WO2017100045A1 - Fluorinated piperazine sulfonamides - Google Patents

Fluorinated piperazine sulfonamides Download PDF

Info

Publication number
WO2017100045A1
WO2017100045A1 PCT/US2016/064079 US2016064079W WO2017100045A1 WO 2017100045 A1 WO2017100045 A1 WO 2017100045A1 US 2016064079 W US2016064079 W US 2016064079W WO 2017100045 A1 WO2017100045 A1 WO 2017100045A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
mmol
polymer
fibers
water
Prior art date
Application number
PCT/US2016/064079
Other languages
French (fr)
Inventor
Georgiy Teverovskiy
Chetan P. Jariwala
Ajay K. VIDYASAGAR
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Publication of WO2017100045A1 publication Critical patent/WO2017100045A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/26Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/435Sulfonamides

Definitions

  • thermoplastic composition fluorochemical composition and shaped articles made from the thermoplastic composition.
  • organofluorine compounds as surface-active agents (i.e., surfactants) and surface-treating agents is due in large part to the extremely low free-surface energy of a C 6 -Ci2 fluorocarbon group, according to H. C. Fielding, "Organofluorine Compounds and Their Applications," R. E. Banks, Ed., Society of Chemical Industry at p. 214 (1979).
  • organofluorine substances described above are those which have carbon- bonded fluorine in the form of a monovalent fluoroaliphatic radical such as a
  • fluorochemical having a melting point of at least about 25°C and a molecular weight of about 500 to 2500, the fluorochemical being a fluorochemical piperazine, oxazolidinone or perfluorinated alkane having from 15 to 50 carbon atoms.
  • U.S. Patent No. 5,300,587 (Macia et al.) describes oil-repellent polymeric compositions made by blending a perfluoropolyether and a thermoplastic polymer.
  • WO 98/15598 describes water- and oil-repellent resin compositions useful, e.g., for kitchenware and bathroom utensils, comprising thermoplastic or thermosetting resin and perfluoroalkylated polymer, such compositions exhibiting superior anti-fouling and mouldability.
  • melt-blown microfiber webs continue to be in widespread use for filtering particulate contaminants, e.g., as face masks and as water filters, and for other purposes, e.g., to remove oil from water.
  • Rf is a perfluorinated group of having an average of 3 to 5 carbon atoms
  • This invention further provides a polymer composition comprising the partially fluorinated compounds of Formula I and a thermoplastic or thermoset polymer.
  • a polymer composition of this invention can be melted or shaped, for example by extrusion or molding, to produce shaped articles, such as fibers, films and molded articles whose surfaces exhibit excellent oil- and water repellency.
  • the repellent polymer composition is especially useful in the preparation of nonwoven fabrics used in medical gowns and drapes, where repellency to bodily fluids is mandated.
  • Films made from repellent polymer compositions of this invention are useful, for example, for moisture and/or grease-resistant packaging, release liners, and multilayer constructions.
  • the present invention provides oily mist resistant electret filter media comprising polypropylene electret fibers made from repellent polymer
  • Alkyl means a linear or branched, cyclic or acylic, saturated or unsaturated monovalent hydrocarbon .
  • Alkylene means a linear or branched cyclic or acylic, saturated or unsaturated, polyvalent hydrocarbon.
  • Alkylene means a group defined above with an aryl group attached to the alkylene, e.g., benzyl, 1 -naphthyl ethyl, and the like.
  • Hydrocarbyl is inclusive of hydrocarbyl alkyl, alkylene and aryl groups of all indicated valent states. Unless otherwise indicated, the non-polymeric hydrocarbyl groups typically contain from 1 to 40 carbon atoms.
  • This invention provides fluorochemical compositions comprising a thermoplastic or thermoset polymer and at least one partially fluorinated piperazine sulfonamide compounds of Formulas I.
  • the present fluorinated piperazine sulfonamide compounds and compositions thereof provide the necessary performance even with the shorter C3-C5 perfluoroalkyl groups.
  • the short chain perfluorocarboxylic acids are less toxic and less
  • Rf groups are selected from C3-C5 perfluoroalkyl (and/or perfluoroalkylene) groups.
  • Rf is selected contains at least 95% linear perfluorobutyl groups and less than 5% of other perfluoroalkyl groups.
  • R 1 in compounds of Formulas I may be a linear or branched chain, saturated or unsaturated, cyclic or acyclic (or any combination thereof) alkyl or alkylene group having from 1 to 40 carbon atoms.
  • R 1 may contain aryl or arylene groups.
  • the range of structures contemplated for the organic moiety R 1 will be better understood with reference to the compounds suitable for use in steps of the Reaction Schemes described in detail below.
  • R 1 is an aryl group, including phenyl, napthyl, anthracenyl, phenanthanenyl, benzonapthanenyl, and fluorenyl.
  • the aryl group can be a polyvalent alkylene.
  • the aryl groups may be further substituted with one or more alkyl groups, i.e. an alkarylene group.
  • X 1 is a covalent bond and R 1 is an aryl group.
  • the fluoroaliphatic radical-containing piperazine compounds can be prepared using known organic reactions, such as those disclosed in US 5451622 (Boardman et al, incorporated herein by reference.
  • a preferred method of preparation is by the reaction of fluoroaliphatic radical-containing sulfonyl fluorides, RfSChF, with piperazine followed by reaction of the resulting fluoroaliphatic radical-containing sulfonylpiperazine with various organic reactants.
  • the perfluroalkylsulfonyl halide starting material is desirable prepared by electrochemical fluorination (ECF) of a linear C3-C5 sulfonyl fluoride, preferably a linear C 4 sulfonyl fluoride.
  • ECF electrochemical fluorination
  • the electrochemical fluorination yields a complex mixture of linear and branched isomers, as well as higher and lower homologues.
  • ECF of linear C3-C5 alkyl sulfonyl fluorides yields predominately linear products with minor amounts of homologues.
  • the present invention provides a synthetic organic polymer composition comprising the one or more of the fluorinated oligomers of Formulas I and/or II and a thermoplastic or thermoset organic polymer.
  • the compounds of Formula I are useful as polymer melt additives to impart desirable low surface energy properties to the thermoplastic or thermoset polymer.
  • molten additive (as a compound(s) or masterbatch) can be injected into a molten polymer stream to form a blend just prior to extrusion into the desired shaped article.
  • thermoset resins such as epoxy resins, urethanes and acrylates
  • the fluorochemical oligomer may be mixed with the resin and cured by application of heat.
  • thermoset resins may be processed by reactive extrusion techniques such as are taught in U.S. 4,619,976 (Kotnour) and U.S. 4,843,134 (Kotnour).
  • thermoplastic composition containing the compounds of Formula I may be used to provide oil and water repellency to fibers.
  • fluorochemical additives are melt processible, i.e., suffer substantially no degradation under the melt processing conditions used to form the fibers.
  • the amount of fluorochemical compound in the composition is that amount sufficient to produce a shaped article having a surface with the desired properties of oil and water repellency and/or soiling resistance.
  • the amount of fluorochemical compound will be that amount which provides from about 100 to 10,000 ppm fluorine, more preferably 200 to 5000 ppm, most preferably 400 to 3000 ppm fluorine, based on the weight of the shaped article.
  • Annealing may also be effected by contact with heated rolls, such as embossing rolls, at 50°C to 160°C for periods of about 1 to 30 seconds.
  • heated rolls such as embossing rolls
  • the annealing method may also serve to reduce the amount of additive necessary by maximizing fluorine content at the surface of the polymer.
  • the polymer composition of the invention is also useful in preparing blown microfibers for non-woven fabrics having low surface energy, oil and water repellency and/or soiling resistance.
  • the resin, such as polypropylene, used to form the melt blown microfibers should be substantially free from materials such as antistatic agents which could increase the electrical conductivity or otherwise interfere with the ability of the fibers to accept and hold electrostatic charges.
  • the fluorochemical compounds of the invention are used as additives to melt blown microfibers, the additive is preferably present in amounts of about 0.2 to 10 weight percent, more preferably from 0.5 to 5 weight percent and most preferably 0.5 to 2 weight percent.
  • the non-woven webs of fibers of thermoplastic olefinic polymer for use in this invention include non-woven webs manufactured by any of the commonly known processes for producing non-woven webs.
  • the fibrous non-woven web can be made by spunbonding techniques or melt-blowing techniques or combinations of the two.
  • Spunbonded fibers are typically small diameter fibers which are formed by extruding molten thermoplastic polymer as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded fibers being rapidly reduced.
  • melt blown polypropylene microfibers useful in the present invention can be prepared as described in Van Wente, A., "Superfine Thermoplastic Fibers," Industrial Engineering Chemistry, vol. 48, pp. 1342-1346 (1956) and in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled “Manufacture of Super Fine Organic Fibers” by Van Wente et al. or from microfiber webs containing particulate matter such as those disclosed, for example, in U.S. Pat. Nos. 3,971,373 (Braun),
  • Multilayer constructions of nonwoven fabrics enjoy wide industrial and commercial utility and include uses such as fabrics for medical gowns and drapes.
  • the nature of the constituent layers of such multilayer constructions can be varied according to the desired end use characteristics, and can comprise two of more layers of melt-blown and spun-bond webs in may useful combinations such as described in U.S. Pat. Nos. 5,145,727 and 5,149,576.
  • the filtering efficiency of a melt-blown microfiber web can be improved by a factor of two or more when the melt-blown fibers are bombarded as they issue from the orifices with electrically charged particles such as electrons or ions, thus making the fibrous web an electret.
  • the web can be made an electret by exposure to a corona after it is collected.
  • Melt-blown polypropylene microfibers are especially useful, while other polymers may also be used such as polycarbonates and polyhalocarbons that may be melt-blown and have appropriate volume-resistivities under expected environmental conditions.
  • any of a wide variety of constructions may be made from the above- described fibers and fabrics, and such constructions will find utility in any application where some level of hydrophobicity, oleophobicity (or other fluid repellency, such as to bodily fluids) is required.
  • the fibers prepared from the synthetic organic polymer composition of the invention may be used in woven and nonwoven medical fabrics (such as drapes, gowns and masks), industrial apparel, outdoor fabrics (such as umbrellas, awning, tents, etc), raincoats and other outdoor apparel, as well as home furnishings such as table linens and shower curtains, and in myriad other related uses.
  • the filter media is annealed, i.e., heated for a sufficient time at a sufficient temperature to cause the fluorochemical additive to bloom to the surface of the fibers.
  • a sufficient temperature to cause the fluorochemical additive to bloom to the surface of the fibers.
  • about 1 to 10 minutes at about 140 deg. C. is sufficient although shorter times may be used at higher temperatures and longer times may be required at lower temperatures.
  • Blown microfibers for fibrous electret filters of the invention typically have an effective fiber diameter of from about 5 to 30 micrometers, preferably from about 7 to 10 micrometers, as calculated according to the method set forth in Davies, C. N., "The Separation of Airborne Dust and Particles," Institution of Mechanical Engineers, London, Proceedings IB, 1952.
  • the electret filter media of the present invention preferably has a basis weight in the range of about 10 to 500 g/m 2 , more preferably about 10 to 100 g/m 2 .
  • the basis weight can be controlled, for example, by changing either the collector speed or the die throughput.
  • the thickness of the filter media is preferably about 0.25 to 20 mm, more preferably about 0.5 to 2 mm.
  • the electret filter media and the polypropylene resin from which it is produced should not be subjected to any unnecessary treatment which might increase its electrical conductivity, e.g., exposure to gamma rays, ultraviolet irradiation, pyrolysis, oxidation, etc.
  • melt-blown microfibers or fibrillated fibers of the electret filters of the invention can be electrostatically charged by a process described in U.S. Pat. Nos. Re.
  • the charging process involves subjecting the material to corona discharge or pulsed high voltage.
  • Films prepared from the composition of this invention can be made which are useful, for example, for grease-resistant packaging, release liners and microporous film applications. These films can be used to make multi-layer constructions in which one, more than one, or all layers contain the fluorochemical additive.
  • KAYDOL Mineral Oil was obtained from Sonneborn, Inc., Parsippany, NJ under trade designation "KAYDOL” White Mineral Oil.
  • the Oil Repellency Test was run in the same manner as the Water Repellency Test described above except that the film samples were challenged to penetration by oil or oil mixtures of varying surface tensions.
  • the reported oil repellency rating corresponds to the oil or oil mixture for which the film sample passed the described test. It is desirable to have an oil repellency rating of at least 1 , preferably at least 3.
  • the oil repellency ratings and the corresponding oil or oil mixtures are shown in Table 2, below:
  • the extruder for PET used was a KraussMaffei Berstorff 25M1VI counter-rotating conical twin screw extruder (obtained from KraussMaffei Berstorff GmbH & Co., Kunststoff Germany) maximum extrusion temperature of approximately 275° C and with the distance to the collector of approximately 1 1 inches (about 28 cm).
  • the extruder used for Nylon-6 was a Leistritz 1 ⁇ i ⁇ ! counter-rotating conical twin screw extruder (obtained from Leistritz GmbH & Co., Nuremberg Germany) with maximum extrusion temperature of
  • the fluorochemical additive and thermoplastic polymer were each weighed and mixed in a plastic container in a desired ratio. Then using a mixer head affixed to a hand drill they were mixed for about one minute until a visually homogeneous mixture was obtained. This mixture was then added to the extruder hopper. The process conditions for each mixture were the same, including the film die construction and the thickness of the film (50 micrometers). The extrusion temperature was approximately 230-275° C depending on the polymer. The polymer throughput rate was about 7.5 Ibs/h (about 3.40 kg/h)
  • 1, 1,2,2,3, 3,4,4,4-nonafluorobutane-l-sulfonyl fluoride (500 mL, 2780 mmol) was added via addition funnel at such a rate so as to maintain a temperature below 90 °C. Upon completion of addition, the temperature was raised to 95 °C and the reaction mixture was allowed to stir for 16 h. The vessel was cooled to 50 °C, and water (300 mL) was added followed by dichloromethane (500 mL). The resulting biphasic mixture was allow to stir for 5 min and then allowed to phase separate. The lower phase was removed, washed 3x with water (300 mL), brine (500 mL) and dried over sodium sulfate (250g).
  • Benzene- 1,3, 5 -tricarbonyl chloride was slowly added via addition funnel to the reaction mixture with vigorous stirring. Upon completion, the mixture was allowed to stir for 16 h at r.t.. Water (300 mL) was then added to the white suspension and the product was collected via filtration.
  • EX1-EX9 either PET or a Nylon-6 polymer were co-extruded with a 1.5 wt. % fluorochemical additive prepared in PE2-PE10, respectively, using the process described above in Method for Forming Polymer Films.
  • the resulting films were annealed at 110 °C for 10 min (PET) or 120 °C for 20 min (Nylon-6).
  • CE10 was prepared in the same manner as EX1-EX9 described above except that C4F9S02N(CH3)CH2CH 2 OOC(CH2)i6COOCH2CH2(CH3)NS02C4F9 was the
  • CEl 1 was prepared in the same manner as EX1-EX9 described above, except that no fluorochemical additive was present.

Abstract

The present invention provides a novel partially fluorinated piperazine sulfonamide compound, and polymer composition comprising the fluorinated compound and a thermoplastic or thermoset polymer. The polymer composition is useful in preparing shaped articles such as fibers and films which have desirable oil- and water repellency properties.

Description

FLUORINATED PIPERAZINE SULFONAMIDES
This invention relates to partially fluorinated piperazine sulfonamide compounds having oligomeric portions that contain pendent fluoroaliphatic and fluorine-free aliphatic groups. This invention also relates to polymer compositions comprising the
fluorochemical composition and shaped articles made from the thermoplastic composition.
The utility of organofluorine compounds as surface-active agents (i.e., surfactants) and surface-treating agents is due in large part to the extremely low free-surface energy of a C6 -Ci2 fluorocarbon group, according to H. C. Fielding, "Organofluorine Compounds and Their Applications," R. E. Banks, Ed., Society of Chemical Industry at p. 214 (1979). Generally, the organofluorine substances described above are those which have carbon- bonded fluorine in the form of a monovalent fluoroaliphatic radical such as a
perfluoroalkyl group, typically -CnF2n+i, where n is at least 3, the terminal part of which group is trifluoromethyl, -CF3.
Several patents have taught that the addition of certain fluorochemicals to thermoplastic imparts oil and stain repellency to thermoplastic articles such as fibers. For example, U.S. Patent No. 5,025,052 (Crater et al.) describes the use of fluoroaliphatic radical-containing 2-oxazolidinone compounds having a monovalent fluoroaliphatic radical bonded to the 5-position thereof with an organic linking group. The compounds are said to be useful in the surface treatment of fibrous materials, such as textiles and are also useful in preparing fibers, films and molded articles by melt-extrusion or injection molding.
U.S. Patent No. 5,380,778 (Buckanin) describes the use of fluorochemical aminoalcohols in thermoplastic compositions which can be melted and shaped, for example by extrusion or molding, to provide fibers and films having desirable oil- and water-repellency properties.
U.S. Patent No. 5,451,622 (Boardman et al.) describes shaped articles, such as fibers and films, made by melt extruding mixtures of fluorochemical piperazine compounds and a thermoplastic polymer. U.S. Patent No. 5,898,046 describes repellent compositions formed by the mixture of a thermoplastic polymer and a fluorocarbon/aliphatic hydrocarbon monoester, wherein the aliphatic hydrocarbon portion can have from about 12 to about 76 carbon atoms.
International Published Application WO 97/22576 (Raiford et al.) describes fluorochemical diesters added to thermoplastic polymer melts which impart repellency of low surface tension fluids to the resultant fiber, fabric, nonwoven, film or molded article.
International Published Application WO 99/05345 (Gasper et al.) discloses a hydrophobic and oleophobic fiber comprising synthetic organic polymer and a compound which is a fluorochemical ester or amide derived from a dimer or trimer acid.
U.S. Patent No. 5,411,576 (Jones et al.) describes an oily mist resistant electret filter media comprising melt-blown electret microfibers and a melt-processible
fluorochemical having a melting point of at least about 25°C and a molecular weight of about 500 to 2500, the fluorochemical being a fluorochemical piperazine, oxazolidinone or perfluorinated alkane having from 15 to 50 carbon atoms. U.S. Patent No. 5,300,587 (Macia et al.) describes oil-repellent polymeric compositions made by blending a perfluoropolyether and a thermoplastic polymer. U.S. Patent no. 5,336,717 (Rolando et al.) discloses fluorochemical graft copolymers derived from reacting monomers having terminal olefinic bonds with fluorochemical olefins having fluoroaliphatic groups and polymerizable double bonds.
International Published Application No. WO 98/15598 (Yamaguchi et al.) describes water- and oil-repellent resin compositions useful, e.g., for kitchenware and bathroom utensils, comprising thermoplastic or thermosetting resin and perfluoroalkylated polymer, such compositions exhibiting superior anti-fouling and mouldability. The perfluoroalkyl polymer can be a copolymer of a 5 to 18 carbon perfluoroalkyl group- containing (meth)acrylic ester and a hydrophilic group-bearing (meth)acrylic ester, with an optional copolymerizable comonomer which can be a C1-C25 (meth)acrylic acid alkyl ester, preferably a C8-C22 alkyl ester.
While these fluorochemical melt additives can in some circumstances impart satisfactory hydrophobicity and/or oleophobicity to thermoplastic resins they typically suffer from poor thermal stability above 300°C, a melt processing temperature often encountered in the industry, and they can also be prohibitively expensive, lending limitations to their commercial utility. For many years nonwoven fibrous filter webs have been made from polypropylene using melt-blowing apparatus of the type described in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled "Manufacture of Super Fine Organic Fibers" by Van Wente et al. Such melt-blown microfiber webs continue to be in widespread use for filtering particulate contaminants, e.g., as face masks and as water filters, and for other purposes, e.g., to remove oil from water.
Fibrous filters for removing particulate contaminants from the air are also made from fibrillated polypropylene films. Electret filtration enhancement can be provided by electrostatically charging the film before it is fibrillated. Common polymers such as polyesters, polycarbonates, etc. can be treated to produce highly charged electrets but these charges are usually short-lived especially under humid conditions. The electret structures may be films or sheets which find applications as the electrostatic element in electro-acoustic devices such as microphones, headphones and speakers and in dust particle control, high voltage electrostatic generators, electrostatic recorders and other applications.
Summary of the Invention
This disclosure provides a partially fluorinated piperazine sulfonamide compounds of the formula:
Figure imgf000004_0001
wherein
R1 is a linear or branched C2-C40 hydrocarbyl group, preferably C2-C18;
Rf is a perfluorinated group of having an average of 3 to 5 carbon atoms;
X1 is -NH-, or a covalent bond; and
subscript x is 1 to 3.
It has been reported that certain perfluorooctyl-containing compounds (CsFn-) may tend to bio-accumulate in living organisms; this tendency has been cited as a potential concern regarding some fiuorochemical compositions. For example, see U.S. 5,688,884 (Baker et al.). As a result, there is a desire for fluorine-containing compositions effective in providing desired functional properties, e.g., water- and oil-repellency, surfactant properties, etc. while eliminating more effectively from biological systems. However, it has also been asserted that only perfluoroalkyl groups of the formula F(CF2)n- have six or greater carbons have the self-alignment capability to achieve useful performance, while shorter chains, e.g. C4F9- lack the self-alignment necessary for good performance. See Phillips and Dettree, J.Col and Interface Sci., vol. 56(2), August 1976.
Therefore it remains a challenge to provide shorter chain perfluoroalkyl compositions that are less bioaccumulative, while maintain the requisite performance.
This invention further provides a polymer composition comprising the partially fluorinated compounds of Formula I and a thermoplastic or thermoset polymer. A polymer composition of this invention can be melted or shaped, for example by extrusion or molding, to produce shaped articles, such as fibers, films and molded articles whose surfaces exhibit excellent oil- and water repellency. The repellent polymer composition is especially useful in the preparation of nonwoven fabrics used in medical gowns and drapes, where repellency to bodily fluids is mandated. Films made from repellent polymer compositions of this invention are useful, for example, for moisture and/or grease-resistant packaging, release liners, and multilayer constructions.
In another aspect, the present invention provides oily mist resistant electret filter media comprising polypropylene electret fibers made from repellent polymer
compositions of this invention, wherein the fluorinated compound has a melting temperature of at least 25°C. Preferably the fibers may be in the form of meltblown microfibers.
In another aspect, the present invention provides a method for filtering particulate material from air containing oily aerosol particles comprising passing said air through electret filter media made from repellent polymer compositions of this invention. The electret filter media of the present invention have improved electret filtration enhancement and sustain that enhancement upon exposure to oily aerosols. Furthermore, the electret filter media of the present invention maintain functional filtration enhancing charge levels under accelerated aging conditions.
Fibrous polypropylene electret filters that are currently available, some made from melt-blown polypropylene microfibers and others from fibrillated polypropylene film, can show thermally stable electret filtration enhancement. Unfortunately, fibrous electret filters made of polypropylene, whether melt-blown microfibers or fibrillated film, tend to lose their electret enhanced filtration efficiency faster than desired for some purposes when exposed to oily aerosols. There is a need to improve the long-term efficiency of air filters in the presence of aerosol oils, especially in respirators.
The novel fibrous electret filter media of the present invention are especially useful as an air filter element of a respirator such as a face mask or for such purposes as heating, ventilation, and air-conditioning. In respirator uses, the novel electret filter media may be in the form of molded or folded half-face masks, replaceable cartridges or canisters, or prefilters. In such uses, an air filter element of the invention is surprisingly effective for removing oily aerosols such as are present in cigarette smoke or in fumes from
combustion engines. When used as an air filter media, such as in a respirator, the electret filter media has surprisingly better filtration performance than does a comparable electret filter media made of 100% polypropylene fibers.
As used herein:
"Alkyl" means a linear or branched, cyclic or acylic, saturated or unsaturated monovalent hydrocarbon .
"Alkylene" means a linear or branched cyclic or acylic, saturated or unsaturated, polyvalent hydrocarbon.
"Alkenyl" means a linear or branched unsaturated hydrocarbon.
"Aryl" means a monovalent aromatic, such as phenyl, naphthyl and the like.
"Arylene" means a polyvalent, aromatic, such as phenylene, naphthalene, and the like.
"Aralkylene" means a group defined above with an aryl group attached to the alkylene, e.g., benzyl, 1 -naphthyl ethyl, and the like. "Hydrocarbyl" is inclusive of hydrocarbyl alkyl, alkylene and aryl groups of all indicated valent states. Unless otherwise indicated, the non-polymeric hydrocarbyl groups typically contain from 1 to 40 carbon atoms.
Detailed Description
This invention provides fluorochemical compositions comprising a thermoplastic or thermoset polymer and at least one partially fluorinated piperazine sulfonamide compounds of Formulas I. In some preferred embodiments, the present fluorinated piperazine sulfonamide compounds and compositions thereof provide the necessary performance even with the shorter C3-C5 perfluoroalkyl groups. Furthermore, the short chain perfluorocarboxylic acids (the presumed intermediate degradation products) are less toxic and less
bioaccumulative than the longer chain (Cs) homologues. For these reasons, the Rf groups are selected from C3-C5 perfluoroalkyl (and/or perfluoroalkylene) groups. In preferred embodiments, Rf is selected contains at least 95% linear perfluorobutyl groups and less than 5% of other perfluoroalkyl groups.
The fluorine-free hydrocarbyl moiety, designated R1 in compounds of Formulas I may be a linear or branched chain, saturated or unsaturated, cyclic or acyclic (or any combination thereof) alkyl or alkylene group having from 1 to 40 carbon atoms.
Alternatively R1 may contain aryl or arylene groups. The range of structures contemplated for the organic moiety R1 will be better understood with reference to the compounds suitable for use in steps of the Reaction Schemes described in detail below.
In some embodiments R1 is a linear alkyl group of 1 to 40, preferably 2 to 30, and most preferably 2 to 10 carbon atoms of the formula-CnFhn+i, where n is 1 to 40, preferably 2 to 30, and most preferably 2 to 20. The alkyl or alkylene groups may be further substituted by one or more aryl groups, i.e. an aralkylene. In other embodiments, R1 is a divalent alkylene of the formula -CnFhn-, or a trivalent alkylene of the formula - CnFbn-i-where n is 1 to 40, preferably 2 to 30, and most preferably 2 to 20.
In other embodiments, R1 is an aryl group, including phenyl, napthyl, anthracenyl, phenanthanenyl, benzonapthanenyl, and fluorenyl. The aryl group can be a polyvalent alkylene. The aryl groups may be further substituted with one or more alkyl groups, i.e. an alkarylene group.
In some preferred embodiments, X1 is a covalent bond and R1 is an aryl group.
The fluoroaliphatic radical-containing piperazine compounds can be prepared using known organic reactions, such as those disclosed in US 5451622 (Boardman et al, incorporated herein by reference. A preferred method of preparation is by the reaction of fluoroaliphatic radical-containing sulfonyl fluorides, RfSChF, with piperazine followed by reaction of the resulting fluoroaliphatic radical-containing sulfonylpiperazine with various organic reactants. Representative reaction schemes for the preparation of fluoroaliphatic radical-containing piperazine compounds are outlined below where Rf is as described above for Formula I and where X is a leaving group such as halogen or tosyl, and R1 together with the rest of the depicted moiety up to but not including the depicted piperazine is R1 as defined above for Formula I.
RfS02 N NH + RJ(X)x
RfSO, N NH + R^COX),
Figure imgf000008_0001
As it is preferred that the Rf groups are linear perfluoroalkyl groups, and have less than 5 mole% non-linear isomers, the perfluroalkylsulfonyl halide starting material is desirable prepared by electrochemical fluorination (ECF) of a linear C3-C5 sulfonyl fluoride, preferably a linear C4 sulfonyl fluoride. With longer chain sulfonyl fluorides, the electrochemical fluorination yields a complex mixture of linear and branched isomers, as well as higher and lower homologues. ECF of linear C3-C5 alkyl sulfonyl fluorides yields predominately linear products with minor amounts of homologues.
The present invention provides a synthetic organic polymer composition comprising the one or more of the fluorinated oligomers of Formulas I and/or II and a thermoplastic or thermoset organic polymer. The compounds of Formula I are useful as polymer melt additives to impart desirable low surface energy properties to the thermoplastic or thermoset polymer.
Useful polymers include both thermoplastic and thermoset polymers and include polyamides, e.g., nylon-6 and nylon-66, polyesters, e.g., polyethylene terephthalate, polyurethanes, epoxides, epoxy resins, (meth)acrylates, polystyrenes, silicones and polyolefins, e.g., polyethylene and polypropylene. Thermoplastic polymers such as polyolefins are preferred. The resultant articles, due to the presence of the fluorochemical additive, have improved oil- and water-repellency, low surface energy and a resistance to soiling.
Shaped articles (e.g., fibers, films and molded or extruded articles) of this invention can be made, e.g., by blending or otherwise uniformly mixing the alkylated fluorochemical oligomer and the polymer, for example by intimately mixing the oligomer with pelletized or powdered polymer, and melt extruding the mixture into shaped articles such as pellets, fibers, or films by known methods. The additive can be mixed per se with the polymer or can be mixed with the polymer in the form of a "masterbatch"
(concentrate) of the additive in the polymer. Masterbatches typically contain from about 10% to about 25% by weight of the fluorochemical additive. Also, an organic solution of the additive may be mixed with the powdered or pelletized polymer, the mixture dried to remove solvent, then melted and extruded into the desired shaped article. Alternatively, molten additive (as a compound(s) or masterbatch) can be injected into a molten polymer stream to form a blend just prior to extrusion into the desired shaped article.
When using thermoset resins, such as epoxy resins, urethanes and acrylates, the fluorochemical oligomer may be mixed with the resin and cured by application of heat. Preferably such thermoset resins may be processed by reactive extrusion techniques such as are taught in U.S. 4,619,976 (Kotnour) and U.S. 4,843,134 (Kotnour).
The thermoplastic composition containing the compounds of Formula I may be used to provide oil and water repellency to fibers. The fluorochemical additives are melt processible, i.e., suffer substantially no degradation under the melt processing conditions used to form the fibers.
The amount of fluorochemical compound in the composition is that amount sufficient to produce a shaped article having a surface with the desired properties of oil and water repellency and/or soiling resistance. Preferably, the amount of fluorochemical compound will be that amount which provides from about 100 to 10,000 ppm fluorine, more preferably 200 to 5000 ppm, most preferably 400 to 3000 ppm fluorine, based on the weight of the shaped article.
After melt extrusion of a fiber, film or extruded article, an annealing step may be carried out to enhance oil and water repellency. Annealing apparently allows the fluorochemical additive to migrate to the surface of the thermoplastic polymer with a resultant increase in repellency properties, reduced surface activity, improved solvent resistance and improved release properties. The fiber or film is annealed for at a temperature and for a time sufficient to increase the amount of fluorochemical additive at the surface. Effective time and temperature will bear an inverse relationship to one another and a wide variety of conditions will be suitable. Using polypropylene, for example, the annealing process can be conducted below the melt temperature at about 50° to 120° C. for a period of about 30 seconds to 10 minutes. Annealing may also be effected by contact with heated rolls, such as embossing rolls, at 50°C to 160°C for periods of about 1 to 30 seconds. In some cases, the presence of moisture during annealing, e.g., by using an autoclave to anneal, can improve the effectiveness of the fluorochemical additive. The annealing method may also serve to reduce the amount of additive necessary by maximizing fluorine content at the surface of the polymer.
In addition to their use in modifying the properties of fibers, the polymer composition of the invention is also useful in preparing blown microfibers for non-woven fabrics having low surface energy, oil and water repellency and/or soiling resistance. The resin, such as polypropylene, used to form the melt blown microfibers should be substantially free from materials such as antistatic agents which could increase the electrical conductivity or otherwise interfere with the ability of the fibers to accept and hold electrostatic charges. When the fluorochemical compounds of the invention are used as additives to melt blown microfibers, the additive is preferably present in amounts of about 0.2 to 10 weight percent, more preferably from 0.5 to 5 weight percent and most preferably 0.5 to 2 weight percent.
As used herein, the terms "fiber" and "fibrous" refer to particulate matter, generally thermoplastic resin, wherein the length to diameter ratio of the particulate matter is greater than or equal to about 10. Fiber diameters may range from about 0.5 micron up to at least 1,000 microns. Each fiber may have a variety of cross-sectional geometries, may be solid or hollow, and may be colored by, e.g., incorporating dye or pigment into the polymer melt prior to extrusion.
The non-woven webs of fibers of thermoplastic olefinic polymer for use in this invention include non-woven webs manufactured by any of the commonly known processes for producing non-woven webs. For example, the fibrous non-woven web can be made by spunbonding techniques or melt-blowing techniques or combinations of the two. Spunbonded fibers are typically small diameter fibers which are formed by extruding molten thermoplastic polymer as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded fibers being rapidly reduced. Meltblown fibers are typically formed by extruding the molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into a high velocity, usually heated gas (e.g. air) stream which attenuates the filaments of molten thermoplastic material to reduce their diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly disbursed meltblown fibers. Any of the non-woven webs may be made from a single type of fiber or two or more fibers which differ in the type of thermoplastic olefinic polymer and/or thickness. Alternatively, sheath-core fibers can be extruded, containing different polymer compositions in each layer or containing the same polymer composition in each layer but employing the more expensive fluorochemical component in the outer sheath layer.
The melt blown polypropylene microfibers useful in the present invention can be prepared as described in Van Wente, A., "Superfine Thermoplastic Fibers," Industrial Engineering Chemistry, vol. 48, pp. 1342-1346 (1956) and in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled "Manufacture of Super Fine Organic Fibers" by Van Wente et al. or from microfiber webs containing particulate matter such as those disclosed, for example, in U.S. Pat. Nos. 3,971,373 (Braun),
4, 100,324 (Anderson) and 4,429,001 (Kolpin et al.). Multilayer constructions of nonwoven fabrics enjoy wide industrial and commercial utility and include uses such as fabrics for medical gowns and drapes. The nature of the constituent layers of such multilayer constructions can be varied according to the desired end use characteristics, and can comprise two of more layers of melt-blown and spun-bond webs in may useful combinations such as described in U.S. Pat. Nos. 5,145,727 and 5,149,576. The filtering efficiency of a melt-blown microfiber web can be improved by a factor of two or more when the melt-blown fibers are bombarded as they issue from the orifices with electrically charged particles such as electrons or ions, thus making the fibrous web an electret.
Similarly, the web can be made an electret by exposure to a corona after it is collected. Melt-blown polypropylene microfibers are especially useful, while other polymers may also be used such as polycarbonates and polyhalocarbons that may be melt-blown and have appropriate volume-resistivities under expected environmental conditions.
Any of a wide variety of constructions, especially multilayer constructions such as SMS (spunbond/meltblown/spunbond) constructions, may be made from the above- described fibers and fabrics, and such constructions will find utility in any application where some level of hydrophobicity, oleophobicity (or other fluid repellency, such as to bodily fluids) is required. The fibers prepared from the synthetic organic polymer composition of the invention may be used in woven and nonwoven medical fabrics (such as drapes, gowns and masks), industrial apparel, outdoor fabrics (such as umbrellas, awning, tents, etc), raincoats and other outdoor apparel, as well as home furnishings such as table linens and shower curtains, and in myriad other related uses.
Preferably, the filter media is annealed, i.e., heated for a sufficient time at a sufficient temperature to cause the fluorochemical additive to bloom to the surface of the fibers. Generally, about 1 to 10 minutes at about 140 deg. C. is sufficient although shorter times may be used at higher temperatures and longer times may be required at lower temperatures.
Blown microfibers for fibrous electret filters of the invention typically have an effective fiber diameter of from about 5 to 30 micrometers, preferably from about 7 to 10 micrometers, as calculated according to the method set forth in Davies, C. N., "The Separation of Airborne Dust and Particles," Institution of Mechanical Engineers, London, Proceedings IB, 1952.
The electret filter media of the present invention preferably has a basis weight in the range of about 10 to 500 g/m2, more preferably about 10 to 100 g/m2. In making melt- blown microfiber webs, the basis weight can be controlled, for example, by changing either the collector speed or the die throughput. The thickness of the filter media is preferably about 0.25 to 20 mm, more preferably about 0.5 to 2 mm. The electret filter media and the polypropylene resin from which it is produced should not be subjected to any unnecessary treatment which might increase its electrical conductivity, e.g., exposure to gamma rays, ultraviolet irradiation, pyrolysis, oxidation, etc.
The melt-blown microfibers or fibrillated fibers of the electret filters of the invention can be electrostatically charged by a process described in U.S. Pat. Nos. Re.
30,782 (van Turnhout) or Re. 31,285 (van Turnhout) or by other conventional methods for charging or polarizing electrets, e.g., by a process of U.S. Pat. Nos. 4,375,718
(Wadsworth et al.); 4,588,537 (Klasse et al.); or 4,592,815 (Nakao). In general, the charging process involves subjecting the material to corona discharge or pulsed high voltage.
Films prepared from the composition of this invention can be made which are useful, for example, for grease-resistant packaging, release liners and microporous film applications. These films can be used to make multi-layer constructions in which one, more than one, or all layers contain the fluorochemical additive.
This invention is illustrated by, but is not intended to be limited to, the following examples. Unless otherwise specified, all percentages shown in the examples and test methods, which follow, are percentages by weight.
Examples
Materials
Unless otherwise indicated all chemicals were obtained or are commonly available from chemical companies such as Sigma-Aldridge Chemical Company, St. Louis, MO.
KAYDOL Mineral Oil was obtained from Sonneborn, Inc., Parsippany, NJ under trade designation "KAYDOL" White Mineral Oil.
C18 Diester (C4F9S02N(CH3)CH2CH2OOC(CH2)i6COOCH2CH2(CH3)NS02C4F9), was prepared by following the process described in F-4 of US Patent No. US7396866 B2.
Methods
Method for Water Repellency Test
To run the Water Repellency Test, film samples prepared according to the
Examples and Comparative Examples described below were placed on a flat, horizontal surface. Five small drops of water or a water/isopropyl alcohol (IP A) mixture were gently placed at points at least two inches (about 5 cm) apart on the film samples. If, after observing for ten seconds at a 45° angle, four of the five drops were visible as a sphere or a hemisphere, the film sample was deemed to pass the test. The reported water repellency rating corresponds to the highest numbered water or water/IP A mixture for which the film sample passed the above described test. It is desirable to have a water repellency rating of at least 4, preferably at least 6. The water repellency ratings and the corresponding water/IP A mixtures are shown in Table 1, below: Table
Figure imgf000014_0001
Method for Oil Repellency Test
The Oil Repellency Test was run in the same manner as the Water Repellency Test described above except that the film samples were challenged to penetration by oil or oil mixtures of varying surface tensions. The reported oil repellency rating corresponds to the oil or oil mixture for which the film sample passed the described test. It is desirable to have an oil repellency rating of at least 1 , preferably at least 3. The oil repellency ratings and the corresponding oil or oil mixtures are shown in Table 2, below:
Table 2.
Figure imgf000015_0001
Method for Forming Polymer Films
To prepare the sample films according the Examples and Comparative Examples described below, a film forming polymer (PET, Nylon-6, polypropylene, etc.) and a fluorochemical additive were simultaneously melted and mixed as the mixture was conveyed through an extruder by a rotating screw or screws and then was forced out through a slot or flat die where the film was quenched. The films were optionally oriented prior to quenching by drawing or stretching the film at elevated temperatures. The extruder for PET used was a KraussMaffei Berstorff 25M1VI counter-rotating conical twin screw extruder (obtained from KraussMaffei Berstorff GmbH & Co., Munich Germany) maximum extrusion temperature of approximately 275° C and with the distance to the collector of approximately 1 1 inches (about 28 cm). The extruder used for Nylon-6 was a Leistritz 1 \ i \ ! counter-rotating conical twin screw extruder (obtained from Leistritz GmbH & Co., Nuremberg Germany) with maximum extrusion temperature of
approximately 230° C and with the distance to the collector of approximately 1 1 inches (about 28 cm).
The fluorochemical additive and thermoplastic polymer were each weighed and mixed in a plastic container in a desired ratio. Then using a mixer head affixed to a hand drill they were mixed for about one minute until a visually homogeneous mixture was obtained. This mixture was then added to the extruder hopper. The process conditions for each mixture were the same, including the film die construction and the thickness of the film (50 micrometers). The extrusion temperature was approximately 230-275° C depending on the polymer. The polymer throughput rate was about 7.5 Ibs/h (about 3.40 kg/h)
Preparative Example 1 (PE1)
Figure imgf000016_0001
To a 3 -neck 3 L round bottom equipped with a mechanical stirrer, addition funnel and a claisen adaptor with thermocouple and reflux condenser was added piperazine (486 g, 5642 mmol) and triethylamine (400 mL, 2870 mmol). The reaction mixture was heated to 65 °C with continuous stirring. Once the reaction mixture reached 50 °C,
1, 1,2,2,3, 3,4,4,4-nonafluorobutane-l-sulfonyl fluoride (500 mL, 2780 mmol) was added via addition funnel at such a rate so as to maintain a temperature below 90 °C. Upon completion of addition, the temperature was raised to 95 °C and the reaction mixture was allowed to stir for 16 h. The vessel was cooled to 50 °C, and water (300 mL) was added followed by dichloromethane (500 mL). The resulting biphasic mixture was allow to stir for 5 min and then allowed to phase separate. The lower phase was removed, washed 3x with water (300 mL), brine (500 mL) and dried over sodium sulfate (250g). The resulting yellow solution was filtered, solvent was removed via rotary evaporator and distilled at 250 mTorr and 80 °C to afford 1-(1, 1,2,2,3, 3,4,4,4-nonafluorobutylsulfonyl)piperazine (713 g, 1936.3 mmol, 70% Yield) as a white solid. The identity of the material was confirmed by LC/MS and NMR techniques.
Preparative Example 2 (PE2)
Figure imgf000016_0002
l-(l, l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazine (40.3 g, 109 mmol), triethylamine (17 mL, 122 mmol) and dichloromethane (110 mL, 1716 mmol) were added to a 500mL round bottom flask equipped with a magnetic stir bar, reflux condenser and addition funnel containing adipoyl chloride (8 mL, 54.5 mmol) under nitrogen
atmosphere. Adipoyl chloride was slowly added via addition funnel to the reaction mixture with vigorous stirring. Upon completion, the mixture was allowed to stir for 16 h at room temperature (r.t.). Water (300 mL) was then added to the white suspension and the product was collected via filtration. The solid was washed 3x with water (300 mL) and 3x with dichloromethane (300 mL) and dried under vacuum to afford l,6-bis[4- (l,l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazin-l-yl]hexane-l,6-dione (36 g, 42.52 mmol, 78% Yield) as a white solid. The identity of the material was confirmed by LC/MS and NMR techniques.
Preparative Exampl
Figure imgf000017_0001
l-(l, l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazine (44.19 g, 120.0 mmol), triethylamine (18.3 mL, 131 mmol) and dichloromethane (120 mL, 1872 mmol) were added to a 500mL round bottom flask equipped with a magnetic stir bar, reflux condenser and addition funnel containing azelaoyl chloride (12 mL, 59.71 mmol) under nitrogen atmosphere. Azelaoyl chloride was slowly added via addition funnel to the reaction mixture with vigorous stirring. Upon completion, the mixture was allowed to stir for 16 h at r.t.. Water (300 mL) was then added to the white suspension and the product was collected via filtration. The solid was washed 3x with water (300 mL) and 3x with dichloromethane (300 mL) and dried under vacuum to afford l,9-bis[4-(l, 1,2,2,3, 3,4,4,4- nonafluorobutylsulfonyl)piperazin-l-yl]nonane-l,9-dione (30 g, 33.76 mmol, 56% Yield) as a white solid. The identity of the material was confirmed by LC/MS and NMR techniques. Preparative Example 4 (PE4)
Figure imgf000018_0001
1-(1, 1,2,2,3, 3,4,4,4-nonafluorobutylsulfonyl)piperazine (39.6 g, 108 mmol), triethylamine (16.4 mL, 118 mmol, 100 mass%) and dichloromethane (100 mL, 1560 mmol, 100 mass%) were added to a 500mL round bottom flask equipped with a magnetic stir bar, reflux condenser and addition funnel containing sebacoyl chloride (12 mL, 53.4 mmol) under nitrogen atmosphere. Sebacoyl chloride was slowly added via addition funnel to the reaction mixture with vigorous stirring. Upon completion, the mixture was allowed to stir for 16 h at r.t.. Water (300 mL) was then added to the white suspension and the product was collected via filtration. The solid was washed 3x with water (300 mL) and 3x with dichloromethane (300 mL) and dried under vacuum to afford l, 10-bis[4- (l,l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazin-l-yl]decane-l,10-dione (40.6 g, 45.0 mmol, 84% Yield) as a white solid. The identity of the material was confirmed by LC/MS and MR techniques.
Preparative Example 5 (PE5)
Figure imgf000018_0002
1-
(l,l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazine (44.5 g, 120.85 mmol),
triethylamine (18.44 mL, 132.28 mmol) and dichloromethane (120 mL, 1872 mmol) were added to a 500mL round bottom flask equipped with a magnetic stir bar, reflux condenser and addition funnel containing dodecanedioyl dichloride (15 mL, 60.13 mmol) under nitrogen atmosphere, dodecanedioyl dichloride was slowly added via addition funnel to the reaction mixture with vigorous stirring. Upon completion, the mixture was allowed to stir for 16 h at r.t. Water (300 mL) was then added to the white suspension and the product was collected via filtration. The solid was washed 3x with water (300 mL) and 3x with dichloromethane (300 mL) and dried under vacuum to afford l, 12-bis[4- (1,1 ,2,2,3 ,3 ,4,4,4-nonafluorobutylsulfonyl)piperazin- 1 -yljdodecane- 1 , 12-dione (50 g, 53.72 mmol, 89% Yield) as a white solid. The identity of the material was confirmed by LC/MS and NMR techniques.
Preparative Example 6 (PE6)
Figure imgf000019_0001
1-(1, 1,2,2,3, 3,4,4,4-nonafluorobutylsulfonyl)piperazine (153 g, 415.51 mmol), triethylamine (65 mL, 466 mmol) and dichloromethane (400 mL, 6240 mmol) were added to a 3 -neck 3 L round bottom equipped with a mechanical stirrer, addition funnel and a claisen adaptor with thermocouple, reflux condenser and addition funnel containing Octadecanedioyl dichloride (72.63 g, 206.7 mmol) under nitrogen atmosphere.
Octadecanedioyl dichloride was slowly added via addition funnel to the reaction mixture with vigorous stirring. Upon completion, the mixture was allowed to stir for 16 h at r.t.. Water (300 mL) was then added to the white suspension and the product was collected via filtration. The solid was washed 3x with water (300 mL) and 3x with dichloromethane (300 mL) and dried under vacuum to afford 1, 18-bis[4-(l, 1,2,2,3,3,4,4,4- nonafluorobutylsulfonyl)piperazin-l-yl]octadecane-l,18-dione (159 g, 156.67 mmol, 76% Yield) as a white solid. The identity of the material was confirmed by LC/MS and NMR techniques.
Preparative Example 7 (PE7)
Figure imgf000019_0002
1- (l,l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazine (36.47 g, 99.04 mmol), triethylamine (15 mL, 108 mmol) and dichloromethane (120 mL, 1872 mmol) were added to a 500mL round bottom flask equipped with a magnetic stir bar, reflux condenser and addition funnel containing stearoyl chloride (27.8 mL, 82.54 mmol) under nitrogen atmosphere. Stearoyl chloride was slowly added via addition funnel to the reaction mixture with vigorous stirring. Upon completion, the mixture was allowed to stir for 16 h at r.t. Water (300 mL) was then added to the white suspension and the product was collected via filtration. The solid was washed 3x with water (300 mL) and 3x with dichloromethane (300 mL) and dried under vacuum to afford l-[4-(l, 1,2,2,3, 3, 4,4,4- nonafluorobutylsulfonyl)piperazin-l-yl]octadecane-l-one (47.8 g, 75.3 mmol, 91% Yield) as a white solid. The identity of the material was confirmed by LC/MS and NMR techniques.
Preparative Example 8 (PE8)
Figure imgf000020_0001
l-(l, l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazine (194 g, 526.86 mmol, 2.01 equiv.), triethylamine (81 mL, 581 mmol, 2.2 equiv.) and dichloromethane (350 mL, 7800 mmol, 0.5M) were added to a 3-neck 3 L round bottom equipped with a mechanical stirrer, addition funnel and a claisen adaptor with thermocouple, reflux condenser and addition funnel containing terephthaloyl chloride (53.2g, 262 mmol) in dichloromethane (150mL) under nitrogen atmosphere. Terephthaloyl dichloride was slowly added via addition funnel to the reaction mixture with vigorous stirring. Upon completion, the mixture was allowed to stir for 16 h at r.t. Water (300 mL) was then added to the white suspension and the product was collected via filtration. The solid was washed 3x with water (300 mL) and 3x with dichloromethane (300 mL) and dried under vacuum to afford [4-[4-(l, 1,2,2,3, 3,4,4,4-nonafluorobutylsulfonyl)piperazine-l-carbonyl]phenyl]-[4- (l,l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazin-l-yl]methanone (229.1 g, 264.4 mmol, >99% Yield) as a white solid. The identity of the material was confirmed by LC/MS and NMR techniques. Preparative Exa
Figure imgf000021_0001
l-(l, l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazine (49.94 g, 120.0 mmol, 2.01 equiv.), triethylamine (20.7 mL, 148.46 mmol, 2.2 equiv.) and dichloromethane (120 mL, 1872 mmol) were added to a 500mL round bottom flask equipped with a magnetic stir bar, reflux condenser and addition funnel containing isophthaloyl chloride (13.7, 67.48 mmol) under nitrogen atmosphere. Isophthaloyl chloride was slowly added via addition funnel to the reaction mixture with vigorous stirring. Upon completion, the mixture was allowed to stir for 16 h at r.t. Water (300 mL) was then added to the white suspension and the product was collected via filtration. The solid was washed 3x with water (300 mL) and 3x with dichloromethane (300 mL) and dried under vacuum to afford l,3-phenylenebis((4- ((perfluorobutyl)sulfonyl)piperazin-l-yl)methanone) (54.5 g, 62.89 mmol, 93% Yield) as a white solid. The identity of the material was confirmed by LC/MS and NMR techniques.
Preparative Example 10 (PE10)
Figure imgf000021_0002
l-(l, l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazine (146 g, 396.5 mmol, 3.01 equiv.), triethylamine (61 mL, 438 mmol, 3.3 equiv.) and dichloromethane (300 mL, 4680 mmol) were added to a 3 -neck 3 L round bottom equipped with a mechanical stirrer, addition funnel and a claisen adaptor with thermocouple, reflux condenser and addition funnel containing benzene- 1,3, 5 -tricarbonyl chloride (35 g, 131.84 mmol) under nitrogen atmosphere. Benzene- 1,3, 5 -tricarbonyl chloride was slowly added via addition funnel to the reaction mixture with vigorous stirring. Upon completion, the mixture was allowed to stir for 16 h at r.t.. Water (300 mL) was then added to the white suspension and the product was collected via filtration. The solid was washed 3x with water (300 mL) and 3x with dichloromethane (300 mL) and dried under vacuum to afford [3,5-bis[4- (1, 1,2,2,3, 3, 4,4,4-nonafluorobutylsulfonyl)piperazine-l-carbonyl]phenyl]-[4- (l,l,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)piperazin-l-yl]methanone (159.7 g, 126.7 mmol, 96% Yield) as a white solid. The identity of the material was confirmed by LC/MS and NMR techniques.
Examples 1-9 (EX1-EX9) and Comparative Examples 10-1 KCE10-CE11)
To prepare EX1-EX9, either PET or a Nylon-6 polymer were co-extruded with a 1.5 wt. % fluorochemical additive prepared in PE2-PE10, respectively, using the process described above in Method for Forming Polymer Films. The resulting films were annealed at 110 °C for 10 min (PET) or 120 °C for 20 min (Nylon-6).
CE10 was prepared in the same manner as EX1-EX9 described above except that C4F9S02N(CH3)CH2CH2OOC(CH2)i6COOCH2CH2(CH3)NS02C4F9 was the
fluorochemical additive.
CEl 1 was prepared in the same manner as EX1-EX9 described above, except that no fluorochemical additive was present.
The resulting EX1-EX9 and CE10-CE1 1 film samples were tested for their water and oil repellency using the test methods described above. The results are reported in Table 3, below.
Table 3.
Figure imgf000023_0001

Claims

Claims
1. A composition comprising a thermoplastic polymer and an additive of the formula:
Figure imgf000024_0001
wherein
R1 is a linear or branched C2-C40 hydrocarbyl group;
Rf is a perfluorinated group of having an average of 3 to 5 carbon atoms;
X1 is - H- or a covalent bond; and
subscript x is 1 to 3.
2. The composition of claim 1 wherein the additive contains at least 95% linear perfluorobutyl groups.
3. The composition of claim 1 wherein the additive contains less than 5% of other perfluoroalkyl groups.
4. The composition of claim 1 wherein said thermoplastic polymers are selected from the group consisting of polyamides, polyesters, polyurethanes, epoxides, epoxy resins, (meth)acrylates, polystyrenes, silicones and polyolefins.
5. The composition of claim 1 wherein said additive comprises from 0.1 to 5 weight percent of said composition.
6. The composition of claim 1 wherein R1 is a C2-C40 alkyl or alkylene.
7. The composition of claim 1 wherein R1 is a C2-C18 alkyl or alkylene.
8. The composition of claim 1 wherein R1 is an aryl or arylene.
9. The composition of claim 7 wherein the aryl group is selected from phenyl, napthyl, anthracenyl, phenanthanenylbenzonapthanenyl, and fluorenyl.
10. The composition of claim 1 wherein XI is a covalent bond and R1 is an arylene or arylene, optionally substituted by one or more alkyl groups.
11. A shaped article comprising the composition of claim 1.
12. The shaped article of claim 6 selected from the group of films, sheets and fibers
PCT/US2016/064079 2015-12-11 2016-11-30 Fluorinated piperazine sulfonamides WO2017100045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562266035P 2015-12-11 2015-12-11
US62/266,035 2015-12-11

Publications (1)

Publication Number Publication Date
WO2017100045A1 true WO2017100045A1 (en) 2017-06-15

Family

ID=57737962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/064079 WO2017100045A1 (en) 2015-12-11 2016-11-30 Fluorinated piperazine sulfonamides

Country Status (1)

Country Link
WO (1) WO2017100045A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169642A1 (en) * 2017-03-17 2018-09-20 3M Innovative Properties Company Adhesive articles and methods of making the same
WO2018229596A1 (en) * 2017-06-13 2018-12-20 3M Innovative Properties Company Melt additive compounds, methods of using the same, and articles and compositions including the same
US10590072B2 (en) 2016-09-09 2020-03-17 3M Innovative Properties Company Partially fluorinated aromatic esters
WO2020121248A1 (en) 2018-12-12 2020-06-18 3M Innovative Properties Company Fluorinated amine oxide surfactants
US10703940B2 (en) 2016-09-08 2020-07-07 3M Innovative Properties Company Adhesive article and method of making the same
US10731055B2 (en) 2016-11-15 2020-08-04 3M Innovative Properties Company Compound, adhesive article, and methods of making the same
US10731054B2 (en) 2016-06-29 2020-08-04 3M Innovative Properties Company Compound, adhesive article, and methods of making the same
WO2022144724A1 (en) 2020-12-30 2022-07-07 3M Innovative Properties Company Partially fluorinated sulfonamides for use in pet films

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971373A (en) 1974-01-21 1976-07-27 Minnesota Mining And Manufacturing Company Particle-loaded microfiber sheet product and respirators made therefrom
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
USRE30782E (en) 1974-03-25 1981-10-27 Minnesota Mining And Manufacturing Company Method for the manufacture of an electret fibrous filter
US4375718A (en) 1981-03-12 1983-03-08 Surgikos, Inc. Method of making fibrous electrets
USRE31285E (en) 1976-12-23 1983-06-21 Minnesota Mining And Manufacturing Company Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method
US4429001A (en) 1982-03-04 1984-01-31 Minnesota Mining And Manufacturing Company Sheet product containing sorbent particulate material
US4588537A (en) 1983-02-04 1986-05-13 Minnesota Mining And Manufacturing Company Method for manufacturing an electret filter medium
US4592815A (en) 1984-02-10 1986-06-03 Japan Vilene Co., Ltd. Method of manufacturing an electret filter
US4619976A (en) 1984-11-30 1986-10-28 Eastman Kodak Company Blends of copolyesters and polycarbonate
US4843134A (en) 1984-03-28 1989-06-27 Minnesota Mining And Manufacturing Company Acrylate pressure-sensitive adhesives containing insolubles
US5025052A (en) 1986-09-12 1991-06-18 Minnesota Mining And Manufacturing Company Fluorochemical oxazolidinones
US5145727A (en) 1990-11-26 1992-09-08 Kimberly-Clark Corporation Multilayer nonwoven composite structure
US5149576A (en) 1990-11-26 1992-09-22 Kimberly-Clark Corporation Multilayer nonwoven laminiferous structure
US5300587A (en) 1990-10-24 1994-04-05 Centro Sviluppo Settori Impiego S.R.L. Oil repellent polymeric composition and use thereof, for preparing formed articles having surfaces endowed with a high stability formed articles having surfaces endowed with a high stability to solvents and a high resistance to soiling
US5336717A (en) 1991-03-06 1994-08-09 Minnesota Mining And Manufacturing Company Graft copolymers containing fluoroaliphatic groups
US5380778A (en) 1992-09-30 1995-01-10 Minnesota Mining And Manufacturing Company Fluorochemical aminoalcohols
US5411576A (en) 1993-03-26 1995-05-02 Minnesota Mining And Manufacturing Company Oily mist resistant electret filter media and method for filtering
US5451622A (en) 1992-09-30 1995-09-19 Minnesota Mining And Manufacturing Company Composition comprising thermoplastic polymer and fluorochemical piperazine compound
WO1997022576A1 (en) 1995-12-21 1997-06-26 E.I. Du Pont De Nemours And Company Fluorinated diester
US5688884A (en) 1995-08-31 1997-11-18 E. I. Du Pont De Nemours And Company Polymerization process
US5690949A (en) * 1991-10-18 1997-11-25 Minnesota Mining And Manufacturing Company Microporous membrane material for preventing transmission of viral pathogens
WO1998015598A1 (en) 1996-10-09 1998-04-16 Daikin Industries, Ltd. Water-repellent, oil-repellent resin composition
WO1999005345A1 (en) 1997-07-28 1999-02-04 Minnesota Mining And Manufacturing Company High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers
US5898046A (en) 1995-12-21 1999-04-27 E. I. Du Pont De Nemours And Company Fluorinated melt ester additives for thermoplastic fibers
US7396866B2 (en) 2004-12-15 2008-07-08 3M Innovative Properties Company Fluorochemical diesters as repellent polymer melt additives

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971373A (en) 1974-01-21 1976-07-27 Minnesota Mining And Manufacturing Company Particle-loaded microfiber sheet product and respirators made therefrom
USRE30782E (en) 1974-03-25 1981-10-27 Minnesota Mining And Manufacturing Company Method for the manufacture of an electret fibrous filter
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
USRE31285E (en) 1976-12-23 1983-06-21 Minnesota Mining And Manufacturing Company Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method
US4375718A (en) 1981-03-12 1983-03-08 Surgikos, Inc. Method of making fibrous electrets
US4429001A (en) 1982-03-04 1984-01-31 Minnesota Mining And Manufacturing Company Sheet product containing sorbent particulate material
US4588537A (en) 1983-02-04 1986-05-13 Minnesota Mining And Manufacturing Company Method for manufacturing an electret filter medium
US4592815A (en) 1984-02-10 1986-06-03 Japan Vilene Co., Ltd. Method of manufacturing an electret filter
US4843134A (en) 1984-03-28 1989-06-27 Minnesota Mining And Manufacturing Company Acrylate pressure-sensitive adhesives containing insolubles
US4619976A (en) 1984-11-30 1986-10-28 Eastman Kodak Company Blends of copolyesters and polycarbonate
US5025052A (en) 1986-09-12 1991-06-18 Minnesota Mining And Manufacturing Company Fluorochemical oxazolidinones
US5300587A (en) 1990-10-24 1994-04-05 Centro Sviluppo Settori Impiego S.R.L. Oil repellent polymeric composition and use thereof, for preparing formed articles having surfaces endowed with a high stability formed articles having surfaces endowed with a high stability to solvents and a high resistance to soiling
US5149576A (en) 1990-11-26 1992-09-22 Kimberly-Clark Corporation Multilayer nonwoven laminiferous structure
US5145727A (en) 1990-11-26 1992-09-08 Kimberly-Clark Corporation Multilayer nonwoven composite structure
US5336717A (en) 1991-03-06 1994-08-09 Minnesota Mining And Manufacturing Company Graft copolymers containing fluoroaliphatic groups
US5690949A (en) * 1991-10-18 1997-11-25 Minnesota Mining And Manufacturing Company Microporous membrane material for preventing transmission of viral pathogens
US5380778A (en) 1992-09-30 1995-01-10 Minnesota Mining And Manufacturing Company Fluorochemical aminoalcohols
US5451622A (en) 1992-09-30 1995-09-19 Minnesota Mining And Manufacturing Company Composition comprising thermoplastic polymer and fluorochemical piperazine compound
US5411576A (en) 1993-03-26 1995-05-02 Minnesota Mining And Manufacturing Company Oily mist resistant electret filter media and method for filtering
US5688884A (en) 1995-08-31 1997-11-18 E. I. Du Pont De Nemours And Company Polymerization process
WO1997022576A1 (en) 1995-12-21 1997-06-26 E.I. Du Pont De Nemours And Company Fluorinated diester
US5898046A (en) 1995-12-21 1999-04-27 E. I. Du Pont De Nemours And Company Fluorinated melt ester additives for thermoplastic fibers
WO1998015598A1 (en) 1996-10-09 1998-04-16 Daikin Industries, Ltd. Water-repellent, oil-repellent resin composition
WO1999005345A1 (en) 1997-07-28 1999-02-04 Minnesota Mining And Manufacturing Company High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers
US7396866B2 (en) 2004-12-15 2008-07-08 3M Innovative Properties Company Fluorochemical diesters as repellent polymer melt additives

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DAVIES, C. N.: "The Separation of Airborne Dust and Particles", INSTITUTION OF MECHANICAL ENGINEERS, LONDON, PROCEEDINGS 1B, 1952
H. C. FIELDING: "Organofluorine Compounds and Their Applications", 1979, pages: 214
PHILLIPS; DETTREE, J.COL AND INTERFACE SCI., vol. 56, no. 2, August 1976 (1976-08-01)
VAN WENTE, A.: "Superfine Thermoplastic Fibers", INDUSTRIAL ENGINEERING CHEMISTRY, vol. 48, 1956, pages 1342 - 1346
VAN WENTE: "Manufacture of Super Fine Organic Fibers", 25 May 1954, NAVAL RESEARCH LABORATORIES (REPORT NO. 4364 )

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731054B2 (en) 2016-06-29 2020-08-04 3M Innovative Properties Company Compound, adhesive article, and methods of making the same
US10703940B2 (en) 2016-09-08 2020-07-07 3M Innovative Properties Company Adhesive article and method of making the same
US10590072B2 (en) 2016-09-09 2020-03-17 3M Innovative Properties Company Partially fluorinated aromatic esters
US10731055B2 (en) 2016-11-15 2020-08-04 3M Innovative Properties Company Compound, adhesive article, and methods of making the same
WO2018169642A1 (en) * 2017-03-17 2018-09-20 3M Innovative Properties Company Adhesive articles and methods of making the same
US10731056B2 (en) 2017-03-17 2020-08-04 3M Innovative Properties Company Adhesive articles and methods of making the same
WO2018229596A1 (en) * 2017-06-13 2018-12-20 3M Innovative Properties Company Melt additive compounds, methods of using the same, and articles and compositions including the same
JP2020523350A (en) * 2017-06-13 2020-08-06 スリーエム イノベイティブ プロパティズ カンパニー Melt additive compound, method of use thereof, and articles and compositions containing same
US11028252B2 (en) 2017-06-13 2021-06-08 3M Innovative Properties Company Melt additive compounds, methods of using the same, and articles and compositions including the same
JP7115718B2 (en) 2017-06-13 2022-08-09 スリーエム イノベイティブ プロパティズ カンパニー Melting additive compound, method of use thereof, and articles and compositions containing same
WO2020121248A1 (en) 2018-12-12 2020-06-18 3M Innovative Properties Company Fluorinated amine oxide surfactants
WO2022144724A1 (en) 2020-12-30 2022-07-07 3M Innovative Properties Company Partially fluorinated sulfonamides for use in pet films

Similar Documents

Publication Publication Date Title
EP3464252B1 (en) Fluorochemical piperazine carboxamides
WO2017100045A1 (en) Fluorinated piperazine sulfonamides
US6174964B1 (en) Fluorochemical oligomer and use thereof
KR100674453B1 (en) Polymer composition containing a fluorochemical oligomer
AU700461B2 (en) Fibrous webs having enhanced electret properties
JP2009523921A (en) Alcohol- and water-repellent nonwovens
DE60219056T2 (en) ANTISTATIC COMPOSITIONS
US10590072B2 (en) Partially fluorinated aromatic esters
KR20180027535A (en) Electret webs with charge enhancing additives
JP2002544188A (en) Alkylated fluorochemical oligomers and uses thereof
KR20070090010A (en) Fluorochemical diesters as repellent polymer melt additives
EP3475290B1 (en) Fluorochemical piperazine carboxamides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16822552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16822552

Country of ref document: EP

Kind code of ref document: A1