WO2012107612A1 - Hydrophobic/hydrophilic molecular switch, device containing said switch and method for controlling surface hydrophobicity - Google Patents

Hydrophobic/hydrophilic molecular switch, device containing said switch and method for controlling surface hydrophobicity Download PDF

Info

Publication number
WO2012107612A1
WO2012107612A1 PCT/ES2012/070013 ES2012070013W WO2012107612A1 WO 2012107612 A1 WO2012107612 A1 WO 2012107612A1 ES 2012070013 W ES2012070013 W ES 2012070013W WO 2012107612 A1 WO2012107612 A1 WO 2012107612A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic
hydrophobic
ptm
molecular switch
substrate
Prior art date
Application number
PCT/ES2012/070013
Other languages
Spanish (es)
French (fr)
Inventor
Jaume VECIANA MIRÓ
Concepció ROVIRA ANGULO
Marta Mas Torrent
Claudia DELGADO SIMAO
Francisco VERA SAZ
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2012107612A1 publication Critical patent/WO2012107612A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0016RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising polymers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0019RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising bio-molecules
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a hydrophobic-hydrophilic surface molecular switch comprising a substrate with suitable polychlorotriphenylmethyl and PTM molecules (PTM) to reversibly and locally change the hydrophobic properties in said substrate.
  • PTM polychlorotriphenylmethyl and PTM molecules
  • the switch and device containing it are of special application in the field of self-cleaning surfaces or in the field of microfluidics, although they also have other applications as will be described later.
  • Bistable molecules that behave like switches in solution have long been known.
  • molecular surface engineering has as main objective to design surfaces with specific properties by means of functionalization with properly selected molecules.
  • An innovative proposal in this field is the preparation of surfaces that respond to external stimuli, also known as intelligent surfaces, that can operate as switches or bits of memory that have a potential application such as (bio) sensors and (opto) electronic devices.
  • bistable systems are required that can be transformed from an external signal and whose transformation can be measured through non-destructive reading.
  • a surface hydrophobic-hydrophilic molecular switch comprising: a solid substrate that has polychlorotriphenylmethyl (PTM) molecules anchored on its surface functionalized in a state of radical oxidation or anion such that they provide a hydrophobic surface, a hydrophilic surface or a surface with hydrophobic zones and hydrophilic zones, and
  • PTM polychlorotriphenylmethyl
  • the switch of the invention is based on a substrate that is anchored with electroactive organic radicals immobilized therein, which can be reversibly and chemically or electrochemically converted to the anion or radical form as desired.
  • This bistable molecular system behaves like a redox switch from which an electrical or chemical input transforms the surface into hydrophobic or hydrophilic, under conditions of pressure and ambient temperature.
  • the substrate used in the switch of the invention can be of conductive or non-conductive material.
  • the means used to change the oxidation state can be terminal, which makes the switch more versatile.
  • the switch according to the invention has high sensitivity.
  • a change of hydrophobicity is achieved with a voltage input of only + 0.1V (with respect to a silver wire) which converts said PTM molecule in the radical and the surface of the substrate in hydrophobic, and at the same time with a voltage input of only -0.1V (with respect to a silver wire) this PTM molecule is converted into the anion and the surface of the substrate in hydrophilic.
  • a threshold time of 1 s manages to change from one oxidation state to another and, consequently, from hydrophobic to hydrophilic or vice versa.
  • the switch according to the invention can be obtained on a non-conductive substrate, in which case the means used to change the oxidation state are an oxidizing chemical agent or a chemical reducing agent.
  • the contact of an oxidizing agent with the substrate converts said PTM molecule into the radical and the surface into hydrophobic, and contact with a reducing agent converts said PTM molecule into the anion and the surface into hydrophilic.
  • said oxidizing chemical agents are compounds containing iodine, p-chloroanil or Ag +.
  • An example of a compound containing Ag + may be silver nitrate.
  • said chemical reducing agents are hydroxides or alkoxides.
  • An example of a hydroxide may be tetrabutylammonium and an example of an alkoxide may be potassium tert-butoxide.
  • said substrate is selected from indium tin oxide (ITO), gold (Au), graphite, silicon oxide (S1O 2) or silicon with a native oxide layer its preferably ITO. It is known that an expert with general knowledge in the field can use other materials as substrate without thereby departing from the scope of the present invention. Thus, depending on the substrate material selected, the PTM molecules will be functionalized with some groups or others.
  • said PTM molecules are functionalized with silane or carboxylic groups
  • said PTM molecules are functionalized with thiol, disulfide functional groups, thioacetate or thioalkyl
  • said PTM molecules are functionalized with functional groups comprising alkyl chains (C5-C30).
  • the functional groups to be selected according to the substrate material used can be found, for example, in Xia, Y & Whitesides, GM Soft lithography, Angewandte Chemical International Edition 37, 550-575 (1998).
  • the functionalization of the PTM molecules allows immobilization or anchoring of these on the substrate and, therefore, obtaining the switch according to the invention. It should be noted that said functionalized PTM molecules can be anchored by covalent, electrostatic bonds or by weak molecular interactions.
  • the versatility of the switch according to the present invention allows immobilization of micro- or nanoparticles of aggregates of said functionalized PTM molecules or immobilization of dendrit of said functionalized PTM molecules.
  • the high sensitivity of the molecular surface does not require sophisticated systems to apply the external stimulus to the substrate.
  • the switch or memory device that contains it can be used on any type of surface that can conduct a voltage of only ⁇ 0.1V or that has wettability when the use of a chemical agent is preferred.
  • the switch and device containing it does not require the continuous application of an external stimulus to maintain its hydrophobic or hydrophilic capacity, but only the stimulus to activate said switch to its hydrophobic state or
  • surfaces can be designed with hydrophobic zones and with hydrophilic zones with also a
  • the invention provides a hydrophobic-hydrophilic surface molecular switch comprising a solid substrate bearing
  • PTM polychlorotriphenylmethyl
  • Electroactive molecules 35 are electroactive molecules that can interconvert reversibly to its anionic form by chemical or electrochemical reduction / oxidation providing very different hydrophobicity properties in its two oxidation states.
  • the device comprises said switch together with a signal conditioning module and a processing module thereof.
  • the switch can be designed with the entire hydrophobic or hydrophilic surface or with the surface with hydrophobic and hydrophilic areas and, therefore, with a surface with local hydrophobicity properties.
  • hydrophobic and / or hydrophilic pattern can be obtained using conventional techniques known to those skilled in the art such as, for example, by the soft lithography technique such as "microcontact printing” with various applications.
  • microfluidic field is based on the control and manipulation of fluids that are geometrically confined at sub-millimeter scale.
  • the possibility of manufacturing hydrophobic or hydrophilic channels is of high interest in this field.
  • the (bio) molecules can be directed and, therefore, they can be confined in certain areas according to their nature and then released by the application of an external stimulus.
  • a possible application in the field of microfluidics may be the design of hydrophobic and hydrophilic channels in a given substrate for drug release.
  • hydrophilic / hydrophobic switches or memory devices containing them may be that of biomolecule or biosensor dispensers, since depending on the surface character the biomolecules will have an affinity and will be retained or, conversely, the interactions between Active component and substrate will be more repulsive in expelling biomolecules.
  • the design of surface patterns also has an interest for the manufacture of labels or markers since using the switch or memory device according to the invention a certain fluorescent dye or species can be directed to specific areas of the surface.
  • control of the hydrophobicity of a surface is also of high interest in the field of self-cleaning surfaces, since when they are in their hydrophilic character the water can wet the surface well by dissolving the present dirt, but by becoming its hydrophobic state , water containing dirt is easily expelled.
  • the switches according to the invention represent a suitable platform for the control of surface energy since depending on the state of Oxidation (radical with respect to anion) there is a great change in the hydrophobic nature of the surface: PTM radicals have a very apolar head and therefore repel water, while an anionically charged species is much more polar.
  • Another object of the invention is the control of surface hydrophobicity (Au, graphite, ITO, Si0 2 ) by anchoring functionalized PTM with suitable bonding groups or by anchoring functionalized NTM-based dendrites or PTMs on said surfaces that With means that allow the PTMs to be chemically or electrochemically reduced, the hydrophobic nature of the surface is switched into hydrophilic or vice versa.
  • the invention provides a method for reversibly and locally controlling the hydrophobicity of a surface, the surface of which comprises a hydrophobic-hydrophilic molecular switch as defined above, comprising the steps of:
  • Figure 1 schematizes a switch based on PTM molecules on an ITO conductive surface, where (1) represents the PTM molecules functionalized on a substrate (2) with terminals (3) to reversibly change said oxidation state from radical to anion or vice versa of the molecules (1).
  • Figure 2 shows the electrochemical characteristics of the switch of Figure 1.
  • Figure 2a shows the cyclic voltamogram (CV) at different scanning speeds (50, 100, 150, 200 mV / s) of the switch when a voltage is applied to the substrate of ITO with respect to a silver wire in a 0.02M electrolyte solution of tetrabutylammonium hexafluorophosphate in acetonitrile.
  • CV cyclic voltamogram
  • Figure 2b shows the intensity of anodic and cathodic current recorded during nine consecutive CV cycles at 100 mV / s where the excellent recovery of the current values from the ON (radical) and OFF (anion) states can be observed showing the high reversibility of the system.
  • Figure 3 shows a molecular switch carrying PTM molecules anchored on the surface of a gold (Au) substrate where in its radical oxidation state it has a contact angle of 90 ° and in its anionic oxidation state a contact angle of 27th.
  • Figure 4 shows the different strategies to obtain a surface with a design that contains hydrophilic and hydrophobic areas.
  • Three different routes are proposed for the design of a pattern with hydrophobic zones and hydrophilic zones on a surface (i-iii).
  • Figure 5 shows the hydrophobicity time stability graphs of a PTM molecular switch on ITO in the radical (top) and anion (bottom) states when a voltage of + 0.3V and - 0 is applied, 3V, respectively.
  • the intensity of the hydrophobicity is maintained over time which shows that once the switch is in a state, it is very stable.
  • Figure 6 shows the durability of the PTM switch over 7 days.
  • the interconversion between the two states was carried out by applying pulses of voltages + 0.3V and -0.3V and the hydrophobicity of the two stable species (radical and anion) was recorded.
  • Figure 7 shows the sequence of write-read-erase-read voltage pulses (+0, 3V / 0V / -0, 3V / 0V with respect to Ag (s)) applied to the memory device containing the PTM switch.
  • Figure 8 shows a pattern designed by soft lithography techniques such as microcontact printing on a surface. From a fluorescence image, circles where PTM radicals with a diameter of 5 ⁇ can be seen, the rest being ITO surface without molecules. RESPONSE TIME STUDY
  • the response time of the switch was measured by cyclic voltammetry applying the Laviron's approach to the Butler-Volmer theory, in which an electronic transfer constant of 19 s -1 was obtained .
  • the response speed of the device can also be studied by observing the hydrophobicity over time when volts of 30s voltages of + 0.3V and - 0.3V are applied to the ITO functionalized substrate. In the two conversion processes there is a component to the answer very immediate that dominates the process and a slower second component that depends on the diffusion of ions. In approximately 1 s (or 87 ms) the hydrophobicity reaches 95% (or 20%) of its maximum value.
  • Example 1 Obtaining the switch.
  • the polychlorotriphenylmethyl (PTM) 1-1 'bis (phenyletenyl)-bis [(2, 3, 5, 6- (tetrachlorophenyl) bis (pentachlorophenyl)] methyl disulfide derivative containing a disulfide group is synthesized.
  • a molecular monolayer is prepared. of said molecule on a gold substrate by immersing the substrate in a 1 mM solution of the PTM radical in toluene for 24 hours.
  • the contact angle on the surface of a drop of water is 92 ° , indicating its high hydrophobicity.
  • the substrate is immersed in a 2 mM solution of the hydroxide reducing agent tetrabutiamonium for 5 minutes, so that the radical PTM is reduced to its anionic form. It is observed that when a drop of water is now deposited the contact angle of the drop with the surface is 27 °, and therefore the surface is hydrophilic.
  • Example 2 Obtaining the device for modulating the hydrophobic / hydrophilic character of a surface.
  • a silicon oxide surface containing gold channels is immersed 24 in a 1 mM solution of the PTM of example 1 in toluene. This process results in the formation of a molecular layer only on the surface that is coated with gold, since the PTM molecule used has a disulfide group that reacts with gold.
  • Said surface is coated with a 0.02 M basic aqueous solution of tetrabutylammonium hexafluorophosphate and it is observed that the solution is confined in the hydrophilic channels of silicon oxide.
  • a voltage is applied to the gold channels of -0.3 V and it is observed that the water extends over the entire surface. However, when a voltage of + 0.3V is applied, water is again confined to the hydrophilic oxide channels.

Abstract

The switch comprises: a solid substrate having, anchored on the surface thereof, functionalized molecules of polychlorotriphenylmethyl (PTM) in a radical or anion oxidation state, such that said molecules form a hydrophobic surface, a hydrophilic surface or a surface with hydrophobic areas and hydrophilic areas; and means for reversibly changing the oxidation state from radical to anion or vice versa locally on the substrate. The invention also relates to the memory device containing said switch, as well as to a module for conditioning the signal and a module for processing same. The switch and the device containing the switch are particularly suitable for use in the field of microfluidics, as biomolecule dispensers or biosensors, in the production of tags or markers or in the field of self-cleaning surfaces.

Description

INTERRUPTOR MOLECULAR HIDROFÓBICO-HIDROFÍLICO , DISPOSITIVO QUE LO CONTIENE Y PROCEDIMIENTO PARA EL CONTROL DE LA HIDROFOBICIDAD EN SUPERFICIE La presente invención se refiere a un interruptor molecular hidrofóbico-hidrofilico de superficie que comprende un sustrato con moléculas de policlorotrifenilmetilo (PTM) , y los medios adecuados para cambiar reversiblemente y localmente las propiedades hidrofóbicas en dicho sustrato. HYDROPHOBIC-HYDROPHYLIC MOLECULAR SWITCH, DEVICE CONTAINING IT AND PROCEDURE FOR CONTROL OF SURFACE HYDROFOBICITY The present invention relates to a hydrophobic-hydrophilic surface molecular switch comprising a substrate with suitable polychlorotriphenylmethyl and PTM molecules (PTM) to reversibly and locally change the hydrophobic properties in said substrate.
El interruptor y dispositivo que lo contiene son de especial aplicación en el campo de superficies auto- limpiantes o en el campo de la microfluidica, aunque también presentan otras aplicaciones tal y como se describirá más adelante.  The switch and device containing it are of special application in the field of self-cleaning surfaces or in the field of microfluidics, although they also have other applications as will be described later.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Se conocen desde hace tiempo moléculas biestables que se comportan como interruptores en solución. En particular, existe un elevado interés en sistemas que puedan convertirse reversiblemente entre dos estados de oxidación que sean estables y que sus propiedades físicas difieran en ambos estados de oxidación con el principal objetivo de desarrollar dispositivos de memoria. Bistable molecules that behave like switches in solution have long been known. In particular, there is a high interest in systems that can be reversibly converted between two oxidation states that are stable and that their physical properties differ in both oxidation states with the main objective of developing memory devices.
Por otra parte, la ingeniería de superficie molecular tiene como principal objetivo diseñar superficies con propiedades específicas mediante la funcionalización con moléculas seleccionadas adecuadamente. Una propuesta innovadora en este campo es la preparación de superficies que respondan a estímulos externos, también conocidas como superficies inteligentes, que pueden operar como interruptores o bits de memoria que tienen una aplicación potencial como (bio) sensores y dispositivos (opto) electrónicos . Para conseguir este objetivo, se requieren sistemas biestables que puedan transformarse a partir de una señal externa y cuya transformación pueda medirse a través de una lectura no destructiva. Aunque los interruptores moleculares en solución se han estudiado durante mucho tiempo, los interruptores basados en monocapas generadas sobre superficies (SAMs) , que son de crucial importancia para la implementación de dichos dispositivos, son todavía escasos y sólo se han descrito algunos pocos ejemplos (Liu, Z., Yasseri, A. A., Lindsey, J.S.& Bocina, D.F. Molecular memories that survive silicon device processing and real- world operation. Science 302, 1543-1545 (2003). On the other hand, molecular surface engineering has as main objective to design surfaces with specific properties by means of functionalization with properly selected molecules. An innovative proposal in this field is the preparation of surfaces that respond to external stimuli, also known as intelligent surfaces, that can operate as switches or bits of memory that have a potential application such as (bio) sensors and (opto) electronic devices. To get this objective, bistable systems are required that can be transformed from an external signal and whose transformation can be measured through non-destructive reading. Although molecular switches in solution have been studied for a long time, switches based on surface-generated monolayers (SAMs), which are of crucial importance for the implementation of such devices, are still scarce and only a few examples have been described (Liu , Z., Yasseri, AA, Lindsey, JS & Bocina, DF Molecular memories that survive silicon device processing and real-world operation Science 302, 1543-1545 (2003).
De estos sistemas, la mayoría están basados en moléculas que funcionan por reacciones foto- o electro- inducidas asociadas con cambios en su conformación, electroactividad, capacidad sensora química o absorción óptica .  Of these systems, most are based on molecules that work by photo- or electro-induced reactions associated with changes in their conformation, electroactivity, chemical sensing capacity or optical absorption.
Así pues, todavía no existe en el estado de la técnica un sistema biestable en estado sólido, que pueda transformarse a partir de una señal externa en superficies con carácter hidrofóbico o carácter hidrofílico y cuya transformación pueda medirse a partir de una lectura no destructiva .  Thus, there is still no solid state bistable system in the state of the art, which can be transformed from an external signal on surfaces with hydrophobic or hydrophilic character and whose transformation can be measured from a non-destructive reading.
No se ha descrito hasta la fecha un interruptor molecular hidrofóbico-hidrofílico o un dispositivo de memoria con elevada reversibilidad que permita generar superficies o zonas de dichas superficies hidrofóbicas o hidrofílicas , cuya hidrofobicidad sea además estable en el tiempo .  A hydrophobic-hydrophilic molecular switch or a memory device with high reversibility that allows generating surfaces or areas of said hydrophobic or hydrophilic surfaces, whose hydrophobicity is also stable over time, has not been described to date.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Así pues, forma parte del primer aspecto de la presente invención desarrollar un interruptor molecular hidrofóbico-hidrofílico de superficie que comprende: un sustrato sólido que lleva anclado en su superficie moléculas de policlorotrifenilmetilo (PTM) funcionalizadas en un estado de oxidación radical o anión tal que proporcionan una superficie hidrofóbica, una superficie hidrofilica o una superficie con zonas hidrofóbicas y zonas hidrofilicas , y Thus, it is part of the first aspect of the present invention to develop a surface hydrophobic-hydrophilic molecular switch comprising: a solid substrate that has polychlorotriphenylmethyl (PTM) molecules anchored on its surface functionalized in a state of radical oxidation or anion such that they provide a hydrophobic surface, a hydrophilic surface or a surface with hydrophobic zones and hydrophilic zones, and
- medios para cambiar reversiblemente dicho estado de oxidación de radical a anión o viceversa y localmente en dicho sustrato.  - means for reversibly changing said oxidation state from radical to anion or vice versa and locally on said substrate.
El interruptor de la invención se basa en un sustrato que lleva anclado radicales orgánicos electroactivos inmovilizados en el mismo, que pueden convertirse reversiblemente y química o electroquímicamente a la forma anión o radical según se desee. Este sistema biestable molecular se comporta como un interruptor redox a partir del cual una entrada eléctrica o química transforma la superficie en hidrofóbica o hidrofilica, en condiciones de presión y temperatura ambiente.  The switch of the invention is based on a substrate that is anchored with electroactive organic radicals immobilized therein, which can be reversibly and chemically or electrochemically converted to the anion or radical form as desired. This bistable molecular system behaves like a redox switch from which an electrical or chemical input transforms the surface into hydrophobic or hydrophilic, under conditions of pressure and ambient temperature.
Sorprendentemente, los autores de la invención han encontrado que los dos estados de oxidación radical-anión se mantienen estables en el tiempo sin la necesidad de mantener el estímulo aplicado para cambiar el estado de oxidación. Dicha característica proporciona la base para la obtención de un dispositivo de memoria no volátil.  Surprisingly, the authors of the invention have found that the two states of radical-anion oxidation remain stable over time without the need to maintain the stimulus applied to change the oxidation state. This feature provides the basis for obtaining a non-volatile memory device.
El sustrato utilizado en el interruptor de la invención puede ser de material conductor o no-conductor. Cuando el sustrato es conductor los medios utilizados para cambiar el estado de oxidación pueden ser terminales, lo que hace el interruptor más versátil.  The substrate used in the switch of the invention can be of conductive or non-conductive material. When the substrate is conductive, the means used to change the oxidation state can be terminal, which makes the switch more versatile.
También ventajosamente, el interruptor según la invención presenta elevada sensibilidad. Con el interruptor de la invención se consigue un cambio de la hidrofobicidad con una entrada de tensión de tan sólo +0,1V (respecto a un hilo de plata) que convierte dicha molécula de PTM en el radical y la superficie del sustrato en hidrofóbica, y al mismo tiempo con una entrada de tensión de tan sólo -0,1V (respecto a un hilo de plata) se convierte dicha molécula de PTM en el anión y la superficie del sustrato en hidrofilica. Además, es sorprendente la velocidad de respuesta del interruptor que con un tiempo umbral de 1 s consigue cambiar de un estado de oxidación a otro y, en consecuencia, de hidrofóbico a hidrofilico o viceversa. Also advantageously, the switch according to the invention has high sensitivity. With the switch of the invention a change of hydrophobicity is achieved with a voltage input of only + 0.1V (with respect to a silver wire) which converts said PTM molecule in the radical and the surface of the substrate in hydrophobic, and at the same time with a voltage input of only -0.1V (with respect to a silver wire) this PTM molecule is converted into the anion and the surface of the substrate in hydrophilic. In addition, it is surprising the response speed of the switch that with a threshold time of 1 s manages to change from one oxidation state to another and, consequently, from hydrophobic to hydrophilic or vice versa.
Opcionalmente , el interruptor según la invención puede obtenerse sobre un sustrato no-conductor, en cuyo caso los medios utilizados para cambiar el estado de oxidación son un agente químico oxidante o un agente químico reductor. En esta realización, el contacto de un agente oxidante con el sustrato convierte dicha molécula de PTM en el radical y la superficie en hidrofóbica, y el contacto con un agente reductor convierte dicha molécula de PTM en el anión y la superficie en hidrofilica.  Optionally, the switch according to the invention can be obtained on a non-conductive substrate, in which case the means used to change the oxidation state are an oxidizing chemical agent or a chemical reducing agent. In this embodiment, the contact of an oxidizing agent with the substrate converts said PTM molecule into the radical and the surface into hydrophobic, and contact with a reducing agent converts said PTM molecule into the anion and the surface into hydrophilic.
Preferiblemente, dichos agentes químicos oxidantes son compuestos que contienen yodo, p-cloroanilo o Ag+ . Un ejemplo de un compuesto que contiene Ag+ puede ser el nitrato de plata.  Preferably, said oxidizing chemical agents are compounds containing iodine, p-chloroanil or Ag +. An example of a compound containing Ag + may be silver nitrate.
Preferiblemente, dichos agentes químicos reductores son hidróxidos o alcóxidos. Un ejemplo de un hidróxido puede ser el de tetrabutilamonio y un ejemplo de un alcóxido puede ser el ter-butóxido de potasio.  Preferably, said chemical reducing agents are hydroxides or alkoxides. An example of a hydroxide may be tetrabutylammonium and an example of an alkoxide may be potassium tert-butoxide.
También preferiblemente dicho sustrato se selecciona entre óxido de indio-estaño (ITO), oro (Au) , grafito, óxido de silicio (S1O2) o silicio con una capa de su óxido nativa, preferiblemente de ITO. Es sabido que un experto con conocimientos generales en la materia puede utilizar como sustrato otros materiales sin por ello apartarse del alcance de la presente invención. Así, según sea el material del sustrato seleccionado, las moléculas de PTM se funcionalizarán con unos grupos u otros. Por ejemplo, cuando el sustrato es de óxido de indio-estaño o de óxido de silicio, dichas moléculas de PTM se funcionalizan con grupos silano o carboxilico, cuando el sustrato es de oro, dichas moléculas de PTM se funcionalizan con grupos funcionales tiol, disulfuro, tioacetato o tioalquilo y cuando el sustrato es de grafito, dichas moléculas de PTM se funcionalizan con grupos funcionales que comprenden cadenas alquilicas (C5- C30) . Los grupos funcionales a seleccionar según el material del sustrato utilizado pueden encontrarse, por ejemplo, en Xia, Y & Whitesides, G. M. Soft lithography, Angewandte Chemical Internacional Edition 37, 550-575 (1998) . Also preferably said substrate is selected from indium tin oxide (ITO), gold (Au), graphite, silicon oxide (S1O 2) or silicon with a native oxide layer its preferably ITO. It is known that an expert with general knowledge in the field can use other materials as substrate without thereby departing from the scope of the present invention. Thus, depending on the substrate material selected, the PTM molecules will be functionalized with some groups or others. By For example, when the substrate is indium tin oxide or silicon oxide, said PTM molecules are functionalized with silane or carboxylic groups, when the substrate is gold, said PTM molecules are functionalized with thiol, disulfide functional groups, thioacetate or thioalkyl and when the substrate is graphite, said PTM molecules are functionalized with functional groups comprising alkyl chains (C5-C30). The functional groups to be selected according to the substrate material used can be found, for example, in Xia, Y & Whitesides, GM Soft lithography, Angewandte Chemical International Edition 37, 550-575 (1998).
La funcionalización de las moléculas PTM permite la inmovilización o el anclado de éstas sobre el sustrato y, por lo tanto, la obtención del interruptor según la invención. Cabe destacar que dichas moléculas de PTM funcionalizadas pueden estar ancladas mediante enlaces covalentes, electrostáticas o mediante interacciones moleculares débiles. La versatilidad del interruptor según la presente invención permite la inmovilización de micro- o nanoparticulas de agregados de dichas moléculas de PTM funcionalizadas o la inmovilización de dendrit de dichas moléculas de PTM funcionalizadas .  The functionalization of the PTM molecules allows immobilization or anchoring of these on the substrate and, therefore, obtaining the switch according to the invention. It should be noted that said functionalized PTM molecules can be anchored by covalent, electrostatic bonds or by weak molecular interactions. The versatility of the switch according to the present invention allows immobilization of micro- or nanoparticles of aggregates of said functionalized PTM molecules or immobilization of dendrit of said functionalized PTM molecules.
Aunque a priori es preferible la inmovilización de las moléculas de PTM mediante enlaces covalentes que aseguran un anclado más fuerte de las moléculas en la superficie del sustrato, según la aplicación final del interruptor o dispositivo de memoria de acuerdo con la invención puede ser preferible la inmovilización de las moléculas de PTM mediante interacciones moleculares débiles .  Although a priori immobilization of PTM molecules by covalent bonds that ensure a stronger anchoring of the molecules on the surface of the substrate is preferable, depending on the final application of the switch or memory device according to the invention immobilization may be preferable. of PTM molecules through weak molecular interactions.
Ventajosamente, la elevada sensibilidad de la superficie molecular no requiere de sofisticados sistemas para aplicar el estimulo externo al sustrato. Por tanto, el interruptor o dispositivo de memoria que lo contiene puede utilizarse sobre cualquier tipo de superficie que pueda conducir una tensión de tan sólo ±0,1V o que presente mojabilidad cuando se prefiera la utilización de 5 un agente químico. Sorprendentemente, el interruptor y dispositivo que lo contiene no requiere de la aplicación continua de un estímulo externo para mantener su capacidad hidrofóbica o hidrofílica, sino tan sólo el estimulo para activar dicho interruptor a su estado hidrofóbico oAdvantageously, the high sensitivity of the molecular surface does not require sophisticated systems to apply the external stimulus to the substrate. So, the switch or memory device that contains it can be used on any type of surface that can conduct a voltage of only ± 0.1V or that has wettability when the use of a chemical agent is preferred. Surprisingly, the switch and device containing it does not require the continuous application of an external stimulus to maintain its hydrophobic or hydrophilic capacity, but only the stimulus to activate said switch to its hydrophobic state or
10 hidrofílico. Así, los autores de la invención han determinado que cuando dicha molécula de PTM está inmovilizada sobre el sustrato y activada a su estado de oxidación radical, se obtiene un ángulo de contacto de 85°±20 y cuando su estado de oxidación es aniónico de10 hydrophilic. Thus, the authors of the invention have determined that when said PTM molecule is immobilized on the substrate and activated to its radical oxidation state, a contact angle of 85 ° ± 20 is obtained and when its oxidation state is anionic of
15 35°±20. Por otro lado, cuando se aumenta la rugosidad de la superficie empleando para ello micro- o nanopartículas de agregados o de dendritas de moléculas de PTM inmovilizadas sobre el sustrato y activadas a su estado de oxidación radical, se obtiene un ángulo de contacto de15 35 ° ± 20. On the other hand, when the surface roughness is increased by using micro- or nanoparticles of aggregates or dendrites of PTM molecules immobilized on the substrate and activated to its state of radical oxidation, a contact angle of
20 150°±20 y en su estado de oxidación aniónico un ángulo de contacto de 35°±20. 20 150 ° ± 20 and in its anionic oxidation state a contact angle of 35 ° ± 20.
También ventajosamente, con el interruptor según la invención pueden diseñarse superficies con zonas hidrofóbicas y con zonas hidrofílicas con además una Also advantageously, with the switch according to the invention surfaces can be designed with hydrophobic zones and with hydrophilic zones with also a
25 excepcional estabilidad en el tiempo y una excelente reversibilidad y reproducibilidad . 25 exceptional stability over time and excellent reversibility and reproducibility.
A tal efecto, la invención proporciona un interruptor molecular hidrofóbico-hidrofilico de superficie que comprende un sustrato sólido que lleva For this purpose, the invention provides a hydrophobic-hydrophilic surface molecular switch comprising a solid substrate bearing
30 anclado o inmovilizado en su superficie moléculas de policlorotrifenilmetilo (PTM) funcionalizadas, en un estado de oxidación radical o anión y medios para cambiar reversiblemente dicho estado de oxidación de radical a anión o viceversa y localmente en el sustrato. Los PTMAnchored or immobilized on its surface functionalized polychlorotriphenylmethyl (PTM) molecules, in a state of radical or anion oxidation and means to reversibly change said oxidation state from radical to anion or vice versa and locally in the substrate. The PTM
35 son moléculas electroactivas que pueden interconvertirse reversiblemente a su forma aniónica por reducción/oxidación química o electroquímica proporcionando en sus dos estados de oxidación propiedades de hidrofobicidad muy diferentes. 35 are electroactive molecules that can interconvert reversibly to its anionic form by chemical or electrochemical reduction / oxidation providing very different hydrophobicity properties in its two oxidation states.
Los autores de la presente invención han encontrado que monocapas moleculares de derivados de PTM anclados covalentemente o con interacciones moleculares débiles sobre una superficie conductora o no-conductora se comportan como interruptores moleculares muy robustos en condiciones de presión y temperatura ambiente, son totalmente reversibles y estables en el tiempo, lo que los hace muy atractivos para la fabricación de dispositivos de memoria útiles por sus propiedades de hidrofobicidad .  The authors of the present invention have found that molecular monolayers of PTM derivatives covalently anchored or with weak molecular interactions on a conductive or non-conductive surface behave as very robust molecular switches under conditions of ambient temperature and pressure, are fully reversible and stable over time, which makes them very attractive for the manufacture of memory devices useful for their hydrophobicity properties.
En consecuencia, estos interruptores moleculares son adecuados para la fabricación de dispositivos de memoria en los que un estímulo químico o eléctrico se traduce en un cambio en las propiedades de hidrofobicidad de una superficie, y en los que una vez desaparece el estímulo se mantiene la propiedad hidrofóbica en el tiempo hasta la aplicación de un nuevo estímulo. Por tanto, el dispositivo comprende dicho interruptor conjuntamente con un módulo de acondicionamiento de la señal y un módulo de tratamiento de la misma.  Consequently, these molecular switches are suitable for the manufacture of memory devices in which a chemical or electrical stimulus results in a change in the hydrophobicity properties of a surface, and in which once the stimulus disappears, the property is maintained. hydrophobic over time until the application of a new stimulus. Therefore, the device comprises said switch together with a signal conditioning module and a processing module thereof.
Ventajosamente, el interruptor puede diseñarse con toda la superficie hidrofóbica o hidrofílica o con la superficie con zonas hidrofóbicas y zonas hidrofílicas y, por lo tanto, con una superficie con propiedades de hidrofobicidad locales.  Advantageously, the switch can be designed with the entire hydrophobic or hydrophilic surface or with the surface with hydrophobic and hydrophilic areas and, therefore, with a surface with local hydrophobicity properties.
Así, el diseño de un patrón hidrofóbico y/o hidrofílico puede obtenerse utilizando técnicas convencionales conocidas por el experto en la materia como, por ejemplo mediante la técnica de litografía blanda como "microcontact printing" con aplicaciones diversas.  Thus, the design of a hydrophobic and / or hydrophilic pattern can be obtained using conventional techniques known to those skilled in the art such as, for example, by the soft lithography technique such as "microcontact printing" with various applications.
El campo de la microfluídica se basa en el control y manipulación de fluidos que están geométricamente confinados a escala sub-milimétrica . La posibilidad de fabricar canales hidrofóbicos o hidrofilicos es de elevado interés en este campo. Asi pues, con el interruptor y dispositivo de memoria según la invención pueden dirigirse las (bio) moléculas y, por tanto, éstas pueden confinarse en determinadas zonas según su naturaleza y liberarse después mediante la aplicación de un estimulo externo. Una posible aplicación en el campo de la microfluidica puede ser el diseño de canales hidrofóbicos e hidrofilicos en un sustrato determinado para la liberación de fármacos. The microfluidic field is based on the control and manipulation of fluids that are geometrically confined at sub-millimeter scale. The possibility of manufacturing hydrophobic or hydrophilic channels is of high interest in this field. Thus, with the switch and memory device according to the invention, the (bio) molecules can be directed and, therefore, they can be confined in certain areas according to their nature and then released by the application of an external stimulus. A possible application in the field of microfluidics may be the design of hydrophobic and hydrophilic channels in a given substrate for drug release.
Otra aplicación de los interruptores hidrofilicos/hidrofóbicos o dispositivos de memoria que los contiene puede ser la de dispensadores de biomoléculas o biosensores, ya que dependiendo del carácter de la superficie las biomoléculas tendrán una afinidad y quedarán retenidas o, por lo contrario, las interacciones entre componente activo y sustrato serán de carácter más repulsivo expulsando las biomoléculas.  Another application of hydrophilic / hydrophobic switches or memory devices containing them may be that of biomolecule or biosensor dispensers, since depending on the surface character the biomolecules will have an affinity and will be retained or, conversely, the interactions between Active component and substrate will be more repulsive in expelling biomolecules.
El diseño de patrones en superficie también tiene un interés para la fabricación de etiquetas o marcadores ya que utilizando el interruptor o dispositivo de memoria según la invención puede dirigirse un determinado colorante o especie fluorescente a unas zonas especificas de la superficie.  The design of surface patterns also has an interest for the manufacture of labels or markers since using the switch or memory device according to the invention a certain fluorescent dye or species can be directed to specific areas of the surface.
El control de la hidrofobicidad de una superficie es también de elevado interés en el campo de las superficies auto-limpiantes, puesto que cuando están en su carácter hidrofilico el agua puede mojar bien la superficie disolviendo la suciedad presente, pero al convertirse en su estado hidrofóbico, se expulsa fácilmente el agua que contiene la suciedad.  The control of the hydrophobicity of a surface is also of high interest in the field of self-cleaning surfaces, since when they are in their hydrophilic character the water can wet the surface well by dissolving the present dirt, but by becoming its hydrophobic state , water containing dirt is easily expelled.
Por tanto, los interruptores según la invención representan una plataforma adecuada para el control de la energía de superficie ya que en función del estado de oxidación (radical respecto anión) existe un gran cambio en el carácter hidrofóbico de la superficie: los radicales de PTM tienen una cabeza muy apolar y por lo tanto repelen el agua, mientras que una especie cargada aniónicamente es mucho más polar. Therefore, the switches according to the invention represent a suitable platform for the control of surface energy since depending on the state of Oxidation (radical with respect to anion) there is a great change in the hydrophobic nature of the surface: PTM radicals have a very apolar head and therefore repel water, while an anionically charged species is much more polar.
Otro objetivo de la invención es el control de la hidrofobicidad de superficies (Au, grafito, ITO, Si02) mediante el anclado de PTM funcionalizados con grupos de unión adecuados o mediante el anclado de nanoestructuras o dendritas basadas en PTM funcionalizadas sobre dichas superficies que con medios que permiten reducir químicamente o electroquímicamente las PTMs se conmuta el carácter hidrofóbico de la superficie en hidrofílico o viceversa . Another object of the invention is the control of surface hydrophobicity (Au, graphite, ITO, Si0 2 ) by anchoring functionalized PTM with suitable bonding groups or by anchoring functionalized NTM-based dendrites or PTMs on said surfaces that With means that allow the PTMs to be chemically or electrochemically reduced, the hydrophobic nature of the surface is switched into hydrophilic or vice versa.
Por tanto, en un tercer aspecto, la invención proporciona un procedimiento para controlar reversiblemente y localmente la hidrofobicidad de una superficie, cuya superficie comprende un interruptor molecular hidrofóbico-hidrofílico según se ha definido más arriba, que comprende las etapas de:  Thus, in a third aspect, the invention provides a method for reversibly and locally controlling the hydrophobicity of a surface, the surface of which comprises a hydrophobic-hydrophilic molecular switch as defined above, comprising the steps of:
i) diseñar sobre dicha superficie un patrón que presenta zonas destinadas a ser hidrofóbicas y/o hidrofílicas ,  i) design on said surface a pattern that presents areas intended to be hydrophobic and / or hydrophilic,
ii) activar dicha zona destinada a ser hidrofóbica mediante la aplicación de una tensión de +0,1V o la adición de un agente oxidante, y/o  ii) activate said area intended to be hydrophobic by applying a voltage of + 0.1V or adding an oxidizing agent, and / or
iiii) activar dicha zona destinada a ser hidrofílica mediante la aplicación de una tensión de -0,1V o la adición de un agente reductor, y  iiii) activating said zone destined to be hydrophilic by applying a voltage of -0.1V or adding a reducing agent, and
iv) repetir las etapas ii)-iii) tantas veces como se desee cambiar reversiblemente y localmente dicha superficie de hidrofóbica a hidrofílica o viceversa.  iv) repeat steps ii) -iii) as many times as desired reversibly and locally changing said surface from hydrophobic to hydrophilic or vice versa.
Los autores de la presente invención han encontrado que para la fabricación y diseño de las superficies de un sustrato en las que se desee combinar el carácter hidrofóbico e hidrofílico en diferentes zonas o regiones de la superficie del sustrato, pueden utilizarse técnicas de litografía blanda como, por ejemplo, tirada por contacto y/o litografía por inmersión. El diseño de un patrón con zonas hidrofóbicas y/o zonas hidrofílicas puede llevarse a cabo de acuerdo con cualquiera de las estrategias que se describen a continuación: The authors of the present invention have found that for the manufacture and design of the surfaces of a substrate in which it is desired to combine the Hydrophobic and hydrophilic character in different areas or regions of the surface of the substrate, soft lithography techniques can be used such as, for example, contact throwing and / or immersion lithography. The design of a pattern with hydrophobic zones and / or hydrophilic zones can be carried out according to any of the strategies described below:
a) anclado de radicales de moléculas de PTM funcionalizadas sobre un sustrato sólido hidrofílico en las zonas destinadas a ser hidrofóbicas;  a) radical anchoring of functionalized PTM molecules on a solid hydrophilic substrate in areas intended to be hydrophobic;
b) anclado de radicales de moléculas de PTM funcionalizadas sobre toda la superficie de un sustrato sólido y, a continuación, reducción de dichos radicales al anión mediante el contacto local de las zonas destinadas a ser hidrofílicas con un sello polimérico que lleva un agente reductor; o  b) anchoring of radicals of functionalized PTM molecules over the entire surface of a solid substrate and then reducing said radicals to the anion by local contact of the areas intended to be hydrophilic with a polymeric seal bearing a reducing agent; or
c) anclado de radicales de moléculas de PTM funcionalizadas en toda la superficie de un sustrato que presenta partes conductoras y partes no conductoras y, a continuación, con terminales entre partes conductoras, aplicación de tensión para reducir dichos radicales al anión en las zonas destinadas a ser hidrofílicas. La figura 4 esquematiza las diferentes estrategias seguidas. Así pues, todas estas estrategias permiten obtener, por ejemplo, canales hidrofóbicos e hidrofílieos , cuyas propiedades son capaces de sintonizarse cambiando el estado redox de las moléculas. La fabricación de áreas con diferentes características hidrofóbicas es de especial importancia en el campo de la microfluídica .  c) anchoring of radicals of functionalized PTM molecules on the entire surface of a substrate that has conductive parts and non-conductive parts and then with terminals between conductive parts, application of tension to reduce said radicals to the anion in the areas intended for Be hydrophilic. Figure 4 schematizes the different strategies followed. Thus, all these strategies allow obtaining, for example, hydrophobic and hydrophilic channels, whose properties are capable of tuning in by changing the redox state of the molecules. The manufacture of areas with different hydrophobic characteristics is of special importance in the field of microfluidics.
FIGURAS FIGURES
En las figuras, la figura 1 esquematiza un interruptor basado en moléculas de PTM sobre una superficie conductora de ITO, donde (1) representa las moléculas de PTM funcionalizadas sobre un sustrato (2) con terminales (3) para cambiar reversiblemente dicho estado de oxidación de radical a anión o viceversa de las moléculas (1) . Cada estado muestra una propiedad magnética debido al espin de las moléculas ancladas y una hidrofobicidad diferente: el radical muestra un espin S=l/2 con un ángulo de contacto de 85°±20 y el anión con un espin S=0 y un ángulo de contacto de 35°±20. In the figures, Figure 1 schematizes a switch based on PTM molecules on an ITO conductive surface, where (1) represents the PTM molecules functionalized on a substrate (2) with terminals (3) to reversibly change said oxidation state from radical to anion or vice versa of the molecules (1). Each state shows a magnetic property due to the spin of the anchored molecules and a different hydrophobicity: the radical shows a spin S = 1/2 with a contact angle of 85 ° ± 20 and the anion with a spin S = 0 and an angle of contact of 35 ° ± 20.
La figura 2 muestra las características electroquímicas del interruptor de la figura 1. La figura 2a muestra el voltamograma cíclico (CV) a diferentes velocidades de barrido (50, 100, 150, 200 mV/s) del interruptor cuando se aplica un voltaje al sustrato de ITO respecto a un hilo de plata en una solución de electrolito de 0,02M de tetrabutilamonio hexafluorofosfato en acetonitrilo . En el interior de la figura se muestra un diagrama de la corriente anódica respecto a la velocidad de escaneo. La figura 2b muestra la intensidad de corriente anódica y catódica registrada durante nueve ciclos consecutivos CV a 100 mV/s donde puede observarse la excelente recuperación de los valores de corriente desde los estados ON (radical) y OFF (anión) mostrando la elevada reversibilidad del sistema.  Figure 2 shows the electrochemical characteristics of the switch of Figure 1. Figure 2a shows the cyclic voltamogram (CV) at different scanning speeds (50, 100, 150, 200 mV / s) of the switch when a voltage is applied to the substrate of ITO with respect to a silver wire in a 0.02M electrolyte solution of tetrabutylammonium hexafluorophosphate in acetonitrile. Inside the figure a diagram of the anodic current with respect to the scanning speed is shown. Figure 2b shows the intensity of anodic and cathodic current recorded during nine consecutive CV cycles at 100 mV / s where the excellent recovery of the current values from the ON (radical) and OFF (anion) states can be observed showing the high reversibility of the system.
La Figura 3 muestra un interruptor molecular que lleva moléculas PTM ancladas en la superficie de un sustrato de oro (Au) donde en su estado de oxidación radical presenta un ángulo de contacto de 90° y en su estado de oxidación aniónico un ángulo de contacto de 27°.  Figure 3 shows a molecular switch carrying PTM molecules anchored on the surface of a gold (Au) substrate where in its radical oxidation state it has a contact angle of 90 ° and in its anionic oxidation state a contact angle of 27th.
La Figura 4 muestra las diferentes estrategias para obtener una superficie con un diseño que contiene zonas de carácter hidrofilico y zonas de carácter hidrofóbico. Se proponen tres vias diferentes para el diseño de un patrón con zonas hidrofóbicas y zonas hidrofilicas en una superficie (i-iii) . La Figura 5 muestra las gráficas de estabilidad en el tiempo de la hidrofobicidad de un interruptor molecular de PTM sobre ITO en los estados de radical (arriba) y de anión (abajo) cuando se aplica un voltaje de + 0,3V y - 0,3V, respectivamente. La intensidad de la hidrofobicidad se mantiene en el tiempo lo que demuestra que una vez el interruptor se encuentra en un estado, este es muy estable . Figure 4 shows the different strategies to obtain a surface with a design that contains hydrophilic and hydrophobic areas. Three different routes are proposed for the design of a pattern with hydrophobic zones and hydrophilic zones on a surface (i-iii). Figure 5 shows the hydrophobicity time stability graphs of a PTM molecular switch on ITO in the radical (top) and anion (bottom) states when a voltage of + 0.3V and - 0 is applied, 3V, respectively. The intensity of the hydrophobicity is maintained over time which shows that once the switch is in a state, it is very stable.
La Figura 6 muestra la durabilidad del interruptor de PTM a lo largo de 7 dias. La interconversión entre los dos estados se realizó aplicando pulsos de voltajes + 0,3V y -0,3V y se registró la hidrofobicidad de las dos especies estables (radical y anión) .  Figure 6 shows the durability of the PTM switch over 7 days. The interconversion between the two states was carried out by applying pulses of voltages + 0.3V and -0.3V and the hydrophobicity of the two stable species (radical and anion) was recorded.
La Figura 7 muestra la secuencia de pulsos de voltaje de escribir-leer-borrar-leer (+0 , 3V/0V/-0 , 3V/0V respecto Ag(s)) aplicados al dispositivo de memoria que contiene el interruptor de PTM.  Figure 7 shows the sequence of write-read-erase-read voltage pulses (+0, 3V / 0V / -0, 3V / 0V with respect to Ag (s)) applied to the memory device containing the PTM switch.
La Figura 8 muestra un patrón diseñado mediante técnicas de litografía blanda como el microcontact printing sobre una superficie. A partir de una imagen por fluorescencia pueden apreciarse los círculos donde se encuentran los radicales de PTM con un diámetro de 5 ιη, siendo el resto superficie de ITO sin moléculas. ESTUDIO DEL TIEMPO DE RESPUESTA  Figure 8 shows a pattern designed by soft lithography techniques such as microcontact printing on a surface. From a fluorescence image, circles where PTM radicals with a diameter of 5 ιη can be seen, the rest being ITO surface without molecules. RESPONSE TIME STUDY
El tiempo de respuesta del interruptor se midió por voltametría cíclica aplicando la aproximación de Laviron' s a la teoría de Butler-Volmer theory, en la que se obtuvo una constante de transferencia electrónica de 19 s-1. La velocidad de respuesta del dispositivo también puede estudiarse observando la hidrofobicidad en el tiempo cuando se aplican pulsos de voltajes de 30s de +0,3V y - 0,3V al sustrato funcionalizado de ITO. En los dos procesos de conversión hay una componente a la respuesta muy inmediata que domina el proceso y una segunda componente más lenta que depende de la difusión de los iones. En aproximadamente 1 s (o 87 ms) la hidrofobicidad alcanza un 95 % (o un 20 %) de su valor máximo. The response time of the switch was measured by cyclic voltammetry applying the Laviron's approach to the Butler-Volmer theory, in which an electronic transfer constant of 19 s -1 was obtained . The response speed of the device can also be studied by observing the hydrophobicity over time when volts of 30s voltages of + 0.3V and - 0.3V are applied to the ITO functionalized substrate. In the two conversion processes there is a component to the answer very immediate that dominates the process and a slower second component that depends on the diffusion of ions. In approximately 1 s (or 87 ms) the hydrophobicity reaches 95% (or 20%) of its maximum value.
ESTUDIO DE LA ESTABILIDAD-DURABILIDAD EN EL TIEMPO STABILITY-DURABILITY STUDY IN TIME
Una vez el interruptor se encuentra en un estado, éste es muy estable puesto que el carácter hidrofóbico o hidrofilico se mantienen constantes en el tiempo (Figura 5) . La capacidad del interruptor se estudió al cabo de varios dias, observándose que sus propiedades se mantenían en el tiempo y, por lo tanto, demostrando su estabilidad en los dos estados de oxidación. A continuación se estudió la durabilidad del interruptor de PTM a lo largo de 7 días. La interconversión entre los dos estados se realizó aplicando pulsos de voltajes +0,3 y -0,3 V y se registró la hidrofobicidad de las dos especies estables (radical y anión) tal y como puede observarse en la Figura 6 adjunta. Once the switch is in a state, it is very stable since the hydrophobic or hydrophilic character remains constant over time (Figure 5). The capacity of the switch was studied after several days, observing that its properties were maintained over time and, therefore, demonstrating its stability in the two oxidation states. Next, the durability of the PTM switch was studied over 7 days. The interconversion between the two states was performed by applying pulses of voltages +0.3 and -0.3 V and the hydrophobicity of the two stable species (radical and anion) was recorded as can be seen in the attached Figure 6.
EJEMPLOS EXAMPLES
Ejemplo 1. Obtención del interruptor. Se sintetiza el derivado de policlorotriphenilmetilo (PTM) 1-1 ' bis (feniletenilo) - bis [ (2, 3, 5, 6- (tetraclorofenil)bis (pentaclorofenil) ] metilo disulfuro que contiene un grupo disulfuro. Se prepara una monocapa molecular de dicha molécula sobre un sustrato de oro mediante la inmersión del sustrato en una disolución 1 mM del radical de PTM en tolueno durante 24 horas. El ángulo de contacto sobre la superficie de una gota de agua (de aproximadamente 5 microlitros) es de 92°, indicando su alta hidrofobicidad . Se sumerge el sustrato en una disolución 2 mM del agente reductor hidróxido de tetrabutiamonio durante 5 minutos, de forma que el PTM radical se reduce a su forma aniónica. Se observa que cuando se deposita ahora una gota de agua el ángulo de contacto de la gota con la superficie es de 27°, y, por consiguiente la superficie es hidrofilica. Example 1. Obtaining the switch. The polychlorotriphenylmethyl (PTM) 1-1 'bis (phenyletenyl)-bis [(2, 3, 5, 6- (tetrachlorophenyl) bis (pentachlorophenyl)] methyl disulfide derivative containing a disulfide group is synthesized. A molecular monolayer is prepared. of said molecule on a gold substrate by immersing the substrate in a 1 mM solution of the PTM radical in toluene for 24 hours.The contact angle on the surface of a drop of water (approximately 5 microliters) is 92 ° , indicating its high hydrophobicity. The substrate is immersed in a 2 mM solution of the hydroxide reducing agent tetrabutiamonium for 5 minutes, so that the radical PTM is reduced to its anionic form. It is observed that when a drop of water is now deposited the contact angle of the drop with the surface is 27 °, and therefore the surface is hydrophilic.
Ejemplo 2. Obtención del dispositivo de modulación del carácter hidrofóbico/hidrofilico de una superficie. Una superficie de óxido de silicio que contiene canales de oro se sumerge 24 en una disolución 1 mM del PTM del ejemplo 1 en tolueno. Este proceso resulta en la formación de una capa molecular solo en la superficie que está recubierta por oro, ya que la molécula de PTM utilizada tiene un grupo disulfuro que reacciona con el oro. Dicha superficie se recubre con una disolución acuosa básica de 0,02 M de tetrabutilamonio hexafluorofosfato y se observa que la disolución se confina en lo canales hidrofilicos del óxido de silicio. Se aplica un voltaje a los canales de oro de -0,3 V y se observa que el agua se extiende por toda la superficie. Sin embargo, cuando se aplica un voltaje de +0,3V el agua se vuelve a confinar en los canales hidrofilicos del óxido. Example 2. Obtaining the device for modulating the hydrophobic / hydrophilic character of a surface. A silicon oxide surface containing gold channels is immersed 24 in a 1 mM solution of the PTM of example 1 in toluene. This process results in the formation of a molecular layer only on the surface that is coated with gold, since the PTM molecule used has a disulfide group that reacts with gold. Said surface is coated with a 0.02 M basic aqueous solution of tetrabutylammonium hexafluorophosphate and it is observed that the solution is confined in the hydrophilic channels of silicon oxide. A voltage is applied to the gold channels of -0.3 V and it is observed that the water extends over the entire surface. However, when a voltage of + 0.3V is applied, water is again confined to the hydrophilic oxide channels.
La investigación que ha dado lugar a la presente invención ha sido subvencionada por el Séptimo Programa Marco de Investigación de la Comunidad Europea (FP7/2007- 2013) con el acuerdo de concesión número 212311.  The research that has given rise to the present invention has been subsidized by the Seventh Framework Program for Research of the European Community (FP7 / 2007-2013) with the concession agreement number 212311.
A pesar de que se ha descrito y representado una realización concreta de la presente invención, es evidente que el experto en la materia podrá introducir variantes y modificaciones, o sustituir los detalles por otros técnicamente equivalentes, sin apartarse del ámbito de protección definido por las reivindicaciones adjuntas.  Although a specific embodiment of the present invention has been described and represented, it is clear that the person skilled in the art will be able to introduce variants and modifications, or replace the details with other technically equivalent ones, without departing from the scope of protection defined by the claims attached.
Por ejemplo, aunque en la presente invención se ha hecho referencia explícita de distintos grupos funcionales en las moléculas PTM es de conocimiento general para un experto en la materia seleccionar los grupos en función del tipo de sustrato utilizado. For example, although explicit reference has been made in the present invention to different functional groups In the PTM molecules it is general knowledge for a person skilled in the art to select the groups according to the type of substrate used.

Claims

REIVINDICACIONES
1. Interruptor molecular hidrofóbico-hidrofílico de superficie que comprende: 1. Hydrophobic-hydrophilic surface molecular switch comprising:
- un sustrato sólido que lleva anclado en su superficie moléculas de policlorotrifenilmetilo (PTM) funcionalizadas en un estado de oxidación radical o anión, tal que proporcionan una superficie hidrofóbica, una superficie hidrofilica o una superficie con zonas hidrofóbicas y zonas hidrofilicas , y  - a solid substrate that has polychlorotriphenylmethyl (PTM) molecules anchored on its surface functionalized in a state of radical oxidation or anion, such that they provide a hydrophobic surface, a hydrophilic surface or a surface with hydrophobic zones and hydrophilic zones, and
- medios para cambiar reversiblemente dicho estado de oxidación de radical a anión o viceversa y localmente en el sustrato.  - means for reversibly changing said oxidation state from radical to anion or vice versa and locally in the substrate.
2. Interruptor molecular según la reivindicación 1, donde dichos medios son terminales para aplicar tensión, donde una tensión de +0,1V convierte dicha molécula de PTM en el radical y dicha superficie en hidrofóbica, y donde una tensión de -0,1V convierte dicha molécula de PTM en el anión y dicha superficie en hidrofilica, en un umbral de 1 s .  2. Molecular switch according to claim 1, wherein said means are terminals for applying voltage, where a voltage of + 0.1V converts said PTM molecule into the radical and said surface into hydrophobic, and where a voltage of -0.1V converts said PTM molecule in the anion and said surface in hydrophilic, in a threshold of 1 s.
3. Interruptor molecular según la reivindicación 1, donde dichos medios son un agente químico oxidante o un agente químico reductor, donde la adición de un agente oxidante convierte dicha molécula de PTM en el radical y dicha superficie en hidrofóbica, y la adición de un agente reductor convierte dicha molécula de PTM en el anión y dicha superficie en hidrofilica.  3. Molecular switch according to claim 1, wherein said means is an oxidizing chemical agent or a reducing chemical agent, wherein the addition of an oxidizing agent converts said PTM molecule into the radical and said surface into hydrophobic, and the addition of an agent reducer converts said PTM molecule into the anion and said surface into hydrophilic.
4. Interruptor molecular según la reivindicación 1, donde dicho sustrato sólido es conductor.  4. Molecular switch according to claim 1, wherein said solid substrate is conductive.
5. Interruptor molecular según la reivindicación 5. Molecular switch according to claim
1, donde dicho sustrato sólido es no-conductor. 1, where said solid substrate is non-conductive.
6. Interruptor molecular según la reivindicación 1, donde dicho sustrato se selecciona entre óxido de indio-estaño, óxido de silicio o silicio con una capa de su óxido nativa y dichas moléculas de PTM comprenden grupos funcionales silano o carboxílico. 6. Molecular switch according to claim 1, wherein said substrate is selected from indium tin oxide, silicon oxide or silicon with a layer of its native oxide and said PTM molecules comprise silane or carboxylic functional groups.
7. Interruptor molecular según la reivindicación 1, donde dicho sustrato es oro y dichas moléculas de PTM comprenden grupos funcionales tiol, disulfuro, tioacetato o tioalquilo.  7. Molecular switch according to claim 1, wherein said substrate is gold and said PTM molecules comprise thiol, disulfide, thioacetate or thioalkyl functional groups.
8. Interruptor molecular según la reivindicación 1, donde dicho sustrato es grafito y dichas moléculas de PTM comprenden grupos funcionales de cadenas alquilicas (C5-C30) ·  8. Molecular switch according to claim 1, wherein said substrate is graphite and said PTM molecules comprise functional groups of alkyl chains (C5-C30)
9. Interruptor molecular según la reivindicación 9. Molecular switch according to claim
1, donde dichas moléculas de PTM funcionalizadas están ancladas mediante enlaces covalentes. 1, where said functionalized PTM molecules are anchored by covalent bonds.
10. Interruptor molecular según la reivindicación 1, donde dichas moléculas de PTM funcionalizadas son micro- o nanoparticulas de agregados o dendritas y están ancladas mediante interacciones intermoleculares débiles.  10. Molecular switch according to claim 1, wherein said functionalized PTM molecules are micro- or nanoparticles of aggregates or dendrites and are anchored by weak intermolecular interactions.
11. Interruptor molecular según la reivindicación 11. Molecular switch according to claim
9, donde dicha molécula de PTM en el estado de oxidación del radical presenta un ángulo de contacto de 85°±20 y en el estado de oxidación del anión un ángulo de contacto de 35°±20. 9, wherein said PTM molecule in the oxidation state of the radical has a contact angle of 85 ° ± 20 and in the oxidation state of the anion a contact angle of 35 ° ± 20.
12. Interruptor molecular según la reivindicación 12. Molecular switch according to claim
10, donde dicha molécula de PTM en el estado de oxidación del radical presenta un ángulo de contacto de 150°±20 y en el estado de oxidación del anión un ángulo de contacto de 35°±20. 10, wherein said PTM molecule in the oxidation state of the radical has a contact angle of 150 ° ± 20 and in the oxidation state of the anion a contact angle of 35 ° ± 20.
13. Procedimiento para controlar reversiblemente y localmente la hidrofobicidad de una superficie, cuya superficie comprende un interruptor molecular hidrofóbico- hidrofilico según se ha definido en cualquiera de las reivindicaciones 1 a 12, que comprende las etapas de:  13. A method for reversibly and locally controlling the hydrophobicity of a surface, the surface of which comprises a hydrophobic-hydrophilic molecular switch as defined in any one of claims 1 to 12, comprising the steps of:
i) diseñar sobre dicha superficie un patrón que presenta zonas destinadas a ser hidrofóbicas y/o hidrofilicas ,  i) design on said surface a pattern that presents areas intended to be hydrophobic and / or hydrophilic,
ii) activar dicha zona destinada a ser hidrofóbica mediante la aplicación de una tensión de +0,1V o la adición de un agente oxidante, y/o ii) activate said area intended to be hydrophobic by applying a voltage of + 0.1V or the addition of an oxidizing agent, and / or
iiii) activar dicha zona destinada a ser hidrofilica mediante la aplicación de una tensión de -0,1V o la adición de un agente reductor, y  iiii) activating said zone destined to be hydrophilic by applying a voltage of -0.1V or adding a reducing agent, and
iv) repetir las etapas ii)-iii) tantas veces como se desee cambiar reversiblemente y localmente dicha superficie de hidrofóbica a hidrofilica o viceversa.  iv) repeat steps ii) -iii) as many times as desired reversibly and locally changing said surface from hydrophobic to hydrophilic or vice versa.
14. Procedimiento según la reivindicación 13, donde en la etapa i) el diseño de un patrón con zonas hidrofóbicas y/o zonas hidrofilicas puede obtenerse de acuerdo con cualquiera de las siguientes vias:  14. Method according to claim 13, wherein in step i) the design of a pattern with hydrophobic zones and / or hydrophilic zones can be obtained according to any of the following routes:
a) anclado de radicales de moléculas de PTM funcionali zadas sobre un sustrato sólido e hidrofilico en las zonas destinadas a ser hidrofóbicas;  a) radical anchoring of functionalized PTM molecules on a solid and hydrophilic substrate in areas intended to be hydrophobic;
b) anclado de radicales de moléculas de PTM funcionalizadas sobre toda la superficie de un sustrato sólido y, a continuación, reducción de dichos radicales al anión mediante el contacto local de las zonas destinadas a ser hidrofilicas con un sello polimérico que lleva un agente reductor; o  b) anchoring of radicals of functionalized PTM molecules over the entire surface of a solid substrate and then reducing said radicals to the anion by local contact of the areas intended to be hydrophilic with a polymeric seal bearing a reducing agent; or
c) anclado de radicales de moléculas de PTM funcionalizadas en toda la superficie de un sustrato que presenta partes conductoras y partes no conductoras y, a continuación, con terminales entre partes conductoras, aplicación de tensión para reducir dichos radicales al anión en las zonas destinadas a ser hidrofilicas.  c) anchoring of radicals of functionalized PTM molecules on the entire surface of a substrate that has conductive parts and non-conductive parts and then with terminals between conductive parts, application of tension to reduce said radicals to the anion in the areas intended for Be hydrophilic.
15. Dispositivo para controlar reversiblemente y localmente el carácter hidrofóbico-hidrofilico de una superficie, que comprende:  15. Device for reversibly and locally controlling the hydrophobic-hydrophilic character of a surface, comprising:
- un interruptor molecular según se ha definido en cualquiera de las reivindicaciones 1 a 12,  - a molecular switch as defined in any one of claims 1 to 12,
- un módulo de acondicionamiento de la señal y - a signal conditioning module and
- un módulo de tratamiento de la señal. - a signal processing module.
16. Utilización de un interruptor molecular según se ha definido en cualquiera de las reivindicaciones 1 a 12 para conmutar el carácter hidrofóbico a hidrofilico, o viceversa, en una superficie o zona de una superficie. 16. Use of a molecular switch according to defined in any of claims 1 to 12 to switch the hydrophobic to hydrophilic character, or vice versa, on a surface or area of a surface.
17. Utilización de un interruptor molecular según se ha definido en cualquiera de las reivindicaciones 1 a 12 o de un dispositivo según la reivindicación 15 que lo contiene en el campo de la microfluidica, como dispensador de biomoléculas o biosensores, en la fabricación de etiquetas o marcadores o en el campo de las superficies auto-limpiantes.  17. Use of a molecular switch as defined in any of claims 1 to 12 or of a device according to claim 15 containing it in the field of microfluidics, as a dispenser of biomolecules or biosensors, in the manufacture of labels or Markers or in the field of self-cleaning surfaces.
PCT/ES2012/070013 2011-02-08 2012-01-10 Hydrophobic/hydrophilic molecular switch, device containing said switch and method for controlling surface hydrophobicity WO2012107612A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201130164A ES2386885B1 (en) 2011-02-08 2011-02-08 HYDROPHOBIC-HYDROPHYLIC MOLECULAR SWITCH, DEVICE CONTAINING IT AND PROCEDURE FOR CONTROL OF SURFACE HYDROFOBICITY.
ESP201130164 2011-02-08

Publications (1)

Publication Number Publication Date
WO2012107612A1 true WO2012107612A1 (en) 2012-08-16

Family

ID=46638165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070013 WO2012107612A1 (en) 2011-02-08 2012-01-10 Hydrophobic/hydrophilic molecular switch, device containing said switch and method for controlling surface hydrophobicity

Country Status (2)

Country Link
ES (1) ES2386885B1 (en)
WO (1) WO2012107612A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097309A1 (en) * 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040700A1 (en) * 2001-11-08 2003-05-15 Ciphergen Biosystems, Inc. Hydrophobic surface chip
EP1569286A2 (en) * 2004-02-24 2005-08-31 Hewlett-Packard Development Company, L.P. Bistable molecular switches and associated methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040700A1 (en) * 2001-11-08 2003-05-15 Ciphergen Biosystems, Inc. Hydrophobic surface chip
EP1569286A2 (en) * 2004-02-24 2005-08-31 Hewlett-Packard Development Company, L.P. Bistable molecular switches and associated methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CRIVILLERS, N. ET AL.: "Self Assembled Monolayersof Electroactive Polychlorotriphenylmethyl Radicalson Au (111)", J.AM.CHEM. SOC., vol. 130, 4 January 2008 (2008-01-04), pages 5499 - 5506 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097309A1 (en) * 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating

Also Published As

Publication number Publication date
ES2386885B1 (en) 2013-07-12
ES2386885A1 (en) 2012-09-04

Similar Documents

Publication Publication Date Title
Rivnay et al. Organic electrochemical transistors
Sokolov et al. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications
Alam et al. Polymers and organic materials-based pH sensors for healthcare applications
Fahrenbach et al. Ground-state thermodynamics of bistable redox-active donor–acceptor mechanically interlocked molecules
Yerushalmi et al. Stimuli responsive materials: new avenues toward smart organic devices
White et al. Label-free DNA sensing platform with low-voltage electrolyte-gated transistors
Liao et al. Organic semiconductors in organic thin-film transistor-based chemical and biological sensors
Farhat et al. Ion transport and equilibria in polyelectrolyte multilayers
Ma et al. Polymer micelles as building blocks for layer-by-layer assembly: an approach for incorporation and controlled release of water-insoluble dyes
Silvi et al. Artificial molecular shuttles: from concepts to devices
Ishiguro et al. Gradient doping of conducting polymer films by means of bipolar electrochemistry
Moo et al. Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch
Ghilane et al. Metal/polypyrrole quasi-reference electrode for voltammetry in nonaqueous and aqueous solutions
den Hollander et al. Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein–gold interactions
Balogh et al. Photochemically and electrochemically triggered Au nanoparticles “sponges”
Hu et al. Facile method for preparing surface-mounted cucurbit [8] uril-based rotaxanes
Del Pozo et al. DNA biosensor for detection of Helicobacter pylori using phen-dione as the electrochemically active ligand in osmium complexes
Knake et al. Electrochemical nucleation of gold nanoparticles in a polymer film at a liquid− liquid interface
Shi et al. Patterned polyelectrolyte multilayer: Surface modification for enhancing selective adsorption
US20170023513A1 (en) Electropolymerization onto flexible substrates for electronic applications
ES2750327T3 (en) Localized organic grafting procedure without mask on conductive or semiconductor portions of composite surfaces
Li et al. Ion‐selective organic electrochemical transistors: recent progress and challenges
Ssenyange et al. Redox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions
Lee et al. Nano-storage wires
Wu et al. Ionic liquid-assisted electropolymerization for lithographical perfluorocarbon deposition and hydrophobic patterning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744229

Country of ref document: EP

Kind code of ref document: A1