도포하는 단계는 그 순서가 바뀔 수도 있고, 동시에 진행될 수도 있다. 본 실시예에서 상기 리지플렉스 몰드(30)에는 도 1에 도시된 바와 같이, 마이크론 패턴의 역상의 패턴(32)이 형성되어 있다. 여기에서 '마이크론 패턴'이라 함은, 마이크론 단위의 크기를 가지는 형상이 일정하게 형성되어 있는 패턴을 말한다.  Meanwhile, as shown in FIG. 1, the step of preparing the rigid flex mold 30 is also performed. The step of preparing the Rigidplex mold 30 and the step of applying the ultraviolet curable resin 20 may be reversed or may be performed at the same time. In the present embodiment, as shown in FIG. 1, the ridgeplex mold 30 has a reverse pattern 32 having a micron pattern. Here, the "micron pattern" refers to a pattern in which a shape having a micron unit size is formed constantly.
다음으로는 이렇게 준비된 상기 리지플렉스 몰드(30)를 자외선 경화형 수지(20)가 도포된 상기 태양전지 기판(10)과 접촉시키는 단계가 진행된다. 이 단계에서는 먼저 상기 리지플렉스 몰드(30)를 상기 태양전지 기판(10)과 정확하게 겹치도록 얼라인한 후, 상기 리지플렉스 몰드(30)를 하강시켜 상기 자외선 경화형 수지(20)에 마이크론 패턴(24)이 형성되도록 하는 것이다.  Next, the step of contacting the Rigid-Flex mold 30 prepared as described above with the solar cell substrate 10 to which the UV-curable resin 20 is applied. In this step, the ridgeplex mold 30 is first aligned to exactly overlap with the solar cell substrate 10, and then the ridgeplex mold 30 is lowered to form the micron pattern 24 on the ultraviolet curable resin 20. It is to be formed.
이렇게 상기 리지플렉스 몰드(30)가 상기 태양전지 기판(10)과 접촉된 후에는, 도 2에 도시된 바와 같이, 자외선을 조사하여 상기 리지플렉스 몰드(30)에 형성되어 있는 패턴(32)과 역상으로 상기 태양전지 기판(10)에 형성된 마이크론 패턴(24)을 경화하는 단계가 진행된다.  After the ridgeplex mold 30 is in contact with the solar cell substrate 10 as shown in FIG. 2, the pattern 32 formed on the ridgeplex mold 30 by irradiating ultraviolet rays and The step of curing the micron pattern 24 formed on the solar cell substrate 10 in reverse phase is performed.
다음으로는 이렇게 형성된 마이크론 패턴(24)을 가지는 태양전지 기판(10) 표면에 원자외선을 노출시켜 나노 돌기(26)를 형성하는 단계가 진행된다. 이 단계에서는 도 3, 4에 도시된 바와 같이, 전 단계에서 형성된 마이크론 패턴(24)에 원자외선을 조사하여 마이크론 패턴(24) 표면에 더 작은 크기의 나노 돌기(26)를 형성하는 것이다. 여기에서 '나노 돌기'라 함은 나노 미터 단위의 크기를 가지는 돌기를 말하는 것으로서, 도 4에 도시된 바와 같이, 하나의 마이크론 패턴(24) 상에 수없이 많은 개수의 나노 돌기(26)가 형성된다. 이렇게 나노 돌기(26)가 형성되면 접촉각이 150 ~ 170°정도인 초소수성 특성이 발현된다.  Next, a step of forming the nano protrusions 26 by exposing ultraviolet rays to the surface of the solar cell substrate 10 having the micron pattern 24 thus formed is performed. In this step, as shown in FIGS. 3 and 4, ultraviolet rays are irradiated to the micron pattern 24 formed in the previous step to form nano-protrusions 26 having a smaller size on the surface of the micron pattern 24. Herein, the term “nano projection” refers to a projection having a size in nanometers. As shown in FIG. 4, a large number of nano projections 26 are formed on one micron pattern 24. do. When the nano-protrusion 26 is formed in this way, a superhydrophobic characteristic with a contact angle of about 150 to 170 ° is expressed.
본 실시예에서는 이렇게 나노 돌기(26)가 형성된 후에, 상기 나노 돌기(26)가 형성된 태양전지 기판(10) 표면에 소수성 물질을 코팅하는 단계가 더 진행될 수도 있다. 여기에서 소수성 물질은 다양한 소수성 물질이 사용될 수 있으며, 예를 들어 불화 탄소(Fluorocarbon)이 사용될 수 있다. 이렇게 소수성 물질을 코팅하면 도 5에 도시된 바와 같이, 나노 구조체 표면에 소수성 물질(CF3)이 분포되어 더욱 확실한 소수성을 발현할 수 있다. In this embodiment, after the nano-projections 26 are formed, the step of coating a hydrophobic material on the surface of the solar cell substrate 10 on which the nano-projections 26 are formed may be further performed. As the hydrophobic material, various hydrophobic materials may be used, for example, fluorocarbons may be used. When the hydrophobic material is coated in this way, as shown in FIG. 5, the hydrophobic material CF 3 may be distributed on the surface of the nanostructure to express more certain hydrophobicity.
다음으로는 도 6 내지 도 10을 참조하여 본 발명의 다른 실시예에 따른 태양전지 방진방오층 형성방법을 설명한다.  Next, a method for forming a dustproof anti-fouling layer according to another embodiment of the present invention will be described with reference to FIGS. 6 to 10.
본 실시예에서는 먼저 태양전지 기판(110) 표면에 자외선 경화성 고분자 박막(120)을 형성하는 단계가 진행된다. 그리고 마이크로 패턴의 역상(132)을 가진 PDMS 몰드(130)를 제조하는 단계가 진행된다. 자외선 경화성 고분자 박막(120)을 형성하는 단계가 PDMS 몰드(130)를 제조하는 단계는 그 순서가 바뀔 수도 있고 동시에 진행될 수도 있다.  In this embodiment, first, the step of forming the ultraviolet curable polymer thin film 120 on the surface of the solar cell substrate 110 is performed. The manufacturing of the PDMS mold 130 having the reversed phase 132 of the micro pattern is performed. The step of forming the UV-curable polymer thin film 120, the manufacturing step of the PDMS mold 130 may be reversed or may be performed at the same time.
상기 PDMS 몰드(130)를 제조하는 단계는, a) 마이크론 패턴(132)을 형성하는 단계와 b) 이형제(134)를 코팅하는 단계로 나뉘어 진행될 수 있다. 먼저 마이크론 패턴(132)을 형성하는 단계는 기판(130) 상에 음성 감광막을 도포한 후, 사진 공정에 의하여 마이크로 패턴을 형성하는 순서로 진행될 수 있다. 그리고 이형제(134)를 코팅하는 단계는, 상기 마이크로 패턴(132) 상에 TMCS(TriMethyl Chloro Silane)와 같은 이형 성분을 기상 증착 방법에 의하여 증착하는 방법으로 진행될 수 있다. 이렇게 이형제를 코팅하면 상기 PDMS 몰드(130)를 태양전지 기판(110) 상에서 분리할 때, 이형이 용이해지는 장점이 있다.  The manufacturing of the PDMS mold 130 may be divided into a) forming a micron pattern 132 and b) coating a release agent 134. First, the forming of the micron pattern 132 may be performed in the order of forming a micro pattern by applying a negative photoresist film on the substrate 130 and then photographing process. The coating of the releasing agent 134 may be performed by depositing a release component such as TMCS (TriMethyl Chloro Silane) on the micro pattern 132 by vapor deposition. When the release agent is coated, the PDMS mold 130 has an advantage of being easily released when the PDMS mold 130 is separated on the solar cell substrate 110.
그 후에는 도 6, 7에 도시된 바와 같이 준비된 상기 PDMS 몰드(130)를 상기 자외선 경화성 고분자 박막(120)이 형성된 태양전지 기판(110) 상에 정렬한 후, 서로 접촉시켜 상기 자외선 경화성 고분자 박막(120)에 마이크론 패턴(122)을 형성시킨다. 이렇게 상기 PDMS 몰드(130)를 태양전지 기판(110)과 접촉시켜 상기 자외선 경화성 고분자 박막(120)을 변형시킨 상태에서 자외선을 조사하여 상기 태양전지 기판(110) 상에 형성된 마이크론 패턴(122)을 경화시킨다.  Thereafter, the PDMS mold 130 prepared as shown in FIGS. 6 and 7 is aligned on the solar cell substrate 110 on which the ultraviolet curable polymer thin film 120 is formed, and then contacted with each other to form the ultraviolet curable polymer thin film. The micron pattern 122 is formed at 120. The micron pattern 122 formed on the solar cell substrate 110 is irradiated with ultraviolet rays in a state in which the PDMS mold 130 is in contact with the solar cell substrate 110 to deform the ultraviolet curable polymer thin film 120. Harden.
이때 본 실시예에서는 상기 자외선 경화성 물질을 완전히 경화시키는 것이 아니라, 부분 경화시킨다. 즉, 상기 마이크론 패턴(122)이 완전히 경화된 상태가 아니라 일정하게 경화되지만, 변형될 수 있을 정도의 유연성 또는 점성은 지니고 있는 상태인 것이다. 이를 위하여 본 실시예에서는 상기 태양전지 기판(110)에 자외선을 15 ~ 25초간 조사하는 것이 바람직하다. 15초보다 짧게 조사하면 자외선 경화성 물질의 경화가 일어나지 않아서 마이크론 패턴이 아예 형성되지 않는 문제점이 있으며, 25초 이상 길게 조사하면 상기 마이크론 패턴이 완전히 경화되어 나노 패턴을 형성할 수 없는 문제점이 있다.  In this embodiment, the ultraviolet curable material is partially cured, not completely cured. That is, the micron pattern 122 is not completely cured but is cured constantly, but has a flexibility or viscosity enough to be deformed. To this end, in the present embodiment, it is preferable to irradiate the solar cell substrate 110 with ultraviolet rays for 15 to 25 seconds. If the irradiation is shorter than 15 seconds, there is a problem that the micron pattern is not formed at all because hardening of the ultraviolet curable material does not occur, and if the irradiation is longer than 25 seconds, the micron pattern is completely cured to form a nano pattern.
다음으로는 나노 패턴을 가진 PUA 몰드(140)를 제조하는 단계가 진행된다. 상기 PUA 몰드(140)는 두께가 45 ~ 55㎛인 것이 바람직하며, 기계적 강도가 대략 40MPa 인 것이 바람직하다. 여기에서 상기 '나노 패턴'은 100nm 정도의 다양한 크기의 나노 구조물을 말하는 것이다.  Next, a step of manufacturing a PUA mold 140 having a nano pattern is performed. The PUA mold 140 preferably has a thickness of 45 to 55 μm, and preferably has a mechanical strength of approximately 40 MPa. Herein, the 'nano pattern' refers to nanostructures having various sizes of about 100 nm.
이렇게 제조된 상기 PUA 몰드(140)를 도 9에 도시된 바와 같이, 부분 경화된 상기 마이크론 패턴(122) 상에 접촉하여 나노 패턴(144)를 형성시킨 후, 자외선을 조사하여 나노 패턴(144)을 경화하는 단계가 진행된다. 이렇게 하면 마이크론 패턴(122) 상에 다수개의 나노 패턴(144)이 형성되어 초소수성이 발현되는 것이다. As shown in FIG. 9, the PUA mold 140 thus manufactured is contacted on the partially cured micron pattern 122 to form the nanopattern 144, and then irradiated with ultraviolet light to form the nanopattern 144. Curing is carried out. In this case, a plurality of nano-patterns 144 are formed on the micron pattern 122 to express the superhydrophobicity.

Claims (8)

1) 태양전지 표면에 나노입자를 포함하는 자외선 경화형 수지를 도포하는 단계; 1) applying an ultraviolet curable resin containing nanoparticles to the surface of the solar cell;
2) 마이크론 패턴의 역상의 패턴이 형성된 리지플렉스 몰드를 준비하는 단계; 2) preparing a ridgeflex mold in which a reversed pattern of a micron pattern is formed;
3) 상기 리지플렉스 몰드를 상기 태양전지와 정렬 및 접촉시킨 후, 자외선을 조사하여 마이크론 패턴을 형성하는 단계; 3) aligning and contacting the Rigid-Flex mold with the solar cell, and then irradiating ultraviolet rays to form a micron pattern;
4) 상기 마이크론 패턴 상에 원자외선을 노출시켜 나노 돌기를 형성하는 단계;를 포함하는 태양전지 방진방오층 제조방법. 4) forming a nano-protrusion by exposing ultraviolet rays on the micron pattern; solar cell dustproof layer manufacturing method comprising a.
제1항에 있어서,  The method of claim 1,
상기 나노입자는 산화알루미늄 나노입자인 것을 특징으로 하는 태양전지 방진방오층 제조방법. The nanoparticles are aluminum oxide nanoparticles solar cell dustproof layer manufacturing method, characterized in that.
제1항에 있어서,  The method of claim 1,
상기 4) 단계 진행 후에, 상기 나노 돌기가 형성된 태양전지 표면에 소수성 물질을 코팅하는 단계;를 더 진행하는 것을 특징으로 하는 태양전지 방진방오층 제조방법. After the step 4), the step of coating a hydrophobic material on the surface of the solar cell is formed nano-protrusion; solar cell anti-fouling antifouling layer, characterized in that further proceed.
제3항에 있어서,  The method of claim 3,
상기 4) 단계에서는 불화 탄소를 코팅하는 것을 특징으로 하는 태양전지 방진방오층 제조방법. In the step 4), the solar cell dustproof antifouling layer manufacturing method characterized in that the coating of carbon fluoride.
1) 태양전지 표면에 자외선 경화성 고분자 박막을 형성하는 단계; 1) forming an ultraviolet curable polymer thin film on the surface of the solar cell;
2) 마이크로 패턴을 가진 PDMS 몰드를 제조하는 단계; 2) preparing a PDMS mold with a micro pattern;
3) 상기 PDMS 몰드를 상기 자외선 경화성 고분자 박막 상에 접촉시키고, 자외선을 조사하여 상기 태양전지 표면에 마이크로 패턴을 형성하는 단계; 3) contacting the PDMS mold on the ultraviolet curable polymer thin film and irradiating ultraviolet rays to form a micro pattern on the surface of the solar cell;
4) 나노 패턴을 가진 PUA 몰드를 제조하는 단계; 4) preparing a PUA mold having a nano pattern;
5) 상기 마이크로 패턴이 형성된 태양전지 표면에 상기 PUA 몰드를 접촉시키고, 자외선을 조사하여 나노 패턴을 형성하는 단계;를 포함하는 태양전지 방진방오층 제조방법. 5) forming a nano-pattern by contacting the PUA mold to the surface of the solar cell on which the micro-pattern is formed, and irradiated with ultraviolet rays.
제5항에 있어서, 상기 2) 단계는,  The method of claim 5, wherein step 2)
a) 기판 상에 음성 감광막을 도포한 후, 사진 공정에 의하여 마이크로 패턴을 형성하는 단계; a) applying a negative photoresist film on the substrate, and then forming a micro pattern by a photographic process;
b) 상기 마이크로 패턴 상에 TMCS(TriMethyl Chloro Silane)을 증착하는 단계;를 포함하는 것을 특징으로 하는 태양전지 방진방오층 제조방법. b) depositing TMCS (TriMethyl Chloro Silane) on the micro-pattern; solar cell dustproof layer manufacturing method comprising a.
제5항에 있어서, 상기 3) 단계에서는,  The method of claim 5, wherein in step 3),
상기 태양전지 기판에 자외선을 15 ~ 25 초간 조사하여 상기 자외선 경화성 고분자 박막을 부분적으로 경화하는 것을 특징으로 하는 태양전지 방진방오층 제조방법. The solar cell dustproof antifouling layer manufacturing method, characterized in that the UV curable polymer thin film partially cured by irradiating the solar cell substrate with UV for 15 to 25 seconds.
제5항에 있어서,  The method of claim 5,
상기 PUA 몰드는 두께가 45 ~ 55 ㎛인 것을 특징으로 하는 태양전지 방진방오층 제조방법.The PUA mold has a thickness of 45 ~ 55 ㎛ solar cell dustproof layer manufacturing method, characterized in that.
PCT/KR2010/003601 2009-06-05 2010-06-04 Anti-dirt and anti-dust layer production method for solar cells WO2010140863A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090049721A KR20100131045A (en) 2009-06-05 2009-06-05 Method for fabricating superhydrophobic layer on the sorar-cell
KR10-2009-0049721 2009-06-05

Publications (2)

Publication Number Publication Date
WO2010140863A2 true WO2010140863A2 (en) 2010-12-09
WO2010140863A3 WO2010140863A3 (en) 2011-03-10

Family

ID=43298341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003601 WO2010140863A2 (en) 2009-06-05 2010-06-04 Anti-dirt and anti-dust layer production method for solar cells

Country Status (2)

Country Link
KR (1) KR20100131045A (en)
WO (1) WO2010140863A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610397A (en) * 2016-02-23 2016-05-25 上海空间电源研究所 Energy closed-loop ultrahydrophobic electric curtain dust removal system applied to space solar cell array

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231258B1 (en) * 2011-04-04 2013-02-07 엘지이노텍 주식회사 Solar cell and manufacturing method of the same
KR101719407B1 (en) * 2015-01-20 2017-03-23 재단법인 멀티스케일 에너지시스템 연구단 Polymeric film having a hybrid structured pattern and manufacturing method of same
KR101620786B1 (en) * 2015-06-08 2016-05-12 아주대학교산학협력단 Super hydrophobic surface fabrication method
KR101997874B1 (en) * 2016-03-18 2019-07-08 주식회사 엘지화학 Switchable superhydrophobic film and preparing method of same
KR102224316B1 (en) * 2018-11-29 2021-03-08 (주)휴넷플러스 Manufacturing method of smart glass formed functional pattern
KR102242659B1 (en) * 2020-09-03 2021-04-20 고려대학교 산학협력단 Solarcell module having long-wavelength infrared ray radiating layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070217019A1 (en) * 2006-03-16 2007-09-20 Wen-Kuei Huang Optical components array device, microlens array and process of fabricating thereof
KR100855682B1 (en) * 2007-04-16 2008-09-03 고려대학교 산학협력단 Method for texturing silicon surface in solar cell
KR20080107931A (en) * 2007-06-08 2008-12-11 고려대학교 산학협력단 Method for preparing solar cell using photo-curable and thermo-curable random copolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070217019A1 (en) * 2006-03-16 2007-09-20 Wen-Kuei Huang Optical components array device, microlens array and process of fabricating thereof
KR100855682B1 (en) * 2007-04-16 2008-09-03 고려대학교 산학협력단 Method for texturing silicon surface in solar cell
KR20080107931A (en) * 2007-06-08 2008-12-11 고려대학교 산학협력단 Method for preparing solar cell using photo-curable and thermo-curable random copolymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610397A (en) * 2016-02-23 2016-05-25 上海空间电源研究所 Energy closed-loop ultrahydrophobic electric curtain dust removal system applied to space solar cell array

Also Published As

Publication number Publication date
KR20100131045A (en) 2010-12-15
WO2010140863A3 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
WO2010140863A2 (en) Anti-dirt and anti-dust layer production method for solar cells
JP5597263B2 (en) Fine structure laminate, method for producing fine structure laminate, and method for producing fine structure
US20170320261A1 (en) Method for Producing Patterned Materials
JP4952910B2 (en) Active energy ray-curable resin composition and use thereof
US9896557B2 (en) Silicone-based material
Shin et al. Anti‐reflection and hydrophobic characteristics of M‐PDMS based moth‐eye nano‐patterns on protection glass of photovoltaic systems
CN104937695A (en) Methods of using nanostructured transfer tape and articles made therefrom
ITMI20060094A1 (en) TRANSFERABLE FILM FOR SURFACE COATING PROCEDURE FOR ITS IMPLEMENTATION AND APPLICATION PROCEDURE
TW201333055A (en) Thin-film laminate
CN112225581B (en) Preparation method of durable hydrophobic anti-photoaging stone cultural relic sealing and protecting coating
WO2011016651A9 (en) Photocurable resin composition for imprint lithography and method for manufacturing an imprint mold using same
WO2013147105A1 (en) Roller-shaped mold and method for producing roller-shaped mold and element
JP5956198B2 (en) Lens for concentrating solar cell and method for manufacturing lens for concentrating solar cell
JP2012086477A (en) Thin-film transfer material, method for manufacturing the same, molding with thin film, and method for manufacturing the same
JP6745295B2 (en) Light-shielding film and method of manufacturing light-shielding film
Choi et al. Analysis of optical and wetting properties of a biomimetic anti-reflective surface for practical application
US20240053677A1 (en) Apparatus and Method for Structured Replication and Transfer
US20180057705A1 (en) Coating method
KR101081506B1 (en) A solar cell having high light transmissivity and improved self-cleaning ability and the method thereof
KR20200058096A (en) The monolithic structure of Patterned Release film, Method of producing the same and Adhesive tape produced from the same
JP2014194984A (en) Method for manufacturing condenser lens member for solar cell
JP2015138823A (en) Manufacturing method and manufacturing apparatus of belt-shaped film member having uneven pattern
JP2013207293A (en) Surface sheet for photoelectric converter, photoelectric converter, molding die, and device for manufacturing surface sheet for photoelectric converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783612

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783612

Country of ref document: EP

Kind code of ref document: A2